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Abstract

There is some evidence that people have biased perceptions of risks, like
health or environmental risks. Hence their behavior is based on beliefs which
may di¤er from the ’objective’ beliefs used by a risk regulator. We set up a
general framework to study whether and how this di¤erence in beliefs a¤ects
the regulator’s policy. It turns out that, in many situations, the regulatory
change only depends on the absolute ’distance’ between beliefs, and not on
whether agents over-estimate or under-estimate risks. We then characterize
the cases where the di¤erence in beliefs justify more, or less, public inter-
vention. We also discuss why, in the context of risk regulation, uniform
norms may dominate uniform taxes. Finally, we relate our results to various
settings, including the question of scienti…c uncertainty.



1 Introduction
There is a lot of evidence that people misperceive the risks they face.1 This
may be rooted in people’s psychology, or due to bounded rationality.2 This
often implies that individuals’ beliefs on hazard risks di¤er from quantitative
estimates and scienti…c evidences (Slovic, 1986, Viscusi, 1998). This paper is
interested in the implications of this observation for risk regulatory policies.3

Speci…cally: do public risks misperception call for more regulatory interven-
tion? And how does this a¤ect the choice of regulatory instruments?

From a policy viewpoint, the inability of citizens to accurately evaluate
the consequences of their own decisions is often a justi…cation for extensive
regulatory programs. This justi…cation is actually based on a merit good
argument (Musgrave, 1959). For example, education policies or compulsory
insurance programs should be developed by the government, on the basis of
faulty choices by consumers. The main prediction of merit good theory for
public intervention is clearcut. The consumption of merit goods should be
subsidized, while demerit goods should be taxed (Besley, 1988). The key
theoretical instrument here is taxation. The positive e¤ect of the tax policy

1A famous example is the bias in mortality risks perception. Individuals systemati-
cally overestimate the rare causes of death such as cataclysmic storms or plane crashes
and underestimate more common causes of death like cancers or automobile accidents
(Lichtenstein et al., 1978).

2Empirical evidence of misperceptions is very well documented since the seminal paper
by Tversky and Kahneman (1974). Individuals have di¢culties to evaluate small probabil-
ities. Individuals also use heuristics or rules of thumbs that are useful but misleading. For
instance, they are subject to ’availability heuristic’. People assess the risks of heart attack
by recalling such occurences among one’s acquaintances. They ’anchor’ their estimates
to easily retrievable events in memory such as sensational stories in the medias. People
can also manipulate their own beliefs in order to con…rm their desired beliefs (see, e.g.,
Akerlof and Dickens, 1982). This process of beliefs misperceptions can be exacerbated
at a collective level by a chain reaction that gives the perception increasing plausibility
through its rising availability in public discourse (Kuran and Sustein, 1999).

3Our approach does not propose another model to understand how individuals’ prob-
ability misperceptions a¤ect their own choices. See the developments of Non-Expected
Utility models based on systematic distorsions of probabilities, e.g., Starmer, 2000. Our
paper is about the impact of the di¤erence in belief on the regulatory policy within an
Expected Utility framework based on subjective beliefs. Also, our paper does not ex-
amine methods to aggregate heterogeneous beliefs in complete contingent markets. See
Varian(1985), Gollier(2003), or Calvet, Grandmont and Lemaire(2003) for an analysis of
this question.
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is immediate: people consume less demerit goods and consume more merit
goods.

Merit good arguments for public intervention are however quite contro-
versial since they rely on a paternalistic view of consumers’ preferences. At
the root of these criticisms is the fact that the regulator must recognize
that the preferences used to determine private choices corresponds to a mis-
representation of well-being. Yet, this criticism has less weight in the present
paper, as the only di¤erence in well-being comes from the di¤erence in beliefs.

This paper builds on empirical evidence on risks misperceptions to assume
that the regulator knows better what is the risk faced by the public, and has
thus some legitimacy to correct faulty individuals’ choices.4 An even less
demanding case is when agents do not misperceive risk ’on average’, though
each agent’s beliefs is a noisy version of the true beliefs. Notice that in the
context of risk misperceptions the taxation policy remains straightforward.
The government must tax the consumption of those goods whose risky con-
sequences are underestimated by consumers, and subsidize the consumption
of goods whose risky consequences are overestimated. Such a monotonic pat-
tern between the optimal public taxation as a function of the di¤erence in
beliefs has been derived in Sandmo (1983).

Nevertheless public intervention is not limited to the use of taxes or subsi-
dies. Many regulations take the form of direct risk-reduction programs such
as safety standards or prevention expenditures; examples abound in areas
such as health or food safety. In this paper these instruments are gathered
under the term of norms. Norm analysis is more complex than taxation anal-
ysis because the consumer response to the new, safer situation may o¤set the
direct bene…cial e¤ect.5 Introducing risk misperceptions then modi…es the
trade-o¤ between the direct e¤ect and the spillover e¤ect; and, as we shall

4A simple interpretation of our model is that the regulator has superior information
about the distribution of the risk but, for some reasons, cannot signal this information to
the public; Spence (1977) o¤ers an early reference on this problem. For a principal-agent
approach, see Wirl (1999). For an economic analysis of the signalling issue in consumption
regulation, see the recent paper of Barigozzi and Villeneuve (2002).

5Consider for example the consequences of making automobile seatbelt compulsory.
The direct e¤ect is that seatbelts reduce the gravity of injury in case of accident; the
associated spillover e¤ect is to make drivers driving faster, maybe o¤setting the bene…ts of
the safety regulatory policy (Peltzman, 1975). Similarly, Viscusi (1998) found a correlation
between child-resistant packages and an increase in accidental poisonings. He postulated
that consumers might have become less safety conscious due to the existence of safety
caps.
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see, it makes more complex the analysis of optimal regulation and raises
the question of the superiority of price instruments over direct risk-reduction
instruments.

This paper proposes the …rst general analysis of the impact of public
misperceptions on the optimal prevention policy. This analysis is developed
within a general framework that can accommodate almost any type of models
of paternalistic risk regulation. We obtain comparative statics results about
the e¤ect of the di¤erence in beliefs on the norms level. This allows us to
answer the question of whether misperceptions support the setting of higher
(more stringent) or lower norms by the regulator.

We derive three main messages from our analysis. First, the trade-o¤
between the direct e¤ect and the spillover e¤ect is modi…ed by risk misper-
ceptions; this may call for setting higher or lower norms, depending on a
simple condition on consumers’ preferences. For example, in the next section
we discuss an example in which agents misperceive the risk of drinking tap
water. With a demand characterized by a constant elasticity, we show that
more stringent norms are called for if water demand is inelastic, an empir-
ically plausible feature. Conversely norms should be made less stringent if
demand is elastic; a case-by-case study is thus needed if one applies the same
model to other goods. Hence, the di¤erences in risk beliefs certainly do not
justify any systematic increase in the stringency of norms, compared to the
case when the regulator and the agents share the same beliefs.

Second, and more strikingly, the optimal norm level is monotonic with the
absolute distance between beliefs, but does not depend on whether the agent
is pessimistic or optimistic compared to the regulator. We call this property
’radial monotonicity’. It is in sharp contrast with the monotonic pattern for
the optimal taxation policy as a function of the di¤erence in beliefs. Radial
monotonicity is a quite general property; we shall characterize all models
in which it always calls for more, or for less, stringent norms, whatever the
beliefs.

Third, and relatedly, we o¤er a simple explanation for the prevalence of
norms in the domain of risk policies. A tax (or a subsidy) can correct an
over-exposure (or under-exposure) to risk if it set at the appropriate level.
In the presence of multiple agents with heterogeneous beliefs, the regulator
then has to set individualized taxes, a di¢cult task in practice. It is therefore
likely that a uniform tax shall be set at an average level. In particular, if
agents do not misperceive the risk on average, then the optimal uniform tax
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will be shown to be close to zero, and thus quite useless. Conversely a norm
may be useful, since it can be chosen irrespective of whether agents under-
estimate or over-estimate the risk. Consequently, our analysis suggests that
uniform taxes (or uniform subsidies) may be poor instruments to regulate
misperceived risks compared to direct risk prevention programs (uniform
’norms’), when the heterogeneity in beliefs is high enough.

The paper proceeds as follows. The next section builds on a simple ex-
ample in order to illustrate the above-mentioned policy questions, and to
isolate the contribution of the present paper. Section 3 introduces the gen-
eral framework, with a single agent and norms. Section 4 derives the radial
monotonicity property. Section 5 o¤ers necessary and su¢cient conditions
for the di¤erence in beliefs to increase (or reduce) the optimal norm level.
Section 6 introduces the most general and policy relevant problem, that is
the analysis of optimal regulation with heterogeneous agents and several reg-
ulatory instruments (tax or norms). Section 7 shows that our analysis is
conceptually equivalent to the analysis of optimal sequential decision when
uncertainty resolves over time, thus solving an important problem formulated
in Epstein(1980).

2 Regulation in Happyville
The following problem was introduced by Portney (1992, p. 131). It is called
’Trouble in Happyville’:

You are Director of Environmental Protection in Happyville (...). The
drinking water supply in Happyville is contaminated by a naturally occurring
substance that each and every resident believes may be responsible for the
above-average cancer rate observed there (...).

You have asked the top ten risk assessors in the world to test the contam-
inant for carcinogenicity (...). These risk assessors tell you that while one
could never prove that the substance is harmless, they would each stake their
professional reputations on it being so.

You have repeatedly and skillfully communicated this to the Happyville
citizenry, but because of the deep-seated skepticism of all government o¢cials,
they remain completely unconvinced and truly frightened.

The mirror image of Happyville is Blissville (Viscusi, 2000). In Hap-
pyville, the risk is low but perceived as large. In Blissville, the risk is large
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but perceived as low. The question becomes: You are the Director of Envi-
ronmental Protection both in Happyville and Blissville, where do you allocate
your cleanup e¤orts? To Viscusi, the choice is clear-cut. E¤orts have to be
spent in Blissville. If e¤orts are spent in Happyville, this is a ’statistical
murder’ since lives are sacri…ced to focus instead on illusory fears. Viscusi
(2000)’s view is probably shared by most economists.6 This is the point of
view we adopt through the paper.

Let us now present more formally our approach. Let the utility of a
representative Happyville citizen be

U(x; a; b) = u(b) ¡ (1 ¡ a)±bx¡ c(a);

where

u(:) is the agent’s utility from drinking water,
b is water consumption,
a is cleanup e¤ort, 0 · a · 1,
± is the desutility from getting a cancer,
x is the unknown dose-response risk of carcinogenicity, 0 · x · 1,
c(a) is the cleanup cost function.

Assume simple functional forms

u(b) = ¡(1 ¡ b)2=2
± = 1

c(a) = a2=2:

Under expected utility, only the expected value of x matters. The objec-
tive expected value used by the regulator is denoted by r. Yet, the agent
does not share the same beliefs as the regulator. The agent thinks that
this expected value is s 6= r. Happyville (resp. Blissville) is then simply
characterized by a society where s > r (resp. s < r).

For a given cleanup e¤ort a, the agent simply chooses b to maximize

EsU(x; a; b) = ¡(1 ¡ b)2=2 ¡ (1 ¡ a)sb¡ c(a);
6Yet, the reader may …nd related theoretical discussions and counter-arguments in

Hammond (1981), Sandmo (1983) and Marshall (1988). Clearly the choice is not so clear-
cut (Pollack, 1995, 1998). If e¤orts are spent in Happyville, people who were worried
feel protected, and so feel better. Such a view is called the ’populist approach’ to risk
regulation (Breyer, 1993, Hird 1994).
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so that we get
b(a; s) = 1 ¡ (1 ¡ a)s:

According to the intuition, optimal water consumption b is decreasing in
the perceived probability of getting a cancer s and increasing in the level of
cleanup e¤orts a. We arrive now to the question of the optimal cleanup level.
Our assumption will be that the objective of the government is to maximize
the ex-post expected utility of the individual ErU , i.e. the expected utility
based on the objective risk r. Nevertheless the regulator must take into
account the faulty consumer’s response, so that a is chosen to maximize

ErU(x; a; b(a; s)) = ¡((1 ¡ a)s)2=2 ¡ (1 ¡ a)r(1 ¡ (1 ¡ a)s) ¡ a2=2; (1)

the solution being

a(r; s) =
r ¡ 2rs+ s2

1 ¡ 2rs + s2
2 [0; 1]: (2)

This framework thus captures a complex channel for why the individual’s
perception s a¤ects the regulatory choices. This channel is related to the
anticipation of the irrational response of individuals, i.e. the response based
on s; not on r.

Furthermore, our approach allows us to consider three polar cases. The
regulator may select:

a(r; s) : the ’second-best’ policy,
a(r; r) : the ’rationalist’ policy,
a(s; s) : the ’populist’ policy.

The ’rationalist’ approach is clearly ine¢cient because it does not antic-
ipate correctly the agent’s reactions. The ’populist’ approach is intuitively
ine¢cient because it does not make use of the regulator’s information. The
’second-best’ approach is adopted in this paper, but we brie‡y discuss the
other approaches for completeness. Figure 1 represents cleanup e¤orts as a
function of individual’s misperceptions s:

Let us …rst examine the ’rationalist’ regulator decision a(r; r): This deci-
sion does not internalize individual’s misperceptions, so it is a straight line
on the …gure. The ’rationalist’ decision is insensitive to public beliefs.

Then, turn to the opposite case, the ’populist’ decision which is equal to

a(s; s) =
s

1 + s
:
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« Rationalist »

« Populist »

« Second-best »

‘Objective ’
probability

Figure 1:

This decision ignores the objective risk r. In Happyville, i.e. in the city where
the perceived risk is large, s > r; cleanup e¤orts are high. In Blissville, where
the perceived risk is low, s < r; cleanup e¤orts are low.

Finally, let us turn to the optimal decision, that is the ’second best’
decision. From equation (2), decision a(r; s) is decreasing in s then increasing
in s. Importantly, this function takes a minimum at s = r. Thus we have
a(r; s) ¸ a(r; r): This shows that the optimal decision is always larger than
the ’rationalist’ decision. Why is it so ?

In Happyville, individuals are pessimistic and do not consume enough
water. Cleanup e¤orts gives an incentive for the population to consume more
water, which is a source of welfare in Happyville where people overestimated
the risk. In Blissville, the reason for why cleanup e¤orts increase is di¤erent.
People are optimistic and consume too much water. Risk-exposure to cancer
is thus too large in Blissville. Hence, cleaning water simply reduces risk-
exposure.7

7This interpretation suggests that this result is model-dependent. We will precisely
examine this question in the paper.
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Finally, note that the di¤erence between the ’second-best’ policy a(r; s)
and the ’rationalist’ policy a(r; r) increases as the absolute value jr ¡ sj in-
creases. Moreover, they increase exactly at the same rate. Indeed replace s
by r + u in (2) to get

a(r; r + u) =
r ¡ r2 + u2
1 ¡ r2 + u2

so that the value of a is independent of the sign of u. This means that cleanup
e¤orts are the same in Blissville and Happyville.8 Hence, an important lesson
from that example is that the di¤erence between the public and the regulator
beliefs is more important than the direction of the misperception. In other
words, it is not so important for the regulator to know whether he is in
Blissville or Happyville. What is important is to know ’how large’ is the
misperception.

To summarize: because the population’s response is ’irrational’, regula-
tion may depart strongly from a myopic Cost-Bene…t Analysis. Yet, this ex-
ample has shown that this departure displays a strong ’regularity’ property.
The regulatory policy depends on the absolute ’distance’ between beliefs,
not on whether agents over-estimate or under-estimate risks. This raises the
question of the e¤ect of di¤erent beliefs on regulatory policies in general.
This is the question we study in the next two sections.

3 The General Framework with Norms
This Section focuses on the case of a single agent, when regulation consists
in setting a norm (these limitations are relaxed in Section 6). Consider the
following game. A regulator chooses a norm level a. An agent reacts to a by
choosing a decision b. These choices are performed under uncertainty on the
true state of nature x 2 X. The Von Neumann-Morgenstern preferences of
the agent are given by the utility function U(x; a; b). Because the regulator
is benevolent, he shares the same preferences under certainty.

We assume that x takes a …nite number of values. Decision a is a real
number, constrained to belong to a closed interval. Decision b is a real vector
of …nite dimension. Also, U is three-times continuously di¤erentiable with

8The decisions are the same in the sense that a(r; s) is symmetric around r. This
symmetry is due to the selection of the parameters. For a di¤erent set of parameters, the
symmetry is lost. The message remains though.
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respect to (a, b), and U is strictly concave with respect to b.

Let us endow the agent with beliefs q, de…ned in the usual manner9:

8 x q(x) > 0
X

x2X
q(x) = 1:

Once a is chosen, the agent chooses b to maximize
X

x2X
q(x)U(x; a; b) (3)

whose unique solution is denoted by b(a; q).

Now suppose that the beliefs p used by the regulator di¤ers from the
beliefs q used by the agent. Acting as a Stackelberg leader, the regulator
should adjust his …rst-period decision consequently, by maximizing over a

X

x2X
p(x)U(x; a; b(a; q)): (4)

Our objective in the following is to study how the solution(s) to this
program vary with the agent’s beliefs.10 To do so, we need to introduce a
measure for the di¤erence in beliefs. Let us introduce two scalars r; s 2 [0; 1].
Suppose that the regulator uses the beliefs (1¡r)p+rq, while the agent uses
the beliefs (1¡ s)p+ sq. Also, an increase in s makes the latter more distant
from the former if s > r, and closer otherwise. Hence the absolute value
js¡ rj is a measure for the absolute value of the beliefs di¤erence. De…ne the
regulator’s expected payo¤ as

K(a; r; s) =
X

x2X
[(1 ¡ r)p(x) + rq(x)]U(x; a; b(a; (1 ¡ s)p+ sq)): (5)

Notice that these linear forms for the weights appear quite naturally in
many cases. For example, suppose that initially agents share the same beliefs
p, but an experiment is performed, giving additional information on the

9In what follows we could suppose that weights belong to an open convex subset of all
possible weights. The assumption that weights are strictly positive plays a role.

10Existence of a solution obtains thanks to our regularity assumptions.
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true state of nature. Nevertheless, there is an exogenous probability that
the experiment has failed, and in that case its results are uninformative.
Moreover there is no way to tell whether the experiment has failed or not. If
the regulator and the agent do not agree on the probability of failure, their
revised beliefs take these linear forms.

In what follows, we shall make s vary in order to capture the impact of
the di¤erence in beliefs. We will say that beliefs are more distant if js ¡ rj
increases, r being given.

4 The Radial Monotonicity Property
The Happyville example has derived a remarkable property for the optimal
norm level : it is monotonic with more distant beliefs; in other words, what
matters is the distance, not the direction. We call this property radial
monotonicity, so as to distinguish it from the usual monotonicity. Radial
monotonicity means that the regulator’s decision always increase, or always
decrease, when s moves away from r no matter the direction. This section
shows that this property is in a sense the only regularity property one can
obtain; we also give equivalent conditions in terms of the properties of the
objective function K. These results are quite general since to derive them
we only use basic properties of K. Notice also that in this Section we focus
on what happens on a given axis (p, q); only r and s are allowed to vary.

First let us underline that radial monotonicity is at the heart of our
framework. This can be illustrated when one studies the expected payo¤ of
the regulator. By de…nition of K and b(a; q), we have

K(a; r; r) = max
b

X

x

[(1 ¡ r)p(x) + rq(x)]U(x; a; b)

so that
8 r; s K(a; r; s) · K(a; r; r): (6)

This result states that the regulator’s expected utility reaches its maximum
when the agent and the regulator have the same beliefs, s = r. Using only
these inequalities and the linearity of K with respect to r, we get11

11Proofs are given in appendix.
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Proposition 1 The regulator’s expected utility decreases with more distant
beliefs, i.e. K(a; r; s) weakly increases with s for s < r, and weakly decreases
with s for s > r.

Hence the regulator would anyway prefer that the agent’s beliefs be closer
to his own beliefs. Let us now turn to the e¤ect of the di¤erence in beliefs
on the regulator’s decision. Recall that the regulator maximizes the value
functionK(a; r; s) as de…ned in (5). Hence the properties of the derivativeKa
are essential here. In particular, we would like to know how this derivative
varies with s. Notice that by linearity of K we have

K(a; r; s) = K(a; s; s) + (r ¡ s)Kr(a; r; s):

Moreover from the Envelope theorem we know that Ks(a; s; s) = 0. Dif-
ferentiating with respect to s and a we thus get

Kas(a; r; s) = (r ¡ s)Kars(a; r; s): (7)

In words, if for example Kars(a; r; s) > 0 an increase in s reduces Ka if
r < s and increases Ka if r > s; this indicates that a should be reduced by
more distant beliefs, and once more this property is the radial monotonicity
property.

Finally suppose for example that we have

8 a; r; s; Ka(a; r; s) · Ka(a; r; r): (8)

Then it is clear that the optimal norm choice is reduced when di¤erent be-
liefs are introduced. Reciprocally, if this condition does not hold, then it is
possible to build a counter-example in which a is made higher with di¤erent
beliefs. Therefore (8) is equivalent to the fact that a di¤erence in beliefs
reduces the optimal a. Since (8) is similar to (6), as in Proposition 1 we
obtain that a is reduced by more distant beliefs. A bit of algebra then yields
the following result :

Proposition 2 Given p and q, de…ne the regulator’s beliefs as (1¡ r)p+ rq
and the agent’s beliefs as (1 ¡ s)p + sq. The three following statements are
equivalent:

i) For any r, the optimal norm level decreases with more distant beliefs;
ii) For any a, s, Kas(a; 0; s) · 0;
iii) For any a, r, s, Kars(a; r; s) ¸ 0.
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The last two statements are clearly equivalent since from (7) these terms
have opposite signs.12 We included statement ii) because it yields a nice
interpretation. Consider a regulator with beliefs p and an agent with beliefs
(1 ¡ s)p + sq. Assume monotonicity of a in one direction: that is, when s
increases the optimal norm level is reduced. This is the most simple regularity
property we may think of. But since it is equivalent to ii), the Proposition
shows that i) must hold. In words, monotonicity in one direction q from a
given reference point p implies that radial monotonicity holds on the whole
axis de…ned by p and q. This striking result vindicates our focus on radial
monotonicity as the only regularity property one can obtain.

Let us …nally give an example of the usefulness of that Proposition.

Example 1 Water Demand in Happyville

In the example presented in Section 2, we introduced several parametric
assumptions which we now relax. Consider the following model

U(x; a; b) = u(b) ¡ g(a)bx¡ c(a)

where u is concave and g is decreasing. Now b(a; s) is de…ned by

u0(b(a; s)) = g(a)s;

where s stands for the perceived probability of getting cancer. We have

K(a; r; s) = u(b(a; s)) ¡ g(a)b(a; s)r ¡ c(a);

where r is objective risk-probability level. We then compute

Krs(a; r; s) = ¡g(a)@b
@s

(a; s) = ¡ g(a)2

u00(b(a; s))
= ¡ 1
s2
u02(b(a; s))
u00(b(a; s))

:

Because water consumption b is increasing with a, Kars will be negative
if and only if

u02(b)
u00(b)

12Notice also that in iii) Kars does not depend on r, by linearity of K. Also the
equivalence still holds if one reverses all the comparisons in the statements; for axample,
Kas ¸ 0 is the necessary and su¢cient condition for the di¤erence in beliefs to increase
the stringency of norms.
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is increasing with b. Therefore the impact of more distant beliefs only de-
pends on water on u, and not on g or c. Note that the property holds when u
is quadratic, as in Section 2. To go further one may de…ne a demand function
D(½) by the familiar identity u0(D(½)) = ½; ½ is interpreted as the implicit
unit price for water. From Proposition 2 this shows that the norm level will
be higher due to the di¤erence in beliefs if and only if

½2D0(½)

is decreasing with ½. This holds for linear demand functions, as well as
for constant elasticity demand functions with an elasticity less than one.
Empirical studies strongly support this feature (see e.g. Nauges and Thomas
(2000)). Therefore we obtain the general result that in Happyville the optimal
norm level should be increasing with more distant beliefs. A crucial point is
that this is true in Happyville, but this is true in Blissville as well. Hence,
public misperceptions always calls for an higher public intervention here. Yet,
when applied to another consumption good, this conclusion may be reversed
if the elasticity of demand is more than one.

Interestingly, observe that one would also obtain the radial monotonicity
in an even larger class of models. Indeed, through a simple change of variable,
any model such as

U(x; a; b) = u(b) ¡ g(a; b)x¡ c(a)

may be transformed into

V (x; a; B) = v(a;B) ¡Bx¡ c(a)

where B is the level of exposure to risk chosen by the agent. We directly
build the function

K(a; r; s) = v(a;B(a; s)) ¡B(a; s)r ¡ c(a)

so that Kars is negative if and only if @B@a is increasing with s. In words, this
means that the exposure to risk of more pessimistic agents is more sensitive
to a change in the safety level. This makes sense, and thus supports the idea
that norms should be increased due to misperceptions, from Proposition 2.13

13On the other hand, the opposite property may hold, in particular if the exposure to
risk of pessimistic agents is already low. Once more, a case-by-case study is needed.
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The general intuition may be presented as follows. Optimistic agents are
over-exposed to risks, and their level of exposure is not very sensitive to the
safety level. Therefore increasing the water safety yields a bene…cial direct
e¤ect, while the spillover e¤ect is weak. Conversely the spillover e¤ect is
strong for pessimistic agents. This justi…es an increase in safety, even though
the direct bene…cial e¤ect is negative.

5 Characterization Results
The previous section has identi…ed the necessary and su¢cient condition so
that more distant beliefs leads to decrease the regulator’s decision. This
condition reduced to examining the property of the value function K(a; r; s).
Notice that K is the value of function of a Stackelberg game, i.e. the value
function of the regulator’s problem when the agent has di¤erent beliefs, s.
Analyzing the properties of K is thus quite a technical problem. We solved
one simple example which displayed some linearity properties - U linear in x
-. This raises a more general question: Is it possible to solve the comparative
statics analysis for any problem (that is, a function U and a set X)? In other
words, under which condition on the primitives of the model one would obtain
the radial monotonicity property?

5.1 Quasi-Independent Problems
Let us …rst focus on a particular class of problems :

De…nition 1 A problem (U , X) is quasi-independent if and only if there
exists a change of variable B = f(b; a) such that, for any q, f(b(a; q); a) is
independent from a.

Here a change of variable is de…ned as a one-to-one, twice continuously
di¤erentiable function.14 Intuitively a problem is quasi-independent if when a
varies the agent’s choice of b preserves an invariant quantity f(b; a). Another
interpretation obtains when using the reciprocal function f¡1 of f in b : we
get

b(a; q) = f¡1(B(q); a)
14It may be local or global, without any change in our results.
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so that b depends on q only through a statistic B(q). The constraint is that
since the change of variable must be one-to-one, this statistic must have the
same dimension as b. This is the case in particular when U is linear in x, as
in the Happyville example : indeed consider

U(x; a; b) = u(a; b) + v(a; b):x

where the dot denotes a scalar product. The agent’s choice b(a; q) is charac-
terized by

ub(a; b) + vb(a; b)Eqx = 0

so that b(a; q) depends on q only through the statistic Eqx. The problem is
then quasi-independent if the change of variable

f(a; b) = ¡[vb(a; b)]¡1ub(a; b)

is well-de…ned.
Therefore when U is linear the invariant is the marginal rate of substitu-

tion between the risk-free part u and the exposure to risk v; for given beliefs
the agent always make the same trade-o¤ between these two elements. As
we shall see quasi-independent problems are not necessarily linear. The fol-
lowing result characterizes such problems, and o¤ers a su¢cient condition
for radial monotonicity :

Proposition 3 The problem (U ,X) is past-independent if and only if for
any a and b, there exists a vector d(a; b) and a matrix M(a; b) such that

8 x; a; b Uab + Ubbd =MUb: (9)

Moreover, if this property holds, then

8 a; b; p b = b(a; p) ) d(a; b) = @b
@a

(a; p):

Finally, ifM+db is positive (resp. negative) semi-de…nite, then whatever
the regulator’s beliefs the optimal norm level is reduced (resp. increased) by
more distant beliefs.

This characterization can be applied to a variety of problems with a multi-
dimensional second-period decision. The second statement in the Proposition
makes it easier to …nd d. The generality of the result is illustrated in the
following example:
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Example 2 A Rotten-Kid in a Risky Environment

Consider a father having to decide the size a of a transfer he shall leave
to his son. The son will use the money to invest in some risky projects
(such as education, travelling, addictive drugs, ...). Suppose there are N
such projects, with net stochastic returns x = (x1; ::; xN). The problem is
that the father and the son do not share the same beliefs over the probability
distributions of the risky projects. Moreover the father is altruistic and takes
into account the well-being of his child. How does the di¤erence in beliefs
a¤ect the transfer a given to the son by the father?15

In our framework, the story can be modelled by setting the Von-Neumann
Morgenstern father’s utility as

U(x; a; b) = u(W0 ¡ a) + kv(a+ b:x)

where k > 0 is the altruistic weight the father puts on the son’s utility16

v(x; a; b):

Here b is chosen by the son, and can be interpreted as the level of risk-
exposure. Assume that the son is risk-averse, so that his portfolio problem
is well-de…ned. Now we will apply Proposition 3.

Let us …rst check that the condition (9) is veri…ed if and only if v displays
a linear tolerance to risk17. Indeed compute

Ub = kv0x Uab = kv00x Ubb = kv"(xx0)

(note that (xx0) is a matrix) so that (9) requires to …nd d and M such that

v"x+ v"(xx0)d = v0Mx

or equivalently
15Compared to the literature on Rotten Kid Theorems introduced by Becker(1974) (see

e.g. Bergstrom(1989) for an overview), the new ingredient that will make the Rotten-Kid
Theorem to fail in general is of course the risky aspect of the problem.

16The child may be altruistic toward his father as well, without any change in the results.
17That is, ¡v0=v00 is linear. These functions are called HARA (for Harmonic Absolute

Risk Aversion), and include all the usual exponential, power, logarithm and quadratic
functions.
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x+ (xx0)d+ T (a+ b:x)Mx = 0

where T (c) is the tolerance to risk of v at c. Notice that the following identity
holds :

(xx0)d = (d:x)x

so that our equation becomes

8 x [I(1 + d:x) + T (a+ b:x)M ]x = 0

where I is the identity matrix. This implies as announced that T must be
linear.

To go further, set T (c) = y + zc. T (c) is positive because by assumption
the son is risk-averse. Now our equation is veri…ed if one sets

d =
z

y + za
b M = ¡ 1

y + za
I:

There remains to compute

M + db =
z ¡ 1
y + za

I

so that we only need to compare z to 1. Therefore we have obtained that the
di¤erence in beliefs increases the size of the bequest if and only if z = T 0(c)
is below one.18 This comparison is well-known and even almost ubiquitous in
risk theory. For an agent with a constant relative risk-aversion ¾, it amounts
to ¾ > 1. The empirical evidence for households tends to indicate a value
of ¾ between 1 and 4. Nevertheless one may argue (in a loosely manner)
that sons are on average younger than the typical household and may be less
risk-averse. Overall we obtain the following result : if the father thinks the
son has a constant relative risk-aversion less than one, he shall reduce the
bequest’s size due to misperceptions; while the opposite is true if the son has
a constant relative risk-aversion above one. (The son should therefore try to
convince his father the he is risk-averse).

18Hence the logarithmic case v(c) = log(c+k) is a knife-edged case in which the di¤erence
in beliefs has no e¤ect at all on savings.
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5.2 When does Radial Monotonicity Hold?
Let us now present our last characterization result. This result justi…es our
early focus on quasi-independent problems :

Proposition 4 For any problem (U , X), if whatever the regulator’s beliefs
radial monotonicity holds, then the problem must be quasi-independent.

This Proposition allows us to conclude on a generic ambiguity. Indeed
quasi-independent problems are non-generic, even locally, as shown in Propo-
sition 3. This means that if one chooses a problem ’at random’ it is never
quasi-independent, even locally.19 Our result thus shows that ambiguity is
the rule : for given regulator’s beliefs p, one may …nd two di¤erent beliefs
q1 and q2 arbitrarily close to p such that the optimal a is reduced when the
agent adopts q1 and is increased when the agent adopts q2, compared to the
case when the agent shares the regulator’s beliefs.20

Nevertheless the examples in this paper show that quasi-independent
problems include some economically sound cases. For quasi-independent
problems, there is no ambiguity locally (as soon as M + db is continuous
and di¤erent from zero). Nevertheless, there may be some subsets of beliefs
for which the decision is increased, and some other for which it is reduced;
to avoid this one needs to show that M + db does not change sign.

6 Regulation in Happyville with Heteroge-
neous Agents and Taxation

Until now we have focussed on the case of a single agent. Moreover, we
have assumed that the regulator can only choose a norm level, represented
by the choice of the scalar a. Two important questions thus remain: i) Does
the previous analysis extend to a population of agents with heterogeneous
beliefs? ii) What would be the optimal regulatory policy if the regulator
could set a tax on individual’s consumption?

First, observe that the answer to question i) is direct. If the optimal
norm level chosen in the single-agent case decreases with more distant beliefs,

19The quali…er locally means that beliefs are constrained to lie in a neighbourhood of
some reference point.

20p, q1 and q2 are not necessarily on the same axis; that is, radial monotonicity on each
given axis may well hold.

18



whatever the agent considered, then this must be a fortiori true when one
considers a population of agents with heterogeneous beliefs. The implicit
assumption is that these agents share similar preferences, while their beliefs
may be arbitrary; for example, in the Happyville example what is needed is
that all agents have a demand elasticity which is less than one. The next
Section o¤ers more precise results concerning what happens when beliefs
become more heterogeneous.

Question ii) requires to introduce taxation into the model. Observe that it
would make no sense to investigate these questions for any problem U(x; a; b),
as b does not necessarily represent a consumption level. For simplicity rea-
sons, let us again analyze this issue within the Happyville society.

Consider a population of N agents where agent i = 1; ::;N has beliefs si
and utility ui from water consumption. Agent i’s payo¤ is

Ui(x; a; bi) = ui(b) ¡ (1 ¡ a)bix¡ tib

where ti is the tax that the regulator set on agent’s i water consumption.
Agent i’s optimal consumption b is then characterized by

u0i(bi) = (1 ¡ a)si + ti
or equivalently b = Di((1 ¡ a)si + ti), where Di(½) is the demand function
of agent i for water sold at an implicit price ½. Because u is concave, Di is
decreasing with ½, so that water demand is increasing with a and decreasing
with the tax and the pessimism index s.

In an otherwise …rst-best world, the regulator’s program is simply given
by

max
a;(ti)

NX

i=1

¸i[ui(Di((1 ¡ a)si + ti)) ¡ (1 ¡ a)Di((1 ¡ a)si + ti)r] ¡ c(a); (10)

where ¸i represents the proportions of individuals i in the economy. If the
regulator uses personalized taxes, then he will clearly choose to correct the
impact of erroneous beliefs by setting

t¤i = (1 ¡ a)(r ¡ si):

Hence the optimal tax is monotonic with the di¤erence in beliefs (but not
radially monotonic, a key di¤erence with norms). This monotonicity prop-
erty of the tax is emphasized in the literature (see, e.g., Belsey, 1988), and
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corresponds to the idea that a well-chosen tax corrects erroneous beliefs, from
the viewpoint of the regulator. As a consequence each agent now behaves
as if he shared the same beliefs r as the regulator. This implies that the
optimal norm level is not distorted by the heterogeneity in beliefs. We then
get the …rst-best cleanup e¤ort a(r; r) : the introduction of personalized tax-
ation has allowed the regulator to restaur e¢ciency in the Happyville society.

Such a personalized taxation is however di¢cult to implement in practice.
As is well-known, it requires information on both demand functions and
beliefs, and it assumes that agents cannot arbitrate by reselling water to
other agents. It is therefore necessary to turn to a second-best analysis of
the economy, by constraining the regulator to set a uniform tax on water
consumption. Taking into account the constraints ti = t, the …rst-order
condition in program (10) now becomes

NX

i

¸i
@Di
@½

(u0i(Di) ¡ (1 ¡ a)r) = 0

and since u0i(Di) = (1 ¡ a)si + t we get

t¤¤ = (1 ¡ a)
P
i ¸i
@Di
@½ (r ¡ si)P
i ¸i
@Di
@½

or equivalently

t¤¤ =

P
i ¸i
@Di
@½ t

¤
iP

i ¸i
@Di
@½

:

Therefore the optimal second-best tax is an average of the …rst-best taxes,
computed with weights which indicate the sensitivity of individual water
demand to price. Now assume that agents do not misperceive the risk on
average; that is, some of them are optimistic while others are pessimistic.
If moreover there is no correlation between the sensitivity to the price of
individual water demand with the degree of optimism or pessimism, the
optimal second-best tax must then be set to zero. This shows that uniform
norms may dominate uniform taxes, in the domain of risk policies. The
e¤ect of the di¤erence in beliefs on the uniform norm has been analyzed in
the previous sections.21

21Previous results show that a similar argument may apply against the use uniform
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7 Di¤erent Beliefs and Scienti…c Uncertainty
Increasingly, the Society faces the di¢cult problem of managing risks whose
consequences are imperfectly known. Examples abound: climate change,
’mad cow’ disease, electromagnetic …elds, hazardous wastes, cellular phones,
GMO and the list could go on. These risks pose two main questions for
current policy-makers. One question is the question of the optimal regulatory
e¤ort to develop today in face of important current scienti…c uncertainties.22

The second question is the question of the acceptability of the risk policy
given the di¤erent belief perception that public forms over the risk he faces.
This paper has been concerned with the second question. In this section,
we will show that this second question is conceptually similar to the …rst
one. This allows us, in turn, to complete the research program introduced
by Epstein (1980).

Let us …rst posit the following problem. Suppose that a decision-maker
with a priori beliefs p and Von Neumann-Morgenstern preferences U(x; a; b)
sequentially chooses a and b. For some prior beliefs p on x, its objective
function when choosing a is

j(a; p) ´ max
b

X

x

p(x)U(x; a; b): (11)

Being a maximum of linear functions, j is convex in p. It is then easy
to formalize the arrival of information, after decision a is taken but before
decision b. Consider a random variable ~y whose distribution conditional to x
is known. Given the prior beliefs p, a realization y of ~y makes the decision-
maker update his prior p into posterior beliefs qy. Bayesian updating only
requires that

norms. If some agents exhibit an elasticity of demand above one while others have an
elasticity of demand below one, then the optimal norm is likely to be an average of the
optimal individual norms, and therefore to be close to a(r; r). As above this requires an
assumption on the correlation between elasticity of demand and the absolute value of the
distance; this also requires that ’on average’ the elasticity of demand is equal to one. Such
a feature is clearly particular; assuming that agents do not misperceive the risk on average
may make more sense as an economic benchmark.

22This question classically amounts to analyze how the prospect of increasing informa-
tion over time a¤ect the optimal regulatory e¤ort today. The most general treatment of
this question has been derived in Epstein (1980), and was extended in several papers since
(see, e.g., Jones and Ostroy, 1984, Ulph and Ulph, 1997, and Gollier-Jullien-Treich, 2000).
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p = Eyqy (12)

and the objective function of the decision-maker changes from (11) to

Eymax
b

X

x2X
qy(x)U(x; a; b) = Eyj(a; qy): (13)

Now, from (12) and the convexity of j, it immediately follows that (13) is
above j(a; p): the prospect of information is always bene…cial.

Similarly, consider the more general problem in which it is the informa-
tiveness of future information which is learnt to be increased. A more precise
information is de…ned as a random variable ~y0, such that any decision-maker
prefers ~y0 to ~y. As is well-known, this is equivalent to the requirement that
~y can be obtained from ~y0 by using a ’garbling machine’, which adds a noise
uncorrelated with the true state of nature.

Interestingly one manner to obtain a more precise information is to con-
sider that the decision-maker faces a given experiment ~y, and to reduce his
con…dence in his prior beliefs. Then the decision-maker will revise his be-
liefs di¤erently, by giving more weight to the new information and less to his
prior beliefs. It can be shown that this leads to a new structure of posteriors
corresponding to a more precise information (see Jones and Ostroy, 1984)).
Hence switching to a more informative experiment may be interpreted as
introducing more uncertainty in the decision-maker’s prior beliefs.

Another useful result about the comparison of information structures
is the following: for any prior p, the distribution of posteriors qy0 forms a
mean-preserving spread of the distribution of posteriors qy, in the (multi-
dimensional) space of posteriors. In other words, one can consider that the
joint distribution of (x, y, y0) is such that

8 y qy =
X

y0
prob(y0jy)qy0:

We then get
Eyj(a; qy) = Ey

X

x

qy(x)U(x; a; b(a; qy))

=
X

y;y0
Prob(y)prob(y0jy)

"X

x

qy0(x)U(x; a; b(a; qy))

#
: (14)
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We also have

Ey0j(a; qy0) =
X

y0
Prob(y0)

X

x

qy0(x)U(x; a; b(a; qy0))

=
X

y;y0
Prob(y)Prob(y0jy)

"X

x

qy0(x)U(x; a; b(a; qy0))

#
:

Comparing this last expression to (14), we see that the change from y0 to a
less informative y can be decomposed as a weighted sum of changes in the
bracketed terms. Each of these changes is similar to a change in the second-
period agent’s beliefs we have studied until now. Therefore our results apply;
in fact, it turns out that there is an equivalence between both classes of
problems:

Proposition 5 The following properties are equivalent:
i) The optimal norm level decreases with more distant beliefs.
ii) The prospect of more information makes the …rst-period decision in-

crease.

As explained above, the second statement can be interpreted as saying
that the decision-maker should exert more e¤ort today if there is more sci-
enti…c uncertainty. Together with Proposition 3 this result characterizes
the models in which the manner with which scienti…c uncertainty resolves
over time exerts a systematic e¤ect on today’s policy. It can be directly
applied to the global warming models in Ulph and Ulph (1997) and Gollier-
Jullien-Treich (2000) to show that the answer is typically ambiguous : more
uncertainty does not necessarily implies that one should make more preven-
tive e¤orts today, in contradiction with Precautionary Principle. The answer
depends on a precise property of preferences. Other applications include for
example the impact of scienti…c uncertainty in the Happyville society. More
scienti…c uncertainty would then (under the conditions derived above) reduce
the optimal norm level.

The idea here is to trade ‡exibility and risk in the future. The condition
found at the end of Example 1 expresses that the optimal exposure to risk
B(a; s) chosen in period 2 when beliefs have been revised into s is such that
@B=@s is increasing with a. In such a case, an increase in a makes the
decision-maker more ‡exible since he can better adapt to new informations.
Nevertheless the risk on his water consumption is made higher, and this
second e¤ect is stronger here.
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Appendix

Proof of proposition 1: for any (r, s), one has from (6)

K(a; r; s) · K(a; r; r)

K(a; s; r) · K(a; s; s)

and by substracting we get

K(a; s; s) ¡K(a; r; s) ¸ K(a; s; r) ¡K(a; r; r):

Denote Kr(a; :; s) the slope of K in r (by linearity it is independent from r).
We get

(s¡ r)(Kr(a; :; s) ¡Kr(a; :; r)) ¸ 0

so that Kr(a; :; s) is weakly increasing with s.
Then choose any s1 < s2. We have Kr(a; :; s2) ¸ Kr(a; :; s1), so that

K(a; r; s2) ¡K(a; r; s1) is weakly increasing with r. Apply at r < s1 < s2 to
get

K(a; r; s2) ¡K(a; r; s1) · K(a; s1; s2) ¡K(a; s1; s1)

and we know that the right-hand side is non-positive from (6). Therefore
K(a; r; s2) · K(a; r; s1), for r < s1 < s2. This shows the second part of the
result. The case r > s2 > s1 is treated similarly.¥

Proof of Proposition 2 : equation (7) shows that Kas(a; 0; s) and
Kars(a; r; s) have opposite signs. Therefore ii) is equivalent to iii). Also we
have shown in the text the equivalence of i) to the system of inequalities (8).
Notice that (7) implies

Ka(a; r; r) ¡Ka(a; r; s) =
Z r

s
Kas(a; r; ¾)d¾ =

Z r

s
(r ¡ ¾)Kars(a; ¾; ¾)d¾

so that (8) is equivalent to iii). This concludes the proof.¥

Proof of Proposition 3 : if the problem is quasi-independent, then
there must exist f¡1(B; a) and B(q) such that b(a; q) = f¡1(B(q); a), for any
a and q. Because the agent’s program is well-behaved, this is equivalent to

X
q(x)Ub(x; a; f¡1(B(q); a)) = 0 8 a; q:
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Di¤erentiating with respect to a we get

X
q(x)[Uab(x; a; f¡1(B(q); a)) + Ubb(x; a; f¡1(B(q); a))

@f¡1

@a
(B(q); a)] = 0

or equivalently, for any a, B and q :
X
q(x)Ub(x; a; f¡1(B; a)) = 0

)
X
q(x)[Uab(x; a; f¡1(B; a)) + Ubb(x; a; f¡1(B; a))

@f¡1

@a
(B; a)] = 0:

De…ne

d(a; b) =
@f¡1

@a
(f(a; b); a):

Because f¡1 is a one-to-one change of variable, we get for any a, b and q
X
q(x)Ub(x; a; b) = 0

)
X
q(x)[Uab(x; a; b) + Ubb(x; a; b)d(a; b)] = 0:

This implication must hold for any q. By a well-known property of ma-
trixes, this implies that there exists a matrix M(a; b) such that (9) holds.

Reciprocally, if (9) holds, then summing over x at b = b(a; p) yields
X

x

p(x)(Uab + Ubbd) =
X

x

p(x)MUbd =M
X

x

p(x)Ub = 0:

Because by assumption the hessian matrix

H(a; p) =
X

x

p(x)Ubb(x; a; b(a; p))

is negative de…nite, this implies the second statement in the Proposition.
Now choose f such that

fa(a; b) + fb(a; b)d(a; b) = 0:

Then f(a; b(a; p)) is indeed independent from p. This shows that the
problem is past-independent.
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Now we can compute

Kar(a; r; s) =
X

[q(x) ¡ p(x)][Ua(x; a; b(a; (1 ¡ s)p + sq))

+Ub(x; a; b(a; (1 ¡ s)p+ sq))d(a; b(a; (1 ¡ s)p+ sq))]
which depends on s only through b(a; (1 ¡ s)p+ sq). Using (9) we get

Kars(a; r; s) =
X

(q(x) ¡ p(x))[Uab + Ubbd+ dbUb]
@
@s
b(a; (1 ¡ s)p+ sq)

= [
X

(q(x) ¡ p(x))Ub]0[M + db]0
@
@s
b(a; (1 ¡ s)p + sq):

where the prime stands for transposition. And from the …rst-order con-
dition characterizing b(a; (1 ¡ s)p+ sq)

X

x

[(1 ¡ s)p(x) + sq(x)]Ub(x; a; b(a; (1 ¡ s)p+ sq)) = 0 (15)

we have

@
@s
b(a; (1 ¡ s)p+ sq) = ¡H¡1(

X
(q(x) ¡ p(x))Ub): (16)

Replacing yields

Kars(a; r; s) = ¡[
X

(q(x) ¡ p(x))Ub]0[M + db]0H¡1(
X

(q(x) ¡ p(x))Ub):

This shows the result, from Proposition 2.¥

Proof of Proposition 4: compute

Krs(a; r; s) = [
X

(q(x)¡p(x))Ub(x; a; b(a; (1¡s)p+sq))]: @
@s
b(a; (1¡s)p+sq)

which from (16) is equal to

¡[
X

(q(x) ¡ p(x))Ub(x; a; b(a; (1 ¡ s)p+ sq))]0H¡1(a; (1 ¡ s)p+ sq)
£[

X
(q(x) ¡ p(x))Ub(x; a; b(a; (1 ¡ s)p+ sq))]:

Now from the …rst-order condition (15) we have
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X
(q(x)¡p(x))Ub(x; a; b(a; (1¡s)p+sq)) = ¡1

s

X
p(x)Ub(x; a; b(a; (1¡s)p+sq))

so that the expression above is equal to

¡ 1
s2
[
X
p(x)Ub(x; a; b(a; (1 ¡ s)p+ sq))]0

H¡1(a; (1 ¡ s)p+ sq)[
X
p(x)Ub(x; a; b(a; (1 ¡ s)p+ sq))]:

From Proposition 2 radial monotonicity is equivalent to the fact that this
expression is monotonic with a, for any p, s, q. This is equivalent to saying
that

f(a; p; q) ´ [
X
p(x)Ub(x; a; b(a; q))]0[H(a; q)]¡1[

X
p(x)Ub(x; a; b(a; q))]

is monotonic with a, for any p and q.

Now suppose that b(a; p) = b(a; q) at some (a, p, q). Then not only
f(a; p; q) = 0, but also fa(a; p; q) = 0 because all terms in the derivative
vanish. Since by assumption f is monotonic in a, fa cannot change sign.
Then it must be that faa = 0. Computing this second derivative, all terms
vanish but

[
@
@a

X
p(x)Ub(x; a; b(a; q))]0[H(a; q)]¡1[

@
@a

X
p(x)Ub(x; a; b(a; q))]:

Since H¡1 is negative de…nite, this temr can be zero only if

@
@a

X
p(x)Ub(x; a; b(a; q)) = 0: (17)

So we have proven that b(a; p) = b(a; q) implies

@b
@a

(a; q) =
@b
@a

(a; p):

We can then de…ne a vector d(a; b) such that

b(a; p) = b) @b
@a

(a; p) = d(a; b):
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This can be rewritten
X
p(x)Ub = 0 )

X

x

p(x)[Uab + Ubbd] = 0:

Because this must hold for all p, we get the existence of a matrixM such
that (9) in Proposition 3 holds. This concludes the proof. ¥

Proof of Proposition 5 : Epstein(1980) shows that ii) is equivalent to
the derivative ja(a; p) being convex in p. For p and q given, de…ne

J(a; r) ´ j(a; (1 ¡ r)p+ rq):

Notice that Epstein’s condition is equivalent to Ja being convex in r.
Notice also that

J(a; r) = K(a; r; r)

so that

Jr(a; r) = Kr(a; r; r) +Ks(a; r; r) = Kr(a; r; r)

since Ks(a; r; r) = 0 from the Envelope theorem. Since K is linear with
r, we get

Jrr(a; r) = Krs(a; r; r)

so that Jarr and Kars share the same sign. This concludes the proof, from
Proposition 2.¥
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