
                          June 12, 2003.

The Economical Control of Infectious Diseases*

by

Mark Gersovitz
Department of Economics

The Johns Hopkins University

and

Jeffrey S. Hammer
The World Bank

Abstract
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The economic approach to infectious diseases is in its infancy, somewhat oddly because

many economists have long had the intuition that epidemics and infectious diseases are

quintessential manifestations of the principle of an externality, itself a central concept in

economics (Gersovitz and Hammer, forthcoming a). Furthermore, epidemiology provides ready-

made dynamic models of disease transmission and economics provides methods of valuing the

costs and benefits of health interventions and methods of dynamic optimization to guide policy. 

Policy toward infections is of great importance. Yet only recently have economists begun to look

at these questions in a formal way.

This paper has two main goals.  The overarching goal is to dissect two important

externalities involving infectious diseases when there are the options of both prevention and

therapy, so that the relative phasing of these two types of interventions is important. To achieve

this goal, we need to state the social planner’s or first-best problem and to compare it to a

representative agent’s problem.  To avoid compounding the identification of any externalities

with problems of myopia, imperfect ability to insure health outcomes, or a disregard for the

welfare of future generations, we make assumptions about the behaviour of the representative

agent such that these problems do not arise, allowing us to focus exclusively on the externalities

that we identify.  These assumptions may not always be adequate approximations and a

relaxation of these assumptions would lead to further considerations in the design of

interventions, but we do not deal with these issues in this paper.

The economic literature on infectious diseases has taken as its starting point some special

although important concerns.  This starting point has influenced modelling strategies in ways that

we believe obscures the general structure of private choice and consequent externalities in the

process of disease transmission.

One focus of the previous literature has been on vaccinations (Brito et al, 1991, Francis,
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1996, Geoffard and Philipson, 1996 and Kremer, 1996). It is certainly an important intervention

but one that is only possible for a limited number of diseases.  Importantly from a modelling

strategy, moreover, vaccination is plausibly a discrete decision, to vaccinate or not, and whether

it is or not, that is how it has been modelled.  Indeed, Francis models vaccination as a discrete

choice by identical individuals.  With neither an intensive margin (choice of intensity of

vaccination) nor an extensive margin (heterogenous individuals), he concludes that  vaccination

does not exhibit externalities, a result that does not, however,  generalize (Gersovitz, 2003).

Philipson  (2000 and cited references) and associates and Kremer (1996) have focussed

on  HIV/AIDS.  For this disease prevention is naturally the almost exclusive focus, none of this

work analyses therapeutic behaviour, and the transition from infection is to death, rather than to

recovered-and-susceptible or immune.  As we will show, the state that follows infection is

important for the analytical tractability of the model, and a fatal disease is not the easiest to

analyse.  In fact, Geoffard and Philipson (1996) analyse HIV under the assumption that infection

raises an individual’s discount rate but does not lead to a diminution in the population; while

tractable, such a formulation hardly incorporates the salient feature of this fatal infection. 

Furthermore, the work of Philipson and his associates formulates prevention as an entirely

discrete choice (safe or risky sex).  Whether this formulation is realistic for HIV is open to

question; regardless, it is clear to us that it ignores the important scope for varying preventive

effort that arises for many other diseases  which present a virtual continuum of degrees of

prevention.  Oral-fecal diseases provide good examples of such a continuum: boil water

progressively longer, wash hands on more and more occasions. Kremer (1996) stresses

heterogeneous behaviour in the population which leads him to a wide range of interesting

conclusions about HIV.  For our purposes, however, his assumption that people are not future-



     1Wickwire (1977) surveys early work and Sethi and Staats (1978), Greenhalgh (1988) and
Hocking (1991) are more recent. This literature, however, has several shortcomings.  First, the
objective function is often poorly specified, with no discounting and a finite horizon.  More
importantly, marginal costs and benefits are typically assumed constant leading to unrealistic
bang-bang solutions. Usually, there is no discussion of the co-ordination of multiple
interventions.  Finally, these models do not incorporate health choices by individuals, and
therefore do not discuss externalities and the decentralization of the optimal policies, a topic we
stress.
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oriented in their risk-taking behaviour limits the applicability of his model to our question

because it confounds myopia with externalities. 

In the economics literature on infections, Wiemer(1987) is an  exception to the study of

one type of intervention in isolation.  She models the use of two interventions in the case of

schistosomiasis (bilharzia), but under assumptions about costs and benefits that imply that one of

the two interventions is used maximally or not at all. Furthermore, she does not model decisions

by individuals and the associated externalities of this type of vector-spread disease. 

Epidemiologists have also analysed the problem of optimal interventions to control infections,

but have not surprisingly ignored many of the issues we investigate.1

Once we have adopted a framework that can achieve our first goal of analysing

externalities and infectious diseases, our second goal is to examine a typology of infectious

diseases.  This typology allows for people to progress from being susceptible to infected (and

infectious) to: (1) recovered but again susceptible, or (2) immune, or (3) dead.  Furthermore, the

typology includes diseases that spread from person to person and those that are spread by

intermediate vectors, such as mosquitos. Finally, the typology allows for the targeting of different

interventions at different groups.  We show how these different characteristics of the epidemic

affect conclusions about how to offset externalities and how the preventive and therapeutic

interventions are phased relative to each other.
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In fact, we identify two types of externalities:  First, infectious people can infect other

people who in turn infect others and so on, the source of what we call the pure infection

externality.  This externality arises if, in choosing their own levels of preventive and therapeutic

effort, people do not fully take into account the costs to others who will become infected as a

consequence of their being infectious. Second, there is a pure prevention externality that arises

because the preventive actions of one individual may directly affect the probability that other

people become infected, whether or not the preventive action prevents infection of the individual

undertaking it. Typically, the pure prevention externality arises only for diseases that involve a

vector and therefore appears only in the last model of the paper. An example is the use of

insecticides to kill mosquitos that carry disease.  The person using the insecticide may or may not

be bitten and infected but the killing of mosquitos lessens the probability that others will be

bitten and infected, something that the user of the insecticide may disregard. A third type of

externality involves pathogen resistance to drugs, both preventive and therapeutic, but we do not

examine this potentially important problem.

As is conventional in modelling externalities, the paper begins with the problem of a

hypothetical social planner who can directly control all preventive and therapeutic actions,

initially in a model of infection from person to person. First, we lay out the accounting for the

people who are in different disease statuses and the dynamics that move people from one status

to another, the constraints on the optimization problem.  Next, we introduce the objective of

decision makers: the maximization of utility of income net of  the costs of the disease in terms of

discomfort, fear and economic loss and net of the costs of preventive and therapeutic measures. 

We then maximize the objective function subject to the constraints, and look at the optimal

solution to the social planner’s problem and how it depends on what happens to people who are
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infected. The next section looks at the decentralized decisions, their deviation from the social

planner’s choices, and hence the existence of externalities and  the role for public interventions. 

A penultimate section looks at some of these issues when vectors transmit disease.  The paper

ends with some concluding remarks. 

1. The Social Planner’s Problem

1.1 The Dynamic Constraints:

The starting point for the study of optimal policy toward infectious diseases is the classic

literature on mathematical epidemiology.  It provides the dynamic constraints that condition

decisions about infectious diseases.  This literature models many diseases, ones transmitted

directly from person to person and ones transmitted by vectors (Anderson and May, 1991). 

In the most general model of diseases transmitted from person to person that we consider,

the total number of people (N) is the sum of the number who are: (1) susceptible (S); (2) infected

and infectious (I); and (3) recovered and immune, i.e. uninfectible (U):

The proportions of these groups in the population are denoted by s, i, and u, with s + i + u = 1 . 

The birth rate of the population is , while deaths only occur as a proportion, *, of the infections

at any time, so that the net change in the population is :

Note if people do not die of the disease, they never die; this assumption is inconsequential for the

qualitative results that we derive and saves on a nuisance parameter, the baseline level of

mortality for people who do not die of the disease.

The number of susceptibles changes according to:



     2 We assume that each person has the same rate of contacts.  Kremer (1996) examines some
behavioural aspects of models in which different people have different rates of contact.
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The first part of the right-hand side embodies the assumption that all newborns are susceptible.

The second part reduces the number of susceptibles by those people who become infected. 

Under the assumption of random contacts, the probability per contact of a susceptible person's

meeting an infected (and infectious) person is the proportion of infected people in the population,

i = I/N.2 The product, Si, is the number of susceptibles who do so.  The factor " is an adjustment

incorporating both the rate of contact and the inherent infectiousness of an infected (or

susceptibility of a susceptible).  The third part is the addition to the susceptible pool resulting

from the recovery of a fraction, $, of the infecteds.

The number of infecteds evolves according to:

 

 The first three terms on the right-hand side have been discussed in connection with equations (2)

and (3).  The last term accounts for the transition of the fraction ( of the infecteds to the status of

immunes.  Correspondingly, the number of immunes evolves according to:

These equations can be solved for the change in the three proportions:

and



     3While this paper was in the last stage of review, a paper by Goldman and Lightwood (2002)
appeared that is the only mathematical discussion of when eradication dominates chronic control
of an infection (and vice versa) that we know.  Their analysis shows that there can be more than
one optimal steady state in a model of the optimal control of infections that is similar to the ones
we discuss here, and that there can be both stable and unstable optimal steady states.  For
instance, they provide an example where for high rates of infection the system moves to a steady
state with endemic infection while for low levels of infection the system moves toward the
(asymptotic) eradication of the infection.  They model a somewhat special case where therapy is
the only intervention and  people recover to be again susceptible.  Their analysis should be of
pivotal importance to the investigation of this important question in the more complex models
we discuss here where we are basically restricting the analysis to the discussion of the properties
of a stable endemic optimal steady state and the approach to it on either the assumption that other
steady states do not exist or that the system is in the region of attraction to an endemic steady
state.
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In the subsequent discussion, our main purpose is to consider how preventive and therapeutic

actions by governments and individuals affect the parameters of the model: ", $, *, and (. 

Without any such interventions, however, these parameters are fixed, and the model of equations

(6)-(8) evolves to a steady state.  In particular, the steady state may be one in which s = 1 and i =

u = 0 and the disease disappears, rather than one in which s, i and u lie strictly between 0 and 1. 

In the former case, optimal policy would be to approach optimally the steady state in which the

disease disappears.  In other cases, it may be desirable to adopt policies that eradicate the disease

even though in the absence of interventions the steady-state proportion of infecteds would be

positive.  With few exceptions, however, we do not believe that eradication, optimal or

otherwise, is feasible, and we will be studying situations in which optimal policy involves

optimally moving to and sustaining a steady state with a positive level of infection.3

1.2 The Costs and Benefits of Interventions and the Social Planner’s Optimization:

We are now ready to specify the social planner’s objective function.  In the total absence

of the disease, each person in the society would have a level of income of V0.  Because we
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assume that utility is linear in income, V0 would also be their level of utility.

When the disease exists, however, the social planner likely will be spending resources on

prevention and on therapies.  Either intervention may be targeted in the sense that only a

proportion of the population generates costs associated with the intervention.  Let 2j, j = a, b be

the proportions of the population that generate either preventive or therapeutic costs associated

with an infectious disease.  We refer to the 2j as targeting functions; in general, they depend on s

and i.  The most natural formulation would be for prevention to be targeted at the susceptible 

(2a = s) and for therapies to be targeted at the infected (2b = i). Other formulations may, however,

be plausible depending on the ability to identify and reach different groups and what makes sense

in terms of the disease and the balance of costs and benefits, something considered in more detail

in the following sections that deal with special cases. The type of targeting may be a choice

variable, but in this paper we will assume that it is a technical given and compare the behaviour

of the model under different targeting assumptions.

The government uses two policy interventions,  preventive effort  of a $ 0 units per

person at whom prevention is targeted and therapeutic effort of b $ 0 units per person at whom

therapeutic effort is targeted. The total number of units of these interventions are therefore a2aN

and b2bN. The level of these health inputs per targeted person affects the parameters of the

model, "(a) and $(b), ((b) and  *(b), and thereby determine respectively the rate of new

infections and the rates of transition to recovered-but-susceptible, immune, and dead.  The

controls exhibit diminishing marginal products so that: "'<0, "">0, $'>0, $"<0, ('>0, ("<0, and

*'<0, *">0.  This property of our formulation distinguishes it from all the preceding work that we

know, and it opens the scope for internal solutions to the optimal policy problem and for the

analysis of the co-ordination of multiple interventions phased in a smooth way over the course of
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an epidemic.  We believe that for many if not all diseases there is scope for undertaking

additional preventive and therapeutic interventions although they are marginally less and less

productive. Interventions are costly; preventive effort costs  pa per unit and therapeutic effort

costs pb per unit; total costs of the interventions are therefore paa2aN and pbb2bN.

The objective of government policy is to maximize the present discounted value of social

welfare as given by the present discounted value of total income net of the total costs of the

disease and the total costs of the interventions:

in which r is the discount rate, V0 is income in the absence of the disease (received by everyone

who is alive whether well or sick), pI is the current money cost of being infected (and sick) such

as foregone wages while ill and including the monetary equivalent of pain and suffering and iN

are the total number of the sick, and the remaining two terms are the total costs of the preventive

and therapeutic interventions. The integrand of  equation (9) is  therefore the sum of the current

incomes of the infected,  the uninfected, and the uninfectible,  less the total current costs of

illness and health interventions.  Future costs of a current illness arising from the failure to be

cured instantly or the subsequent infection of others are accounted for when they happen, either

by the continuation of the infected status in future periods (again at a cost of pI) or the accretion

of new infections as they occur; these future costs are not included in the current cost of being

infected. 

 As mentioned, the objective function embodies an assumption of linearity in the value of

income net of the costs of illness and expenditures on health interventions.  This assumption
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simplifies many aspects of the subsequent calculations; we introduce concavity into the model

via the diminishing returns of health expenditures on the parameters of the dynamics of the

epidemic rather than through diminishing marginal utility of income net of all the costs

associated with the disease.  Without the assumption of linearity, it would be important to specify

who pays which costs of the interventions. For instance, the costs of therapies may be deducted

only from the incomes of the infected or health insurance may spread these costs across

everyone. If each person has a concave utility of consumption net of the total health costs (the

costs of prevention, therapies and illness) that each pays, it would be necessary to pay attention to

different constraints on the way the social planner can distribute these costs. The social planner’s

objective function would be the sum of the concave utilities of the people in different disease

statuses; these utilities would depend on the difference between income V0 and the total health

costs people pay. Among other simplifications, linearity of the objective function allows us to

sidestep the  question of the interaction between the epidemic and the health insurance regime,

the latter itself a complex topic and one worthy of analysis in future research.  Gersovitz and

Hammer (forthcoming b) provide numerical results when utility is concave in income net of

health expenditures and all the costs of the infection are shared equally in a model of vector-

borne infection.

Equation (9) therefore provides the objective function while equations (2) and (6)-(8)

provide the dynamic equations that constrain the optimization problem.  The current-value

Hamiltonian, H, is:
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in which (8sN), 8N and (8iN) are the current value multipliers. We can now provide necessary

conditions for a maximization of this objective function with respect to expenditures on

preventive and therapeutic actions

The first derivatives of H with respect to the controls, a and b, set equal to zero imply:

and

Under the assumptions on the 2j and on "' and $', the expression (8s  - 8i) must be positive if the

first-order conditions are to hold.  In addition, the dynamic equations for the multipliers imply:

and

Inspection of equations (6), (7) and (11a-e) shows that the dynamic equations for s, i, and the 8j, j

= s, i, N do not involve N so that the dynamic system is independent of N although not of , or

8N.

To develop the analysis further we turn to some special cases.
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1.3 The Special Case of Susceptible-Infected-Susceptible (SIS):

The model of a disease in which people recover only to become susceptible rather than

immune or die is the simplest case of the preceding model of any relevance.  Many of the classic

sexually transmitted diseases fall in this category.  In this case, ( = * = U = u = 0; the controls

remain the variables a and b while the states are s and i. With the substitution of i = (1-s) in the

current-value Hamiltonian, equation (10), 8i can be dropped as can be 8N because the model is

expressible without reference to the total size of the population, N, once no one dies.  The birth

rate of the population is still a parameter because it determines part of the growth of the

susceptibles relative to other categories of the population. The model therefore only has one state

variable, s, with dynamic equation:

Equations (11a-b) simplify in this case to:

and

Equation (13a) equates the marginal cost of an increase in the preventive intervention as

determined by the product of its price and targeting function to the marginal benefit of the

increase in the proportion of the population that is uninfected achieved by the increase in

prevention.  Equation (13b) similarly equates the marginal cost of an increase in therapeutic

intervention as determined by the product of its price and targeting function to the marginal

benefit of the increase in the proportion of the population that is uninfected achieved by the
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increase in therapeutic effort. All marginal costs and benefits are expressed in terms of the

welfare of the average member of the economy measured in dollars.

The variable 8s equals the shadow benefit in dollars to the average member of the

economy of an increase in the proportion of the population that is uninfected.  Under the

assumptions on the 2j and on "' and $', the 8s must be positive if the first-order conditions are to

hold.  In addition, the dynamic equation for the multiplier implies:

As before, the 2j, j = a, b in equation (12)-(13c)  are targeting functions that specify the

proportion of the population affected by an intervention, and depend only on s because u = 0 and

therefore i = (1-s).  For example, if the disease is sexually transmitted and the preventive policy

is condom distribution, then 2a could plausibly take values of 1, s, 1-s, and s(1-s). In the first

case, condoms are made available to everyone, in the second only to the uninfected, in the third

only to the infected and in the fourth only to matchings involving an uninfected and an infected

person. For therapeutic interventions, the simplest case is targeting exclusively at the sick so that

2b = (1-s), but other situations are possible.  For instance, without any ability to diagnose the

disease, it may be that 2b = 1,  while if it is difficult to distinguish the disease under consideration

from another, a value of 2b between 1-s and 1 is possible as determined by the prevalence of the

other disease.

Equations (13a) and (13b) in combination imply that:
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Equation (14), in turn, reveals a very rich set of possibilities for the pattern of relative

dependence on preventive and therapeutic interventions over the course of an epidemic.  The left-

hand side of this equation gives the absolute value of the ratio of the marginal products of the

two interventions relative to their prices (which are fixed exogenously), a measure of the relative

dependence of the policy package on prevention, a, relative to therapy, b.  The right-hand side

depends only on s, the state of the epidemic; in an SIS disease there is an explicit solution for the

dependence of M on s.

Although the relative emphasis on the two types of policies in terms of their marginal

products depends only on the state of the epidemic, it is extremely sensitive to the form of the

targeting functions.  Table 1 records the eight possible relationships between M and s for the

combinations of the four formulations of the targeting function for " and the two for $.  In case

IIA, M is relatively high when susceptibles and infecteds are nearly equal and is low for s near

either of its extremes, 0 or 1.  In this case, prevention efforts are most important when

transmission rates are at their maximum because the total (and marginal) costs of prevention do

not rise with the level of susceptibles, but the marginal effect of prevention is highest when

transmission is fastest. In case IIB, M falls monotonically as s rises because costs of prevention

rise and those of therapy fall with an  increase in susceptibles. In case IIC, M rises monotonically

as s rises and in case IID, M is constant regardless of the value of s, two cases that are less easy to

interpret intuitively.  The ratios of the marginal products do not translate directly into the ratios

of the inputs themselves, perhaps the most direct measure of the relative size of the two efforts.  

But, there are special cases when the two ratios do move together  (see Appendix A for an

example) and so M helps to understand the possibilities for the co-movements of the physical

inputs during the evolution of an epidemic.
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To simplify what follows, we assume that 2b = 1-s, so that targeting of therapeutic

interventions is restricted to the infected and therefore 2b
s = -1 (cases IIA-D of Table 1).  Total

differentiation of equations (13a) and (13b), the first-order conditions, implies:

and

These expressions simplify the following discussion. They all have straightforward

interpretations, except perhaps the indeterminate sign of the expression in (15b) for the partial

effect of s on a.  This ambiguity arises because s influences both the marginal cost of an increase

in a, via its role in the targeting function, and the marginal benefit of an increase in a, via the
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effect of s on the dynamics of the epidemic.  The variable as: (1) has the same sign as (1-2s) if 2a

= 1; (2) is negative if 2a = s; (3) is positive if 2a = (1-s); and (4) is zero if 2a = s(1-s). 

So far we have proceeded on the presumption that the first-order conditions determine a

maximum.  In fact, the most generally-used sufficiency conditions for a maximum do not obtain

in this model, but we believe that the way we have characterized the maximization is, in fact,

correct for a very large class of these models .  While the problem is concave in the controls

because they are subject to diminishing marginal returns, it is not concave in the state because the

dynamic equation exhibits increasing marginal returns in the state, a fundamental property of

contagion as posited by epidemiologists.  Correspondingly, the failure of the sufficiency

conditions is not a reflection of the linearity of the instantaneous utility function [the integrand of

equation (9)].  Appendix A discusses these issues in more detail.

Setting equations (12) and (13c) to zero produces the phase diagram in s-8s space.  The

slope of the locus from setting equation (12) to zero is:

and the slope of the locus from setting equation (13c) to zero is:

The signs of both slopes are ambiguous, partially for the same reason that the sign of as is

ambiguous.  Further progress requires the separate consideration of Cases IIA-D.

In two cases, IIB with 2a = s and IID with 2a = s(1-s), both slopes are positive when the



     4 Note that in cases IIB and D the term ("+"'sas) is always positive.

     5Goldman and Lightwood (2002) demonstrate exactly this possibility of an unstable optimal
steady state co-existing with a stable optimal steady state for their model which only allows for a
therapeutic intervention.  In this case, if the unstable steady state is perturbed, the system evolves
either to the stable steady state of endemic infection or to the eradication of the disease. 
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equations of motion are linearized about the steady-state so long as a variant of the conventional

condition that the interest rate at least equals the population growth rate (in the absence of

disease) holds, that is r $ ,.4  If the slope of the 8
.

s = 0 locus is flatter than that of the   s
.

 = 0

locus in s-8s space, there is a unique stable path to the steady state (Fig. 1a) because the

characteristic equation of the linearized dynamic system has one positive and one negative real

root.  The variables s and 8s move together toward the steady state, and b and $ move with them

so that therapeutic effort increases with more susceptibles. Preventive effort, a, and " move as

determined by the relation between a and b as given by M, decreasing with the number of

susceptibles in IIB and varying with it in IID.  If the slope of the 8
.

s =  0 locus is steeper than that

of the s
.

 =  0 locus in s-8s space, however, there is no stable path to the steady state (Fig. 1b). In

these cases, the model could evolve either to the eradication of the disease, with s = 1, or to the

equilibrium without intervention, a = b =  0, or to an intermediate stable equilibrium of the type

illustrated in Fig. 1a if such exists.5 That such unstable cases exist is consistent with the structure

of the model, which should allow the possibility of optimally eradicating the disease or optimally

doing nothing in the steady state for some configurations of the phase diagram.  We do not

pursue these divergent cases here; instead, we restrict the discussion to diseases that are

(optimally) neither eradicated nor ignored and in which policy takes the system to an optimal

steady state.

The two remaining cases, IIA with 2a = 1 and IIC with 2a = 1-s, are more complex and



     6 In these cases the term ("+"'sas) may be positive or negative and therefore the numerator of
equation (16a) and the denominator of equation (16b) may be positive or negative.  Note,
however, that if the denominator of (16b) is negative, so must be the numerator of equation
(16a); it is not possible to have a positively sloped s

.
= 0 locus and a negatively sloped 8

.
s= 0

locus.

     7The results in this sentence follow from the application of such standard  references as
Kamien and Schwartz (1981, Appendix B).  The saddlepoint case is their Case IC.
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there are several sub-cases.6  When the model is linearized about the steady state both slopes may

be positive, as in cases IIB and D, and the foregoing analysis obtains.  The slope of the 8
.

s = 0

locus may be positive while that of the s
.

 = 0 locus is negative; this case is unstable and we do

not discuss it further. Both slopes may be negative; if the 8
.

s = 0 locus is less negatively sloped

there is a stable saddlepoint (Fig. 1c) while the reverse situation is unstable.7

The parameters of the model are the four prices: pI, pa, pb and r.  The parameters pI and r

enter equation (13c) for 8
.

s but not equation (12) for s
.
 , nor do they enter the first-order conditions

for a and b.  They therefore shift the 8
.

s = 0 locus but not the s
.

 = 0 locus.  Consider the effect of

an increase in pI on s*, the steady-state number of susceptibles in the two saddlepoint cases.  In

Fig. 1a the 8
.

s locus shifts up (from 8s8s to 8s'8s') and s* rises; in Fig. 1c the 8
.

s locus shifts down

and s* also rises.  Thus in all cases an increase in the direct cost of being infected in terms of pain

and suffering increases the steady-state proportion of the population that is uninfected. The effect

on s* of an increase in r is opposite to that of pI.  The costs of prevention or therapy are borne

immediately while their benefits are received over time.  Because an increase in r leads to a

diminished weight of the future in decisions, an increase in r leads to an increase in the optimal

steady-state proportion of the population that is infected.

The effects of the other two parameters are more complicated, however, because both loci

shift. The impact effect (s and 8s fixed) of an increase in the price of either preventive or
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therapeutic interventions is to decrease the amount used via equations (15c) and (15f) and

therefore either a and " or b and $ are affected in both equations.

In the case of an increase in pb, the s
.

= 0 locus always shifts up regardless of the sign of

its slope.  The 8
.

s= 0 locus shifts up if its slope is positive and down if its slope is negative.  In

the case of an equilibrium of the type illustrated in Fig. 1a, therefore, the shift in the s
.

=0 locus

tends to lower s* while the shift in the 8
.

s= 0 locus tends to raise s* and the net outcome is

ambiguous even when the algebraic magnitudes of these shifts are taken into account.  The

rationale for this ambiguity is as follows: The price of a therapeutic intervention, pb, enters the

dynamic equation for the co-state variable in the same way as the cost of being infected, pI.  One

of the effects of an increase in pb is therefore to raise s, just as an increase in pI does; in effect an

increase in the cost of being cured is like an increase in the cost of being infected because every

infection induces expenditures on therapeutic inputs. But there is also the fact that it is more

expensive to be cured so that it may be desirable to spend less on b and be cured less quickly.

That the first effect can dominate is easily seen from the special case when b is fixed at some

positive value (perhaps for technological reasons) so that therapeutic effort is not adjusted in

response to its price increase. The preventive intervention can still respond, however, as it would

to a change in pI and the steady state proportion of the uninfected, s* , is thereby increased. Recall

that cases IIB and D of Table 1 must conform to this latter pattern of an ambiguous impact of pb. 

In contrast, starting from an equilibrium of the type illustrated in Fig. 1c, the upward shift of the

s
.

= 0 locus and the downward shift of the 8
.

s = 0 locus work to raise s*.

In the case of an increase in pa, the s
.

= 0 locus also always shifts up regardless of the sign

of its slope.  When the system is linearized about the steady state, the 8
.

s = 0 locus shifts

according to the sign of
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rising with an increase in pa if this expression is positive and falling if it is negative.  The

denominator is unambiguously positive in cases IIB and D and ambiguous in the other two cases

of Table 1.  The sign of the numerator is ambiguous in all four cases; in cases II A and D, this

numerator has the sign of (2s-1).  Once again, these ambiguities stem from the role of s in

affecting both the costs and benefits of an increase in a (see the discussion of as).  Consequently,

little can be said about the effect of pa on s*.

1.4 The Special Case of Susceptible-Infected-Dead (SID):

If all people who become infected die, the general model of equation (10) can be

specialized to: U = 0, $ = ( = 0, 8i = 0.  The states are s and i = (1-s) and the controls are a and b. 

On the further assumption that being sick is not per se costly, pI = 0.  The value of therapeutic

measures is to reduce the death rate and thereby gain utility from prolonging a life; formally, the

negative valuation of death is embodied in the fact that the dead are not part of N and do not get

the utility associated with being alive, V0, net of the expenditures on a and b.  To save space, we

do not repeat the versions of equations (11a-d) specialized for this case, but merely comment on

the properties of this case that follow from these equations.  Furthermore, we discuss only the

results for the case in which 2b = (1-s).  

The specialized versions of equations (6) and (11a-d) are independent of N but not of 8N

and therefore so are the solutions for the optimal interventions, a and b, and for the state of the

epidemic, s. The first result implies that the interventions are independent of the scale of the
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economy. The second result implies that the dimension of the system is three (s, 8s and 8N) rather

than the two of the SIS model.  This important difference between the two models arises because

the infected die in the SID model which is valued by 8N, rather than returning to the susceptible

state which is valued at 8s, as in the SIS model. Consequently, the SID model is significantly less

tractable than the SIS model. The solutions for the SID case are not independent of ,  which

appears in the specialized versions of equations (6) and (11c and d).  The multipliers, 8s and 8N,

must be positive under the assumptions about 2a, "' and *'.  

The SID first-order conditions imply that:

In contrast to the SIS model, there is therefore no closed-form solution corresponding to the

relationship between s and M in the SIS case, so there is the potential for very much more

complicated relationships between the price adjusted marginal products of the interventions  than

those reported in Table 1.

1.5 The Special Case of Susceptible-Infected-Uninfectible (SIU):

This case corresponds to $ = * = 0; individuals who are susceptible  become infected and

then immune.  The states are s, i and u = (1- s - i) and the controls are a and b. The only

substantive simplification of the social planner’s problem that we have been able to identify in

this case is that the five-dimensional system of section 1.2 can be reduced to four because 8N

does not appear in the dynamic equations for the other variables because people do not die of the

disease. We therefore do not present any results for this case except in section 2.4 on
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decentralization.

2. Decentralization

2.1 The General Problem of Decentralization:

To this point we have discussed the problem of the social planner who directly controls

the values of a and b in a model without people who make decisions that affect their own health. 

The next step is to consider private decisions and their implications for government policy.  If

people do not take into account the effect on the infection of the general population caused by

their ability to infect others if they become infected, they generate a pure infection externality.  In

our formulation of diseases in which one person directly infects another, the preventive activity

of one individual does not, however, affect the probability that other people become infected

independently of whether the first person becomes infected, so there is no preventive externality. 

After identifying the externality, we examine how government interventions with subsidies or

taxes can decentralize the social planner’s first-best solution.

In our abstract formulation, governments can subsidize preventive and therapeutic

activities, the privately chosen values of a and b.  In reality, for some diseases, there will be some

inputs that are marketed and some inputs that involve individuals’ non-marketed and

unobservable actions such as avoiding crowded places to varying degrees in the case of

tuberculosis prevention or adhering meticulously to drug regimens.  When a and b involve such

non-marketed and unobservable actions the subsidy/tax interventions we propose may be

infeasible or may have to be targeted only on the marketed components of preventive and

therapeutic activities with second-best implications.
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The simplest way to illustrate the pure infection externality and its implications for policy

is to assume that private decisions are made by a group of people that we call a household, a

construct that we use as the representative decision-making agent.  This construct provides a

logically consistent and analytically tractable model to contrast with the model of the social

planner: First, the household’s objective function is fully congruent with the social planner’s. 

Furthermore, the household understands and anticipates how the epidemic will evolve and is

fully forward-looking with regard to its possible future statuses as well as its present situation. 

Unlike Kremer’s (1996) modelling of individuals’ behaviour which is only oriented to the

conditions in the current period, our household takes account in its current decisions of the

evolution of the epidemic, its implications for the future risk of infection,  and its implications

for all the household’s descendants.  For instance, if the future probability of infection is high it

affects the current incentive of the household to make therapeutic expenditures. It is therefore the

case that our rationale for government interventions does not depend either on myopia or on a

discrepancy between the social planner’s and the representative agents’ valuation of outcomes

over the path of the epidemic.  Instead, our assumptions isolate the pure externality motivation

for government intervention.  To the extent that there are deviations from the preceding

assumptions on the behaviour of the household, there may be other important reasons for

government interventions but they are not the subject of this paper.  

As is conventional in the public-economics treatment of externalities, the only distinction

between the social planner and the representative agent is that the household is assumed to be

small relative to the population as a whole, in this case so that the proportion of the household in

any disease status does not affect the proportion of the population as a whole that is in that status. 

In particular, this household takes as given the proportion of the population that is infected,
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which equals the probability, B, that any random contact is with an infected person.  Second, the

household is assumed to be sufficiently large that it can fulfill the role of a representative agent

and therefore that the proportion of the household in each disease status is identical to the

corresponding  population proportion.  Finally, it is this household that takes decisions about the

interventions,  a and b. Because the instantaneous utility function is linear, there is no sense in

which the household is performing any implicit insurance function for its members.  A perhaps 

more realistic but only perhaps (because people do indeed live in households) and less tractable

approach would build the private economy up from representative individuals each of whom is in

one or another diseases statuses at any one time and taking decisions about either prevention or

therapy (or neither if already immune), with regard to their possible future statuses as well as

their present situation.  For diseases in which people transit from susceptible to infected to dead,

the individual’s problem seems tractable, because death is obviously an absorbing state.  But for

individuals who cycle between susceptible and infected, we have not been able to manage a

formulation that does not adversely affect the tractability of the model and we leave this task for

the future, but see no reason why such a formulation should fundamentally alter the nature of the

externalities that we identify.

The dynamic equations of this version of the model are the same as in section 1.1, except

that in equations (3) and (4) the term "Si is replaced by "SB to denote the exogeneity from the

household’s viewpoint of the proportion, B, of the population (in contrast to the proportion, i, of

the household) that is infected. There is a consequent change in equations (6) and (7).

A further change has to be made to the objective function to reflect the possibility of

government interventions.  If there is an externality, the government may find it optimal to

subsidize or tax preventive and/or therapeutic inputs.  To allow for these possibilities, we assume
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that the representative household faces prices of qj = (1+tj)pj, j = a, b.  As is standard in public

economics, so that any interventions are revenue neutral in a way that does not have any

incentive effects beyond the tj, we assume that the household receives a lump sum payment

(possibly negative) of T that it takes as exogenous to its own actions but that in fact equals

tapaah2a + tbpbbh 2b ; a superscript “h” indicates that the variables are evaluated at the household’s

values rather than the social planner’s. If this lump sum offset were not part of the package, the

household’s welfare would be affected by its experiencing a net loss or gain of income as the

government intervenes with taxes or subsidies to offset the externality. The decentralization

results that follow would not obtain as can be seen by following the steps of the proofs without

the assumption of revenue neutrality. 

With these modifications, the household’s current-value Hamiltonian is:

All functions of variables (2, ", $, * and () are evaluated at the household values of their

arguments while , is a constant common to both the social planner’s and the household’s

models.  We now proceed to the special cases. 

2.2 Decentralization in the SIS Model:

The household uses the version of equation (17) specialized to this case.  We also assume

that  only the infected are targeted by therapies, so that 2b = (1-sh).  The first-order conditions

imply:
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and

and the co-state equation is:

Because the group is representative of society, s must equal sh.  Once this substitution is

made, the only differences between equations (13a-c), the planner's problem, and equations (18a-

c), the private problem, are the qj and the (1-s) term at the end of equation (18c) rather than the

(1-2s) term at the end of equation (13c).  This latter difference reflects precisely the fact that the

household takes the general rate of infection as exogenous in making its decisions and this

difference determines whether the government's optimal intervention is a tax or a subsidy as is

shown below.

The government can induce private decision makers to make decisions that coincide with

the planner's problem by instituting equiproportionate changes in pa and pb; comparison of the

two sets of first-order conditions for a and b shows that ta = tb = t.  In other words, the

government compensates for any differences between 8s and  8s
h in equations (13a-b) and (18a-

b). It does so with a lump-sum offset, T, so that any revenues or expenditures from the price

interventions also appear in the household’s budget. Because the intervention is only to 8s
h and

because of the way 8s
h  enters equations (18a-b), a and b activities are affected to the same degree

and M is unaffected.  At the steady state, the intervention is a subsidy (negative tax) at rate t*:



     8This result follows from multiplying equation (13c) by (1+t) and setting it equal to equation
(18c) because both equations equal zero at the steady state.

     9At s* there is a subsidy, so that 8s
h < 8s.  Now if there were ever a tax corresponding to some

lower level of s, 8s
h > 8s. Between this point and the steady state, there would therefore have to

be some intermediate value of s < s * at which  8s
h = 8s.  But at such a point,  8s

h  is increasing
faster than 8s, compare equations (18c) with (13c) evaluated at the common values of all
variables because the state and costate are equal for the private and public problems at this point
where the tax/subsidy equals zero.  Consequently,  8s

h could never fall relative to 8s which would
contradict the existence of a steady-state subsidy.  A similar argument holds for s > s* once it is
noted that in these situations s is falling (rather than rising) toward the steady state.
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in which 8s
* and s* are the values from the planner's steady state.8 Furthermore, for any non-

steady-state s, the government must intervene with a subsidy.9  This finding that the intervention

is a subsidy coincides with the intuition that private decisions ignore the benefits to society as a

whole from taking preventive and therapeutic measures. Subsidization is at equal rates because it

is equally beneficial in preventing further infection to get a person out of the infected pool as to

have prevented the person from getting into it in the first place.  These benefits are equally

overlooked by the private decision makers.  This result contradicts what may be an often-held

presumption that preventive rather than therapeutic efforts are associated with externalities and

are the proper domain of public health.  In this model in contrast to the model of vector-borne

diseases in a subsequent section of the paper, preventive activities are pure private goods in that

one person’s preventive effort does not affect another person’s risk of infection if the first person

does not become infected. Furthermore, the government does not have at its disposal any

technology of intervention that private people do not have at theirs.  The externality therefore

arises only through an individual’s being in the infected pool, either through getting into it
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without consideration of the risks posed to others or through not getting out of it fast enough for

the same reason.

2.3 Decentralization in the SID Model:

In this case, private decisions are made by a household as given by the Hamiltonian of

equation (17) specialized to the SID model as defined in section 1.4.  As in the SIS model, if the

household is to be representative of society as a whole, s must equal sh.  Once this substitution is

made, the only differences between the equations of the planner's problem and of the private

problem are the qj and an additional term of -"s8s in the equation for  8
.

s as opposed to the

equation for  8
.

s
h. 

In contrast to an SIS disease, however, equiproportionate interventions directed at pa and

pb do not induce private decision makers to make the decisions that coincide with the social

planner's.  Instead, the planner's path for s, a and b can be achieved by price interventions ta and tb

such that: 

and



     10The multipliers for the state N are equal because when there is revenue neutrality, the values
of  these multipliers are the same in the steady state for the private and social optimizations, as
can be seen by setting the equations for the changes in these multipliers (not shown) to zero. 
Furthermore, the form of these equations for the changes in these multipliers is the same and
therefore the entire path of these two multipliers must be the same. 

     11The result follows from multiplying the equation for the change in 8s by (1+ta) and equating
it to the equation for the change in 8s

h  because both changes are zero in the steady state.
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This result follows from the equation of the "' and *' prevailing under the private economy to

those under the social plan as given by the two sets of first-order conditions and because the

values of the multipliers on N are the same in the private economy and the social plan.10 Because

*' < 0 and the multiplier is positive (section 1.4) the right-hand expression in equation (20b) is

negative and implies that the interventions are of opposite sign; if a is subsidized (ta < 0), then b

is taxed.

In fact, at the steady state, a is subsidized and b is taxed. The steady-state subsidy is:11

in which the (positive) multipliers are evaluated at the social planner’s values. The reason that

therapeutic expenditures are taxed here but subsidized in the SIS model is that here therapeutic

expenditures keep people in the pool of infectious people whereas in the SIS case therapeutic

expenditures moved them out of the pool. In this model, interventions are only designed to offset

the pure infection externality; there is neither a concern with insurance nor with therapies as

merit goods, either of which may change this result. Away from the steady state, the preventive

intervention is also a subsidy (and correspondingly, the therapeutic intervention is a tax).  The
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reason is the same as for the SIS model: at a point where 8s =  8s
h,  comparison of the expressions

for the change in these two multipliers shows that the change in the former is smaller than the

change in the latter.

2.4 Decentralization in the SIU Model:

Decentralization is harder to analyse in the SIU model than in either the SIS or the SID

models.  In the SIS and SID models there is only one multiplier equation that differs between the

social planner’s and the household’s problems, that associated with the change in s, whereas in

the SIU model there are two, associated with the changes in s and in i.  We have therefore only

been able to characterize the government’s optimal interventions at the steady state.

Comparison of the results from the first-order conditions of the two problems shows that:

and

These two equations plus the property that in the steady state (1+ta) 8
.

i
h = 8

.
i = 0 imply that the

steady-state values of the two interventions are equal. Thus, in the steady state, there is an echo

of the SIS result that the government’s optimal interventions are at the same rate.  And a similar
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intuition applies: At the steady state, either going into the infected pool or not getting out of it

imposes a similar externality because either is a permanent (i.e. steady-state) increase in the size

of the infected pool. Furthermore, the fact that (1+tb) 8
.

s
h = 8

.
s = 0 and (1+ta) 8

.
i
h = 8

.
i = 0 in

steady state implies that:

with an inequality because the first-order condition with respect to a implies 8s - 8i > 0.  At the

steady state the intervention is therefore a subsidy.  We have not been able to derive any results

outside the steady state that parallel those for the SIS and SID cases. There seems to us to be no

reason to expect the SIS result on equal subsidies to carry over to situations away from the steady

state where converting someone from an infected to an uninfectible is a permanent increase in

people outside the infected pool whereas keeping someone among the susceptibles may only be a

temporary decrease in the infected pool.

3. Control of a Vector-Borne SIS Disease

Many infectious diseases are transmitted through intermediate hosts, such as mosquitos,

flies, ticks and snails.  These hosts must be infected to play their part in the cycle of infection. 

For instance, in the case of malaria, infected mosquitos inject people with one stage of the

parasite thereby infecting them. Uninfected mosquitos that bite infected people are in turn

infected by a later developmental stage of the parasite in an infected person’s blood, thereby

continuing the cycle.  Interventions to affect the prevalence of these diseases can take many



     12The dynamic structure of infection in our model, equations (24) and (25), is an adaptation of
the discussion in Anderson and May (1991).  As does their basic model, we ignore deaths from
malaria and the existence of an animal reservoir of infection on which mosquitos feed in addition
to the human population.
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forms and the package is more complicated than the distinction between prevention and therapy

in sections 1 and 2.

A model of  malaria transmission must, therefore, comprise equations for the number of

people who are infected (I) and the number of mosquitos that are infected (Y).  For simplicity, we

will assume that the total population (of people) is fixed at N, so that there is neither natural

growth in the population nor are there deaths associated with malaria.  The sum of the number of

susceptibles (S) and infecteds equals the whole population, S+I = N, and s, as before, is the

proportion of the population that is susceptible.  Because we are interested in interventions that

affect the total number of mosquitos (M), we also specify the dynamics of the total mosquito

population.12

The number of infected people evolves according to:

The first part of this equation is the product of the number of people who are susceptible (N -I),

the proportion of mosquitos that are infected (y = Y/M), the ratio of mosquitos to people 

(m = M/N) and two parameters "1, the number of bites that the average mosquito manages per

unit time, and "2, the proportion of bites by infected mosquitos that lead to a human infection. 

The second part of the equation is the rate of recovery of infecteds.

The number of infected mosquitos evolves according to:
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The first part of this equation is the product of the number of mosquitos (M -Y) that are

susceptible to infection by the chance (1-s) that a person whom they bite is infected adjusted by

the rate of biting ("1) and the chance that such a bite leads to infection of the mosquito ("3).  The

second part of the equation subtracts the infected mosquitos that die; *M is the death rate of

mosquitos regardless of whether they are infected or not. Finally, the change in the total number

of mosquitos is: 

in which F'>0 and F"<0 so that there is a steady state population of mosquitos for a given value

of *M.

The objective of government policy is to maximize the present discounted value of social

welfare:

Equation (27) incorporates a plausible targeting scenario for each of four interventions: (1) some

interventions affect both the probability that an infected person infects an uninfected vector as

well as the probability that an infected vector infects an uninfected person, for example, 

promotion of the wearing of clothes and use of  bed nets that lower the chance of bites,

summarized by a1, so that "1(a1) with "1' < 0; (2) other interventions affect the probability that an

uninfected person is infected by an infectious vector but do not prevent uninfected vectors from
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becoming infected by an infectious person, for example, provision of prophylactic drugs, a2, so

that "2(a2) with "2' < 0; (3) spraying mosquitos with insecticides with intensity d, so that *(d)

with *M' > 0; (4) provision of drugs that promote recovery, of amount b, so that $(b) with $' > 0. 

Interventions to change the value of "3 affect the probability that an infectious person infects an

uninfected vector but do not affect the probability that an infectious vector infects an uninfected

person.  These interventions are perhaps the least implementable.  They might include deterring

people from voiding parasites in the case of schistosomiasis, but this type of action has little

direct benefit to the infected person and would therefore require monitoring by the government

and could not easily be decentralized through taxes and subsidies.   Scientific advances provide 

genuine prospects for genetic engineering of the vector to resist infection, but we leave this type

of intervention aside.  In the subsequent discussion, "3 is therefore treated as a fixed parameter.  

We also ignore possibilities for changing the form of the relation F(M), for instance through the

draining of swamps. 

The current value Hamiltonian, H, is

in which the 8j are the current value multipliers associated with the states j = s, y and M.  The

first-order conditions for this problem are:
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and

The associated equations for the multipliers are:

and

Equations (29b) or (29c) imply that the multiplier on the number of susceptibles, 8s is

positive.  The right-hand side of equation (29f) set to zero consequently implies that the steady-

state value of the multiplier on the proportion of vectors that are infected, 8y, is negative. 

Furthermore, the value of this multiplier must always be negative.  If it were not, there would be

a contradiction because equation (29f) would then imply that the derivative of this multiplier

would be positive if the multiplier itself is positive.  Therefore this multiplier could never get to

its negative steady-state value starting from a positive initial value.
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Inspection of equations (29a-d) shows that there is, in general, no simple closed-form

solution for the relationship between the price-adjusted marginal products of the different

interventions.  There is, however, one special case of interest.  If people either always take the

maximal precautions possible or do not take any at all, "1 is not determined endogenously in the

model.  In this case, equation (29a) is no longer operative and is instead replaced by an equation

that gives the exogenous value of "1.  Equations (29b-c) then show that the price-adjusted

marginal products of the "2 and b interventions depend only on the ratio of infected mosquitos to

people, and not on the proportion of people who are infected:

As in the other models, we introduce private decision making by assuming that certain

variables are taken as given by a household that is susceptible in the proportion sh .  In this case,

the total mosquito population (M) and the extent of its infection (y) are exogenous to private

decision makers.  These assumptions are extreme representations of any actual situation.  We are

treating insecticidal spraying as a pure public good, an extreme case of a pure prevention

externality in which no individual perceives any personal benefit from spraying but society as a

whole does.  In reality, even at the household level, there is scope for diminishing the population

of mosquitos through insecticidal spraying, but the infiltration of mosquitos from outside the

household's area of control is much more rapid than if the government is doing co-ordinated

spraying over a large area.

The current value Hamiltonian, H, is
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in which 8s
h is the only multiplier and it is associated with the state sh; y and M are exogenous

functions of time from the household’s perspective and the government’s expenditure on d is

subsumed in T.  The first order conditions for this problem are:

and

There is no equation for d because it is not a control, the assumption of a pure public good.  The

associated equation for the multiplier is:

The complete dynamics of the system with private decision making is given by the addition of 

sh = s and equations (25) and (26).

Government intervention to transform the decisions of the household into the dynamics

that maximize social welfare requires two types of interventions: (1) a program of spraying (d)
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paid for by the government consistent with equation (29d); and (2) a set of price interventions to

transform equations (32a-c) into equations (29a-c).  Once this complete package is implemented,

it is clear from comparison of equations (29b-c) and (32b-c) that the effect of price interventions

for a2 and b is only through the transformation of 8s
h into 8s.  In other words, whatever the price

intervention it is applied at equal rates to the prices of these two instruments; this result parallels

the equal-rate result of the SIS model and has the same intuition.  Because  8y < 0, comparison of

equation (29a) with equation (32a) shows that a1 is subsidized more (or taxed less) than a2 and b.

5. Conclusions

Our starting point for this paper has been a commonsensical one: Mathematical

epidemiology provides a parsimonious representation of how infectious diseases spread. 

Economics suggests an objective function to evaluate the costs of infection and its associated

offsetting interventions, and especially a role for diminishing returns in the interventions that

affect the evolution of the epidemic. All these elements taken together specify the objectives and

constraints that determine optimal interventions for public health in a hypothetical socially

planned economy.  The discrepancy between the social planner’s solution and decentralized

decision making defines externalities in the economy, and the scope for subsidy/tax interventions

by government to maximize private welfare in the absence of central control of all decisions.

Although we set out a general formulation of this problem for infections that proceed

either to recovery and further susceptibility, immunity or death as well as a variant of an infection

that depends on vectors, by far the most tractable case is the first, the SIS model.  For this type of

disease, we looked at the effects of different targeting schemes on the phasing of preventive
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inputs relative to therapeutic ones, the response of the steady-state level of susceptibility to the

different prices in the model, and the role of subsidies in decentralizing the social planner’s

problem.  In this model, the optimal intervention is a subsidy at the same rate to both preventive

and therapeutic activities, both in the steady state and during the approach to it, and the result

does not depend on the form of targeting.  By contrast, the phasing of the two interventions is

qualitatively sensitive to the form of targeting.  Even so, this model poses difficult technical

problems, most especially as regards the sufficient conditions for a welfare-maximizing dynamic

policy, something we largely addressed through numerical examples.

With regard to the other models, we provided some results, on the phasing of

interventions and on the subsidies and taxes necessary to achieve decentralization.  Targeting is

again central to the phasing of interventions.  What happens to the infected is critical to the

qualitative properties of the tax/subsidy interventions.  The SIS model provides an anchor for the

discussion of these models, and some of the SIS results re-appear in one form or another

underlining the usefulness of the SIS model as a starting point for the analysis.  But these models

are all inherently of higher dimension than the SIS model and their properties as a whole are

generally more difficult to analyse.  Undoubtedly, further progress will depend on more

numerical work, but again the insights of the SIS model should provide guidance in

interpretation; Gersovitz and Hammer (forthcoming b) examine numerically a model of a vector-

borne infection.

Despite the variety of assumptions that we have incorporated into the analysis, there are

many alternatives that we have not considered. The basic structure of the model provides scope

for analysing many of these alternatives.  The assumptions that the representative agent is fully

forward looking and cares fully about present and future household members could be modified;
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deviations from these assumptions would generate additional rationales for government

interventions.  So would the acquisition of drug resistance by the pathogens.  Finally, there may

be further economic implications of large-scale epidemics such as HIV that necessitate a more

detailed modelling of the costs of infections as they work their way through the economy as a

whole.

Appendix A

The Second-Order Conditions for the SIS Model

While the current-value Hamiltonian for the SIS model, H,  is jointly concave in the

controls and the multiplier 8s is positive, the maximized Hamiltonian, H*, is not concave in the

state variable, s.  Instead, the maximized Hamiltonian is unambiguously convex in s because

as can be shown using equations (13a) and (15b) and any of the four definitions of 2a.  The

commonly-used Arrow sufficiency condition (e.g. Kamien and Schwartz, 1981) for a maximum

is therefore not fulfilled.

Despite this failure of the commonly-used sufficiency condition, we believe that the

problem of section 1.3 is well posed and its solution is characterized by the first-order conditions

and the phase diagrams.  There are three reasons for our belief.

First, at an intuitive level, the " and $ functions may exhibit steeply diminishing returns.

In this case, it is hard to see how the solution could be characterized by anything but a



     13We used a grid of 417 points, with s ranging from 0.005 to 0.985.  The density of points was
not uniform and was chosen to provide increased accuracy at the limits of the range and around
the steady state .  We interpolated the value function for intermediate values of s using a cubic
spline. We accepted that the value function had converged when the maximum proportional
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conventional optimizing approach to a steady-state level of infection.

Second, consistent with this intuition, the Arrow conditions seem much stronger than are

necessary.  Zeiden (1984) presents weaker conditions but they are not easy to apply.

Third, and to us most convincing, we next present the results of a numerical

implementation of the discrete version of the SIS model of section 1.3 using dynamic

programming. This implementation seems well-behaved and consistent with the optimal-control

treatment of the SIS model in section 1.3.  The parameters we use are: V0 = 1600; pI = 1600; pa =

0.25; pb = 2; , = 0; 1+ r = 1/.9; 2a = s; 2b = (1-s).  The functional forms for " and $ are:

In principle, sufficiently high values of a or b would violate  " > 0  and, in the discrete model,

$ < 1; in practice, the simulations do not produce such values.  Because both exponents in

equation (A.2) are the same, equation (14) for M implies a closed-form relation between the

ratios of the inputs, b/a, and (1 -s).

The dynamic equation is the discrete version of equation (12).  In this case, if nothing is

done, the equilibrium is an internal one with the steady- state fraction of the population being 

s* = .08/.20 = 0.40 and the corresponding value of W = 6400.  We found the policy rule by

iterating on the value function.13  The computation seemed well-behaved and straightforward,



change in the value function at every s in an iteration was less than .000001.  All calculations
were done in double-precision FORTRAN.
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except that there was some slight instability in the values of the controls for the last few values of

s at either end of its range.  This instability seemed to be associated with the interpolation

because it seemed always to be pushed to the end when we added additional points. To save

space, Table A.1 shows values of the (endogenous) parameters of the model (" and $) and the

value function (W) for ten of the 417 values of the state variable , s, used in the computation. The

steady-state  value of s is (approximately) 0.443 and the value of moving there from the no-

intervention steady-state value of s is the difference between 6400 and 6568.

We increased the four price parameters to indicate the responsiveness of the steady-state

value of s, s*.  A ten percent increase in pI increases s* by 0.9 percent.  A ten percent increase in 

pa decreases s* by 0.7 percent.  A ten percent increase in pb decreases s* by 0.6 percent.  A ten

percent increase in (1+r) decreases s* by 3.2 percent.  All the simulations for these comparative

steady-state results as well as other similar sensitivity analysis suggest a well-behaved problem.
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Table 1
Targeting and the Relative Reliance on 

Preventive and Therapeutic Policies
[Values of MMMM of Equation (14)]

Values of 2b

  I.   II.
  1 (1-s)

Values of 2a

A.       1   s s(1-s)
B.       s   1  (1-s)
C.     (1-s) s/(1-s)      s  
D.    s(1-s) 1/(1-s)      1
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Table A.1
The Policy Rules and Value Function

     s             """"           $$$$             W   

  0.100    0.1846    0.0821      4566   
  0.200    0.1853    0.0823      5170
  0.300    0.1860    0.0825      5833
  0.400    0.1868    0.0827      6568
  0.443    0.1872    0.0829      6911
  0.500    0.1877    0.0830      7394
  0.600    0.1888    0.0835      8338
  0.700    0.1900    0.0841      9445
  0.800    0.1917    0.0852    10801
  0.900    0.1941    0.0874    12605
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