Subsidy Design and Asymmetric Information: Wealth versus Benefits

Simona Grassi Boston University Carlos III, Madrid

Ching-to Albert Ma Boston University

Public Provision Of A Private Good

- Education: scholarships based on merit or family wealth?
- Health care: treatment subsidies based on illness severity or income?
- Family assistance: day care subsidies based on family composition or income?

Typical problem: given Social Welfare Function and information assumptions about wealth or ability, derive optimal policy

Focus here: Implementation of ANY policy, not just optimal ones; no need for Social Welfare Function

- K. Arrow, "An Utilitarian Approach to the Concept of Equality in Public Expenditure," QJE, 1971: people differ in ability
- Blackorby C. and D. Donaldson, "Cash versus Kind. Self Selection and Efficient Transfers," AER, 1988: unobservable ability
- Besley T. and S. Coate, "Public Provision of Private Goods and the Redistribution of Income," AER, 1991: wealth unobservable
- DeFraja G., "The Design of Optimal Education Policies," RES, 2002: unobservable ability but known wealth

Subsidies When Information Is Incomplete

Subsidies based on benefits Subsidies based on wealth

Benefits and Wealth together determine "willingness to pay"

Wealth-based allocations = benefit based allocations?

Wealth information = benefits information?

Missing information benefits or wealth means different costs?

Key Concept \rightarrow ASSIGNMENT Should type (w, ℓ) get the good?

Answers:

Wealth-based allocation \neq benefit-based allocation

Wealth-based assignment = benefit-based assignment

With general tax instruments, both kinds of subsidies require same cost

The Model

- \bullet regulator allocates private good with limited budget B
- unit mass of consumers
- consumer gets either 0 or 1 unit
- cost of one unit of the good: c > 0
- $0 \leq B < c$: budget not enough to cover all consumers

- Consumers: heterogeneous in two dimensions
- Consumer type: (w, ℓ)
- ullet wealth w, and benefit ℓ
- ullet Consumer getting 1 unit at price p : $U(w-p)+\ell$
- $\bullet~U$ increasing and concave: $U^\prime>0,~U^{\prime\prime}<0$
- Consumer not getting the good: U(w)
- $w \sim F$ and f on $[\underline{w}, \overline{w}]$; $\ell \sim G$ and g on $[\underline{\ell}, \overline{\ell}]$. Independent
- Independence is unimportant; paper not about inferring one information from another

Consumer's WILLINGNESS TO PAY: depends on wealth and benefit

Type (w, ℓ) willing to pay p

$$U(w-p)+\ell\geq U(w)$$

Monotonicity

Suppose (w, ℓ) is willing to pay, so is $(w', \ell') > (w, \ell)$ $w' > w \quad \ell' > \ell \Rightarrow$ $U(w' - p) + \ell > U(w')$ $U(w - p) + \ell' > U(w)$ $U(w' - p) + \ell' > U(w)$

Information:

costly; regulator observes either w or ℓ

Presentation here only on unknown ℓ ; unknown w in the paper

w known; ℓ unkown: payment policy t(w) based on *w* Assignment:

the set of consumers getting the good $lpha(t) = \{(w, \ell) : U(w - t(w)) + \ell \ge U(w)\}$

Revenue Collected:

$$\int\limits_{(t)} t(w) dF dG \equiv R(t)$$

 α

Wealth Observable: Given Policy t(w)THE INDIFFERENCE BOUNDARY $U(w - t(w)) + \ell = U(w) \Longrightarrow$ $\ell = \theta(w) \equiv U(w) - U(w - t(w))$

For any w, find $\ell = \theta(w)$ s.t. type $(w, \theta(w))$ is indifferent

Special case: t(w) differentiable $\frac{d\ell}{dw} = U'(w) - U'(w - t(w))(1 - t'(w)) < 0 \text{ if } t(w) \text{ is constant}$

Examples of indifference boundaries:

Figure 1. Increasing Indifference Boundary

Figure 2. Decreasing Indifference Boundary

Figure 3. Discontinuous Indifference Boundary

Condition 1: Decreasing Indifference Boundary

t(w) continuous (⇔ θ(w) continuous)
θ(w) strictly decreasing
(⇒ ℓ = θ(w) has an inverse w = φ(ℓ))

TRANSLATION: Given t(w), construct $s(\ell)$ for same indifference boundary

Replace all w by $\phi(\ell)$: $U(\phi(\ell) - s) + \ell = U(\phi(\ell))$ SUBSTITUTION $--\rightarrow$ find equivalent $s(\ell)$

Example:

 $U(w) = \ln w;$ from t(w) = a + bw to $s(\ell) = \frac{a(e^{\ell} - 1)}{(1 - b)e^{\ell} - 1}$ **Proposition 1: Under Condition 1 (***Decreasing Indifference* **Boundary**)

Identical assignment sets under t(w) and equivalent $s(\ell)$: lpha(t)=eta(s)Type (w,ℓ) almost never pays the same

Figure 4. Downward Sloping Boundary: Direction of Preferences

Condition 2: Increasing Indifference Boundary

- t(w) continuous ($\Leftrightarrow \theta(w)$ continuous)
- $\theta(w)$ strictly increasing

($\Longrightarrow \ell = heta(w)$ has an inverse $w = \phi(\ell)$)

Corollay 1: Under Condition 2 (*Increasing Indifference Boundary***)**

Assignment sets $\alpha(t)$ and $\beta(s)$ (almost) complements

Figure 5. Upward Sloping Boundary: Direction of Preferences

Implementable Assignment Set

Regulator wants to implement an assignment $\Omega \subset [\overline{w}, \underline{w}] \times [\underline{\ell}, \overline{\ell}]$

- Ω implementable by wealth-based policy if $\exists t(w) : [\underline{w}, \overline{w}] \to \mathbb{R}^+$ s.t. $\Omega = \{(w, \ell) : U(w - t(w)) + \ell \ge U(w)\}$
- \bullet Analogous definition for Ω implementable by benefit-based policy $s(\ell)$
- Ω implementable SIMULTANEOUSLY by wealth-based and benefit-based policies:

$$egin{aligned} \Omega =& \{(w,\ell): U(w-t(w))+\ell \geq U(w)\} = \ & \{(w,\ell): U(w-s(\ell))+\ell \geq U(w)\} \end{aligned}$$

Example of an assignment set implementable by t(w) but not by $s(\ell)$:

Figure 6. Assignment Set

 Ω is subset above the two downward sloping curves, Ω implemented by t(w)—but never by an $s(\ell)$ Proposition 3: Simultaneous Implementation If $\Omega = \{(w, \ell) : U(w - t(w)) + \ell \ge U(w)\} = \{(w, \ell) : U(w - s(\ell)) + \ell \ge U(w)\}$, for some t and s

then t(w) and $s(\ell)$ must be

- continuous and
- induce a decreasing indifference boundary.

Conditions 1 and 3 are necessary and sufficient for simultaneous assignment implementation

Intuition:

- If Ω is implementable by t(w) and $s(\ell)$, it must be closed
- A closed set has a continuous boundary
- \bullet If the boundary is continuous, t(w) and $s(\ell)$ are continuous
- Indifference boundary must be strictly downward sloping

Revenue

Proposition 4: Unless $t(w) = s(\ell) = k$, a constant, $\alpha(t) = \beta(s) \Longrightarrow R(t) \neq R(s)$ for generic distributions F, G

Figure 7. Nonequivalent Revenue

All inframarginal consumers pay different amounts according to $t \mbox{ or } s$

Equivalent Revenue and General Subsidy

Two payments:

- $t_1(w)$ when the consumer chooses not to buy the good
- $t_2(w)$ when the consumer chooses to buy the good

If the boundary is strictly decreasing, can translate $t_1(w)$ $t_2(w)$ to equivalent $s_1(\ell)$ $s_2(\ell)$

Such s_1 and s_2 are NOT unique (one equation, two unknowns)

When general taxation or subsidy is possible, assignment and expected cost can be identical (two equations, two unknowns)

Proposition 6:

- Suppose that a regulator sets a wealth-based policy t(w), or equivalently, a budget allocation policy B(w) for consumers with wealth w, to maximize a social welfare function.
- \bullet Suppose that the optimal budget allocation policy is increasing in w
- Then the optimal wealth-based policy must give rise to a strictly decreasing indifference boundary.

Conclusions

- Obviously, wealth-based subsidies generally must be different from benefit-based subsidies
- But we show that they CAN be ASSIGNMENT-EQUIVALENT
- The strength of the analysis: not based on OPTIMAL policies
- Relate different kinds of information
- Translate one type of policy to another for similar allocations
- Which information to collect?
- Collection cost and implementation cost can be considered separately
- Indivisible good assumption is critical, but seems natural for us to focus on assignments