Subsidy Design and Asymmetric Information: Wealth versus Benefits

Simona Grassi
Boston University
Carlos III, Madrid

Ching-to Albert Ma
Boston University

Public Provision Of A Private Good

- Education: scholarships based on merit or family wealth?
- Health care: treatment subsidies based on illness severity or income?
- Family assistance: day care subsidies based on family composition or income?

Literature: Huge, Many Papers

Typical problem: given Social Welfare Function and information assumptions about wealth or ability, derive optimal policy

Focus here: Implementation of ANY policy, not just optimal ones; no need for Social Welfare Function

- K. Arrow, "An Utilitarian Approach to the Concept of Equality in Public Expenditure," QJE, 1971: people differ in ability
- Blackorby C. and D. Donaldson, "Cash versus Kind. Self Selection and Efficient Transfers," AER, 1988: unobservable ability
- Besley T. and S. Coate, "Public Provision of Private Goods and the Redistribution of Income," AER, 1991: wealth unobservable
- DeFraja G., "The Design of Optimal Education Policies," RES, 2002: unobservable ability but known wealth

Subsidies When Information Is Incomplete

Subsidies based on benefits
Subsidies based on wealth

Benefits and Wealth together determine "willingness to pay"

Wealth-based allocations $=$ benefit based allocations?

Wealth information $=$ benefits information?

Missing information benefits or wealth means different costs?

Key Concept --> ASSIGNMENT

Should type (w, ℓ) get the good?

Answers:

Wealth-based allocation \neq benefit-based allocation

Wealth-based assignment $=$ benefit-based assignment

With general tax instruments, both kinds of subsidies require same cost

The Model

- regulator allocates private good with limited budget B
- unit mass of consumers
- consumer gets either 0 or 1 unit
- cost of one unit of the good: $c>0$
$\bullet 0 \leq B<c$: budget not enough to cover all consumers
- Consumers: heterogeneous in two dimensions
- Consumer type: (w, ℓ)
- wealth w, and benefit ℓ
- Consumer getting 1 unit at price $p: U(w-p)+\ell$
- U increasing and concave: $U^{\prime}>0, U^{\prime \prime}<0$
- Consumer not getting the good: $U(w)$
- $w \sim F$ and f on $[\underline{w}, \bar{w}] ; \ell \sim G$ and g on $[\underline{\ell}, \bar{\ell}]$. Independent
- Independence is unimportant; paper not about inferring one information from another

Consumer's WILLINGNESS TO PAY: depends on wealth and benefit

Type (w, ℓ) willing to pay p

$$
\boldsymbol{U}(w-p)+\ell \geq \boldsymbol{U}(w)
$$

Monotonicity
Suppose (w, ℓ) is willing to pay, so is $\left(w^{\prime}, \ell^{\prime}\right)>(w, \ell)$ $w^{\prime}>w \quad \ell^{\prime}>\ell \Rightarrow$

$$
\begin{gathered}
U\left(w^{\prime}-p\right)+\ell>U\left(w^{\prime}\right) \\
U(w-p)+\ell^{\prime}>U(w) \\
U\left(w^{\prime}-p\right)+\ell^{\prime}>U\left(w^{\prime}\right)
\end{gathered}
$$

Information:

costly; regulator observes either w or ℓ
Presentation here only on unknown ℓ; unknown w in the paper
w known; ℓ unkown: payment policy $t(w)$ based on w

$$
\begin{gathered}
\text { Assignment: } \\
\text { the set of consumers getting the good } \\
\alpha(t)=\{(w, \ell): U(w-t(w))+\ell \geq U(w)\}
\end{gathered}
$$

Revenue Collected:

$$
\int_{\alpha(t)} t(w) d F d G \equiv R(t)
$$

Wealth Observable: Given Policy $t(w)$

THE INDIFFERENCE BOUNDARY

$$
\begin{gathered}
U(w-t(w))+\ell=U(w) \Longrightarrow \\
\ell=\theta(w) \equiv U(w)-U(w-t(w))
\end{gathered}
$$

For any w, find $\ell=\theta(w)$ s.t. type $(w, \theta(w))$ is indifferent
Special case: $t(w)$ differentiable

$$
\frac{\mathrm{d} \ell}{\mathrm{~d} w}=U^{\prime}(w)-U^{\prime}(w-t(w))\left(1-t^{\prime}(w)\right)<0 \text { if } t(w) \text { is constant }
$$

Examples of indifference boundaries:

Figure 1. Increasing Indifference Boundary

Figure 2. Decreasing Indifference Boundary

Figure 3. Discontinuous Indifference Boundary

$$
\begin{array}{ll}
t(w)=\frac{1}{4} c & \text { for } \underline{w} \leq w \leq \tilde{w} \\
t(w)=\frac{3}{4} c & \text { for } \tilde{w}<w \leq \bar{w}
\end{array}
$$

Condition 1: Decreasing Indifference Boundary

- $t(w)$ continuous ($\Leftrightarrow \boldsymbol{\theta}(\boldsymbol{w})$ continuous)
- $\boldsymbol{\theta}(\boldsymbol{w})$ strictly decreasing $(\Longrightarrow \ell=\theta(w)$ has an inverse $w=\phi(\ell))$

TRANSLATION: Given $t(w)$, construct $s(\ell)$ for same indifference boundary

Replace all w by $\phi(\ell): \quad U(\phi(\ell)-s)+\ell=U(\phi(\ell))$

$$
\text { SUBSTITUTION } \rightarrow \text { find equivalent } s(\ell)
$$

Example:

$U(w)=\ln w ;$
from $t(w)=a+b w \quad$ to $\quad s(\ell)=\frac{a\left(e^{\ell}-1\right)}{(1-b) e^{\ell}-1}$

Proposition 1: Under Condition 1 (Decreasing Indifference Boundary)

Identical assignment sets under $t(w)$ and equivalent $s(\ell)$:

$$
\alpha(t)=\beta(s)
$$

Type (w, ℓ) almost never pays the same

Figure 4. Downward Sloping Boundary: Direction of Preferences

Condition 2: Increasing Indifference Boundary

- $t(\boldsymbol{w})$ continuous ($\Leftrightarrow \boldsymbol{\theta}(\boldsymbol{w})$ continuous)
- $\theta(w)$ strictly increasing
$(\Longrightarrow \ell=\theta(w)$ has an inverse $w=\phi(\ell))$

Corollay 1: Under Condition 2 (Increasing Indifference Boundary)
Assignment sets $\alpha(t)$ and $\beta(s)$ (almost) complements

Figure 5. Upward Sloping Boundary: Direction of Preferences

Implementable Assignment Set

Regulator wants to implement an assignment $\Omega \subset[\bar{w}, \underline{w}] \times[\underline{\ell}, \bar{\ell}]$

- Ω implementable by wealth-based policy if $\exists t(w):[\underline{w}, \bar{w}] \rightarrow \mathbb{R}^{+}$ s.t. $\Omega=\{(w, \ell): U(w-t(w))+\ell \geq U(w)\}$
- Analogous definition for Ω implementable by benefit-based policy $s(\ell)$
- Ω implementable SIMULTANEOUSLY by wealth-based and benefit-based policies:

$$
\begin{aligned}
\Omega= & \{(w, \ell): U(w-t(w))+\ell \geq U(w)\}= \\
& \{(w, \ell): U(w-s(\ell))+\ell \geq \boldsymbol{U}(w)\}
\end{aligned}
$$

Example of an assignment set implementable by $t(w)$ but not by $s(\ell):$

Figure 6. Assignment Set
Ω is subset above the two downward sloping curves,
Ω implemented by $t(w)$-but never by an $s(\ell)$
Proposition 3: Simultaneous Implementation
If $\Omega=\{(w, \ell): \boldsymbol{U}(w-t(w))+\ell \geq \boldsymbol{U}(w)\}=$$\{(w, \ell): U(w-s(\ell))+\ell \geq U(w)\}$, for some t and sthen $t(w)$ and $s(\ell)$ must be

- continuous and
- induce a decreasing indifference boundary.

Conditions 1 and 3 are necessary and sufficient for simultaneous assignment implementation

Intuition:

- If Ω is implementable by $t(w)$ and $s(\ell)$, it must be closed
- A closed set has a continuous boundary
- If the boundary is continuous, $t(\boldsymbol{w})$ and $s(\ell)$ are continuous
- Indifference boundary must be strictly downward sloping

Revenue

$$
\begin{aligned}
& \text { Proposition 4: Unless } t(w)=s(\ell)=k \text {, a constant, } \\
& \alpha(t)=\beta(s) \Longrightarrow R(t) \neq R(s) \text { for generic distributions } F, G
\end{aligned}
$$

Figure 7. Nonequivalent Revenue
All inframarginal consumers pay different amounts according to t or s

Equivalent Revenue and General Subsidy

Two payments:

- $t_{1}(w)$ when the consumer chooses not to buy the good
- $t_{2}(w)$ when the consumer chooses to buy the good

If the boundary is strictly decreasing, can translate $t_{1}(w)$ $t_{2}(w)$ to equivalent $s_{1}(\ell) s_{2}(\ell)$

Such s_{1} and s_{2} are NOT unique (one equation, two unknowns)

When general taxation or subsidy is possible, assignment and expected cost can be identical (two equations, two unknowns)

Proposition 6:

- Suppose that a regulator sets a wealth-based policy $t(w)$, or equivalently, a budget allocation policy $B(w)$ for consumers with wealth w, to maximize a social welfare function.
- Suppose that the optimal budget allocation policy is increasing in w
- Then the optimal wealth-based policy must give rise to a strictly decreasing indifference boundary.

Conclusions

- Obviously, wealth-based subsidies generally must be different from benefit-based subsidies
- But we show that they CAN be ASSIGNMENT-EQUIVALENT
- The strength of the analysis: not based on OPTIMAL policies
- Relate different kinds of information
- Translate one type of policy to another for similar allocations
- Which information to collect?
- Collection cost and implementation cost can be considered separately
- Indivisible good assumption is critical, but seems natural for us to focus on assignments

