Government Outsourcing: Public Contracting with Private Monopoly

Emmanuelle Auriol University of Toulouse I

Pierre M. Picard University of Manchester

Introduction

- The paper studies private participation in regulated and/or publicly owned industry.
- Between 1980 and 1996 state ownership in LDC went from 16% to 8% of GDP.
- LDC account for 1/3 of worldwide proceeds of privatization.
 - ⇒ Privatisation and PPP are a massive phenomenon

Theoretical Literature on Privatization

- Poor economic performance of public enterprises ⇒ Privatization
- Focus on micro-economic explanations:
 - Conflicts between governments and firm's objectives (e.g., malevolence, paternalism)
 - Time Inconsistency and Soft Budget Constraint (e.g., inefficient level of subsidies, re-nationalization)

Privatization in Practice

- It coincides with situations of growing public debts and large trade deficits
 - Japan 1982 \Rightarrow deficit was 41.2% of GDP.
 - France $86 \Rightarrow$ proceeds reduced public deficit.
 - U.S. \Rightarrow privatizations more likely in States with binding fiscal constraints.
- It has been a major component of structural adjustment programs in LCDs.
- Proceeds are used to reduce domestic financing on one-for-one basis.

 \Rightarrow Macro-Economics Concerns

The Paper Setting

- The paper focuses on *natural monopoly* under adverse selection.
- Theory: regulation is always better than laissez-faire because the regulator can always mimic the market outcome (revelation principle).
- Practice: deregulation and privatization reforms have been implemented in utilities, transportation and communication industries.

 \Rightarrow WHY?

REGULATION IS COSTLY

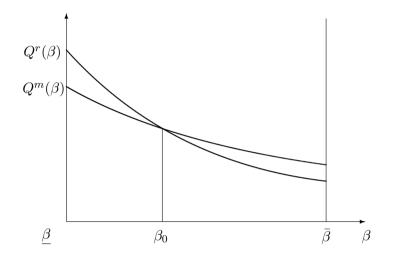
- Regulation is not anonymous \Rightarrow It depends on the opportunity cost of public funds λ .
- Soft budget constraint \Rightarrow public firms are ex-post profitable.
- Asymmetric information ⇒ a regulated firm has a higher cost function than a private one: virtual cost > marginal cost.

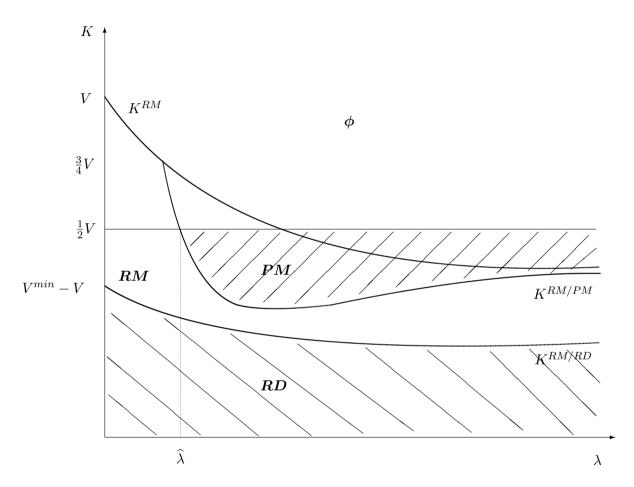
 \Rightarrow Cost/benefit analysis.

The Model

- Natural Monopoly: $C(Q, \beta) = K + \beta Q$
 - $-\beta \in [\underline{\beta}, \overline{\beta}]$ according to $G(\beta)$.
 - -F = franchise fee; t = public transfer
 - $-\Pi(\beta,Q,t,F)=P(Q)Q-\beta Q-K+t-F$
- Gross consumer surplus: $S(Q) = \int_0^Q P(x) dx$
- Government is utilitarian:

$$W\left(\beta,Q,t,F,\lambda\right) = S(Q) - \beta Q - K + \lambda \left(F - t\right)$$


Public vs. Private Outcome


• Private monopoly under laissez-faire sets $Q^{m}(\beta)$:

$$\frac{P(Q) - \beta}{P(Q)} = \frac{1}{\epsilon}$$

• Public firm under Regulation sets $Q^{r}(\beta)$:

$$\frac{P(Q) - (\beta + \frac{\lambda}{1+\lambda} \frac{G(\beta)}{g(\beta)})}{P(Q)} = \frac{\lambda}{1+\lambda} \frac{1}{\epsilon}$$

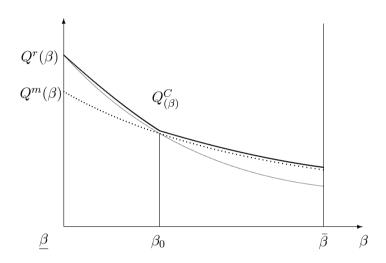
Optimal Industrial Policy: Public Vs Private Outcome

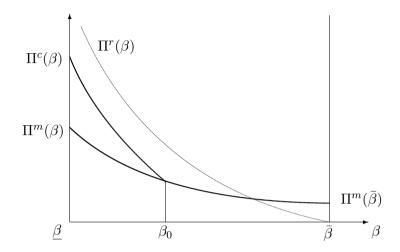
PPP: Government Outsourcing

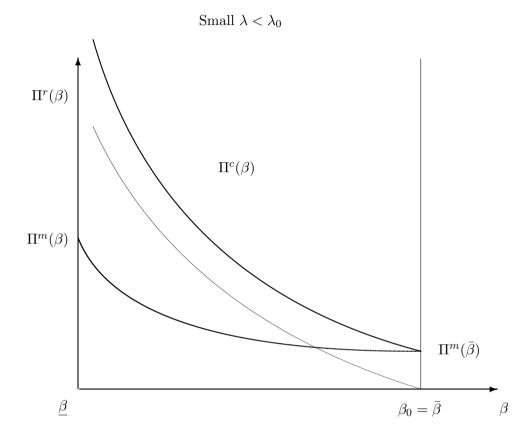
- Timing
 - Government sets franchise fee F
 - Private entrepreneur invests F and K
 - Nature chooses β ; Entrepreneur learns β
 - Government proposes contract $\{t^c(\cdot), Q^c(\cdot)\}$
 - Entrepreneur is free to pick a contract.
 - Firm produces and sells output.
- Major changes w.r.t. public ownership:
 - $-F \neq 0$
 - $-(PC) \quad \Pi^{c}(\beta) \ge \Pi^{m}(\beta) \ne 0$

Quantity and profit under outsourcing

Let $\beta_0 \in [\beta, \overline{\beta}]$ be such that:


$$P(Q^{m}(\beta_0)) = \beta_0 + \lambda \frac{G(\beta_0)}{g(\beta_0)}.$$


Lemma 1 Output and profit of the firm under ex-post contracting are equal to


$$Q^{c}(\beta) = \begin{cases} Q^{r}(\beta) > Q^{m}(\beta) & \text{if } \beta < \beta_{0} \\ Q^{m}(\beta) & \text{if } \beta \geq \beta_{0} \end{cases}$$

$$\Pi^{c}(\beta) = \begin{cases} \Pi^{m}(\beta_{0}) + \int_{\beta}^{\beta_{0}} Q^{r}(\beta) d\beta > \Pi^{m}(\beta) & \text{if } \beta < \beta_{0} \\ \Pi^{m}(\beta) & \text{if } \beta \geq \beta_{0} \end{cases}$$

Proposition 1 Let $\lambda_0 = g(\overline{\beta}) [P(Q^m(\overline{\beta})) - \overline{\beta}].$

- (i) If $\lambda \leq \lambda_0$ all firms receive an ex-post contract.
- (ii) If $\lambda > \lambda_0$ the fraction of private firms that receives an ex-post contract decreases with λ and tends to zero when $\lambda \to \infty$.

Welfare Comparaison

Proposition 2 Let $\Delta t = \Pi^m(\beta_0) - \Pi^r(\beta_0)$. Outsourcing is preferred to public ownership iff $EW^c(\lambda) - EW^r(\lambda) \geq 0$.

$$EW^{c}(\lambda) - EW^{r}(\lambda) = \lambda \left\{ F - \Delta t G(\beta_{0}) + \int_{\beta_{0}}^{\overline{\beta}} t^{r}(\beta) dG(\beta) \right\}$$
$$+ \int_{\beta_{0}}^{\overline{\beta}} \left[W(\beta, Q^{m}, \lambda) - W(\beta, Q^{r}, \lambda) \right] dG(\beta)$$

Small λ

Proposition 3 For $\lambda \leq \lambda_0$, outsourcing is preferred to public ownership iff $F > \Pi^m(\overline{\beta})$.

 \Rightarrow Risky business, high technology industry.

Proof

$$EW^{c}(\lambda) - EW^{r}(\lambda) \ge 0$$
 iff

•
$$\lambda \leq \lambda_0 \Rightarrow \beta_0 = \overline{\beta}, \, \Delta t = \Pi^m(\overline{\beta}) \Rightarrow EW^c(\lambda) - EW^r(\lambda) = -\lambda \Pi^m(\overline{\beta}) + \lambda F.$$

High Franchise Fees

Proposition 4 Outsourcing is preferred to public ownership for any λ if F is sufficiently close to the expected profit of the firm under outsourcing $F^{max} = E\Pi_{F=0}^{c}$.

 \Rightarrow Efficient financial markets.

Corollary 1 If F is endogenously determined by an efficient bargaining process then outsourcing is always preferred to regulation. F can be positive or negative.

Proof

$$EW^{c}(\lambda) > EW^{r}(\lambda)$$
 iff

$$\lambda \left[E\Pi_{0}^{c} - F \right] < \begin{cases} \lambda \int_{\underline{\beta}}^{\overline{\beta}} \Pi^{r} \left(\beta \right) dG \left(\beta \right) & (>0) \\ + \lambda \int_{\beta_{0}}^{\overline{\beta}} \left[\Pi^{m} \left(\beta \right) - \pi \left(\beta, Q^{r} \right) \right] dG \left(\beta \right) & (>0) \\ + \int_{\beta_{0}}^{\overline{\beta}} \left[W(\beta, Q^{m}, \lambda) \right) - W \left(\beta, Q^{r}, \lambda \right) \right] dG(\beta) & (>0) \end{cases}$$

Conclusion

- Contracting with private monopoly can be welfare improving w.r.t. public ownership.
- Outsourcing is especially relevant when λ is small and F is high \rightarrow rich countries.
- But also with high uncertainty → High Tech
- Pharmaceutical industry:
 - High private investment (17% of sales)
 - Uncertainty $(\frac{1}{1000}$ patented drugs marketed)
 - Patent and private monopoly
 - Ex-post subsidies of drugs