Line of research: modelling postal market liberalisation with universal service obligations (USO)

We use the same model to answer two questions:

- 1. What will happen to the USO provider under different liberalisation scenarii?
- 2. How should we fund the cost of USO under liberalisation?

Third set of questions with modified model:

Parcels market when entrants need access to incumbent's rural delivery network. What should be the access pricing?

Paper developed for 10th CRRI Conference on Postal and Delivery Economics, Potsdam, June 5-8, 2002.

This presentation: methodological survey with hints at calibration results.

For more calibration results, see CRRI books:

- 2001 (Vancouver) for question 1
- 2002 (Sorrento) for question 2

Model's building blocks

 Each operator offers one good (letter) sent to different areas (with different costs) by different senders (with different demand elasticities)

Submarkets

Two geographical areas: urban and rural

Two **types** of senders and recipients : house-holds and firms

Location of senders plays no role

 \Rightarrow [households, firms] send letters to [urban, rural] X [households, firms] : **8 sub-markets**

Demand

No substitution between mail sent to different areas/recipients

Demand more elastic for firms than for house-holds

Cost

Cost function: four (constant) marginal costs according to recipient market

Incumbent has fixed cost (linked to USO)

How do we use this model to answer the two questions?

Starting case:

Monopoly-Uniform Price-max Welfare

Entry while Inc. does not move COMUSOUL

What happens?

- Duopoly, Uniform, Welfare
- Duopoly,
 Differentiated, Welfare
- Duopoly,
 Diffenciated, Profit

How to fund?

- Pricing flexibility
 - Compensation fund
 - Reserved Area + same
 - Welfare analysis [who gains, who loses]

Sensitivity analysis Extensions

Starting case: Monopoly – Uniform Price – maximises Welfare

- $U_i(p) = S\left(Q_i^h(p)\right) pQ_i^h(p)$ for market $i \in R = \{uh, rh, ub, rb\}$, $U(p) = \sum_{i \in R} U_i(p)$
- Same by analogy for businesses (using "indirect" production function) $\Pi(p)$ and $Q_i^b(p)$
- Incumbent's profit : $\Pi^I(p) = \sum_{i \in R} (p C_i') \left(Q_i^h(p) + Q_i^b(p) \right) F$
- Incumbent's objective :

$$\max_{p} \overbrace{U(p) + \Pi(p) + \Pi^{I}(p)}^{W(p)}$$

s.t. $\Pi^{I}(p) \geq 0$ [Lagrange multiplier λ]

• Assume $\lambda = 0$

F.O.C.

$$(A) \sum_{i \in R} \frac{p - C_i'}{p} \left(\varepsilon_h \frac{q_i^h}{Q} + \varepsilon_b \cdot \frac{Q_i^b}{Q} \right) = 0$$

where ε_h : households demand elasticity ε_b : businesses demand elasticity $Q = \sum_i (Q_i^h + Q_i^b)$

• If $\lambda > 0$

F.O.C. :
$$\lambda Q + (1 + \lambda)(A) = 0$$

Parameters calibrated on this situation

Introducing an entrant

Entrant offers 1 good (letter) seen as imperfect substitute to incumbent's good :

Households:

$$U_{i}(p, p_{i}^{h}) = S\left(Q_{i}^{h}(p, p_{i}^{h}), Q_{i}^{E,h}(p, p_{i}^{h})\right) - pQ_{i}^{h}(p, p_{i}^{h}) - p_{i}^{h}Q_{i}^{E,h}(p, p_{i}^{h})$$

$$i \in R = \{uh, rh, ub, rb\}$$

with $S(\cdot)$ not separable

$$U(p, p_{uh}^h, p_{rh}^h, p_{ub}^h, p_{rb}^h) = \sum_{i \in R} U_i(p, p_i^h)$$

• Same for Business senders :

$$\Pi\left(p,p_{uh}^h,p_{rh}^h,p_{ub}^h,p_{rb}^h\right),\ Q_i^{E,b}(p,p_i^b)$$
 and
$$Q_i^b(p,p_i^b),\quad i\in R$$

We have

$$Q_i^j(p,p_i^j)$$
 and $Q_i^{E,j}(p,p_i^j)$ $i\in R$, $j\in\{h,b\}$

• Entrant's costs:

4 marginal costs but no fixed costs

• Incumbent is always maximising profit :

$$\max_{\{p_i^j\}} \Pi^E(p, \{p_i^j\}) = \sum_{(i,j)} (p_i^j - C_i^{E'}) Q_i^{E,j}(p, p_i^j)$$

 \Rightarrow 8 F.O.C. (one by sub-market)

On sub-market (i, j):

$$\frac{p_i^j - C_i^{E'}}{p_i^j} = \frac{1}{\varepsilon_i^j(p_j^i)}$$

where ε_i^j stands for demand direct-price elasticity in sub-market (i,j)

 \Rightarrow Only link between sub-markets is through p which affects elasticities.

- Short term equilibrium : p unchanged
 - ⇒ Incumbent makes a loss (743 million euros)

1 First Question : Different scenarii

1.1 Duopoly, Uniform Price, Maximises Welfare

• Entrant : as previously

• Incumbent:

$$\begin{aligned} \max_{p} \quad & U(p,\{p_{i}^{j}\}) + \Pi(p,\{p_{i}^{j}\}) \\ & + \Pi^{E}(p,\{p_{i}^{j}\}) + \Pi^{I}(p,\{p_{i}^{j}\}) \\ & \text{s.t.} \quad & \Pi^{I}(p,\{p_{i}^{j}\}) \, \geq \, 0 \end{aligned}$$

Results

- We obtain one, "Ramsey like", F.O.C.
- F.O.C. for entrant is unchanged
- p increases to cover cost
- entrant's prices also increase because goods are substitute
- both profits increases

Remark: Bertrand - Nash equilibrium, so no collusion

1.2 Duopoly, Differentiated Prices, Maximises Welfare

F.O.C. entrant unchanged

F.O.C. incumbent: 1 by sub-market

• If $\lambda = 0$, F.O.C. on sub-market (i, j):

$$(p_i^j - C_i^{E'}) \frac{\partial Q_i^{E,j}(\cdot)}{\partial p} + (p - C_i') \frac{\partial Q_i^j(\cdot)}{\partial p} = 0$$

 \Rightarrow $p > C'_i$ even without zero-profit constraint

Intuition: Increasing quantity sold by entrant, which is too low because entrant's price too high

ullet If $\lambda>0$: further increase of p

1.3 Duopoly, Differentiated Prices, Maximises Profit

F.O.C. entrant unchanged

F.O.C. incumbent: 1 on each sub-market

$$\frac{p_i^j - C_i'}{p_i^j} = \frac{1}{\varepsilon_i(p_i^j)}$$

⇒ usual inverse elasticity rule

1.4 Sensitivity analysis

- Variations in demands elasticities, degree of substitution, asymmetric demands
- Variations in marginal costs

1.5 Extensions

- Multiple entry
 Bertrand competition, competitive fringe
- Fixed costs for entrants
 Look at entry pattern

2 Second question: Funding the cost of USO under liberalisation

2.1 Keeping full opening to competition

2.1.1 Giving more price flexibility to entrant

Downward pricing flexibility

Bertrand-Nash competition on each sub-market Take min (equilibrium incumbent's price, preliberalisation uniform price)

Result:

- Not much profit gained
- On one sub-market, incumbent's profit even decreases! Illustrates value of commitment, to prevent a "price war"
- Full pricing flexibility
 Bertrand-Nash competition
- Increasing Uniform Price

Calibration results: does not generate enough profit for incumbent to break even

2.1.2 Establishing a compensation fund

Fund is financed by entrant, through an **excise** or a **proportional** tax on entrants

- Tax incidence literature tells us that part of tax/excise paid by consumer, part by suppliers
 - ⇒ Consumers and Entrant lose and Incumbent gains
- We show that total welfare may increase!

Explanation:

Take any sub-market (i, j)

Total Welfare W:

$$S(Q_i^j(p, p_i^h), Q_i^{E,j}(p, p_i^h))$$

 $-C(Q_i^j(p, p_i^h)) - C^E(Q_i^{E,j}(p, p_i^h))$

$$\frac{\partial W}{\partial p_i^h} = \frac{\partial Q_i^j(\cdot)}{\partial p_i^h} (p - C'(Q_i^j)) + \frac{\partial Q_i^j(\cdot)}{\partial p_i^h} (p_i^h - C^{E'}(Q_i^{Ej}))$$

Assume $p > C'(Q_i^j)$ and that goods are substitute

Then
$$\frac{\partial W}{\partial p_i^h} > \mathbf{0}$$
 if $p_i^h = C^{E'}(Q_i^{E,j})$

 \Rightarrow If p_i^h low enough, taxing entrant's good improves welfare because it increases the quantity of incumbent's good which is too low.

Corollary to the "Duopoly-Differentiated Prices-Maximises Welfare" scenario

 calibrations: taxing increases total welfare but does not generate enough proceeds to fund cost of USO for incumbent

2.2 Introducing a Reserved Area

- "Across-the-board" : same proportion r of each market
- Incumbent freely fixes its **uniform price on the reserved areas** so that its profit on reserved area exactly covers loss on opened area.
 - \Rightarrow Different values of r are possible.
- We choose value of r that maximises total welfare

$$\operatorname{argmax}_r W(r) = V_R(p_{RA}(r), r) + \Pi^E(r) + V_{NR}(r)$$

where $p_{RA}(r)$ is much that

$$\Pi_{R}(p_{RA}(r), r) + \Pi_{RN}(r) - F = 0$$

Remark 1: With linear demands, value of r does not affect equilibrium prices in non reserved area.

Remark 2 : We allow incumbent to increase uniform price selectively in reserved area.

Reason is it is much easier to raise profit on reserved area. The break-even price may then be **lower** if price increases only on reserved area.

Remark 3 : We investigate, for non reserved area, same scenarii as before

• Calibration results :

- Different ways to fund cost of USO
- Even though total welfare increases, consumers welfare nearly always decreases!

Results similar to Estrin-de Meza (JPubE, 1995): Competition prevents incumbent from fully exploiting returns to scale: prices increase because average cost increases.

2.3 Extensions and Sensitivity Analysis

- fixed costs for entrants
- competitive fringe
- more efficient entrants

2.4 Increased Efficiency

Classical argument in favour of liberalisation.

Difficult to model. Arbitrarinesss of "black box" approach

Question: By how much should marginal costs decrease following opening to competition

- to fully compensate incumbent?: 2/3
- for consumers as a whole to gain with optimal reserved area?: 1/3