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Abstract

Gold rushes are periods of economic boom, generally associated with large increases in
expenditures aimed at securing claims near new found veins of gold. An interesting aspect
of gold rushes is that, from a social point of view, much of the increased activity is wasteful
since it contributes simply to the expansion of the stock of money. In this paper, we explore
whether business cycles fluctuations may sometimes be driven by a phenomena akin to a gold
rush. We first show that the business cycle is, to a large extent, the consequence of a shock
that has a non-permanent effect on real quantities and that does not move consumption at all,
neither in the short nor in the long run. We then propose a structural interpretation to that
shock, In particular, we present a model where the opening of new market opportunities causes
an economic expansion by favoring competition for market share. We call such an episode a
market rush. This paper then present a simple model of a market rush that can be embedded
into an otherwise standard Dynamic General Equilibrium model, and evaluate whether such a
phenomena is a significant contributor to business cycle fluctuations.
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Introduction

Sutter’s Mill near Coloma, California. January 24, 1848. James W. Marshall, a carpenter from

New Jersey, found a gold nugget in a sawmill ditch. This was the starting point of one of the most

famous Gold Rush that pave economic History, the California Gold Rush of 1848-1858. More than

90,000 people made their way to California in the two years following Marshall’s discovery, and

more than 300,000 by 1854 —or one of about every 90 people then living in the United States.

The population of San Francisco exploded from a mere 1,000 in 1848 to 20,000 full–time residents

by 1850. More than a century later, the San Francisco 49ers NFL team is still named for the

prospectors of the California Gold Rush. Another famous episode, from which was inspired Charlie

Chaplin’s movie The Gold Rush and Jack London’s book The Call of the Wild, is the Klondike

Gold Rush of 1896–1904. Gold prospecting took place along the Klondike River near Dawson City

in the Yukon Territory, Canada. An estimated 100,000 people participated in the gold rush and

about 30,000 made it to Dawson City in 1898. By 1901, when the first census was taken, the

population had declined to 9,000.

Gold rushes are periods of economic boom, generally associated with large increases in expenditures

aimed at securing claims near new found veins of gold. An interesting aspect of gold rushes is that,

from a social point of view, much of the increased activity is wasteful since it simply contributes to

the expansion of the stock of money. In this paper, we explore whether business cycles fluctuations

may sometimes be driven by a phenomena akin to a gold rush. In particular, we present a dynamic

general equilibrium model where the opening of new market opportunities causes an economic

expansion by favoring competition for market share. We call such an episode a market rush. The

market rush may simply redistribute rents with little external gain. In that case, the net social

value of such a market rush can be minor as is the case in a gold rush. In the second half of

the 1990s the U.S. economy exhibited historically large growth rates of output, employment and

investment. Meanwhile, the “new economy” of information and communication was discovered.

This period can fall into the market rush category. The long run effect on productivity of the

opening of new market opportunities is a priori undetermined, and has often been considered as

minor in the particular case of the Information Technology. Nevertheless, it is still an open question

whether the IT market rush of the nineties was a gold rush. The object of this paper is to present a

simple model of a market rush that can be embedded into an otherwise standard Dynamic General

Equilibrium model, to evaluate whether such a phenomena is a significant contributor to business

cycle fluctuations and to examine the social desirability of such fluctuations.

To capture the idea of a market rush, we present an expanding varieties model where agents

compete to secure monopoly positions in new markets. However, in a first step and in contrast to

standard growth models (and to some business cycles models), we do not impose that an expansion
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in variety induces productivity gains, and treat the growth in the potential set of varieties as

technologically driven and exogenous. In this setting, when agents perceive an increase in the set

of technologically feasible markets, they invest to set up a prototype firm (or product) with the

hope of securing a monopoly position in the new market. It is therefore the perception of these

new market opportunities that causes the market rush and the associated economic expansion.

After the initial rush, there is a shake out period where one of the prototypes secures the dominant

position in market. The long term effect of such a market rush depends on whether the expansion

in variety has an external effect on productivity. In the case where it does not have an external

effect, the induced cycle is socially wasteful as it only contributes to the redistribution of market

rents. In contrast, when the expansion of variety does exert positive external effects, the induced

cycle can have social value but will generally induce output fluctuations that are excessively large.

We begin the paper by presenting, in Section 1, some interesting properties of the data, that were

already put forward by Cochrane [1994]. In a bivariate Output–Consumption VAR of the U.S.

postwar economy, consumption is, at all horizon, almost only affected by the identified permanent

shock. On the contrary, the identified temporary shock explains an important part of the short run

volatility of output — i.e. the business cycle. This fairly robust feature of the data is quite chal-

lenging for business cycle models, that generally do not generate such an almost pure random walk

behavior of consumption. Furthermore, the literature does not propose a structural interpretation

for the temporary shock. As we think that a market rush shock is a nice candidate, in Section

2, we develop a simple model without capital accumulation, which can be solved analytically.1 In

this version, we show why current economic activity depends positively on the expectation of next

period’s activity and on the perceived opening of new markets. Hence, when agents believe that

the economy is going through a prolonged period of market expansion, this induces an increase in

investments and an associated economic expansion. In contrast, when there are no new perceived

market opportunities, the economy experiences a slump. Given the tractability of the model, we

can solve it in the presence of a standard technology shock, our market expansion shock and/or a

preference shock. In all these cases, the model puts sufficient structure on the data to isolate the

market expansion shock: it suggests that the market expansion shock is the output innovation in

a Consumption–Output VAR. As shown in Section 2, this shock has a zero long run impact on

output, suggesting that market rushes are socially inefficient.

Since these inferences are based on a extremely simplistic environment, in Section 3 we follow up

by enriching the model to include capital accumulation and allow for potential long run impact

of variety expansion. The “structural” innovations of section 1 VECM are now combinations

of the true shocks. In order to better capture the short run dynamics of the economy, we also
1The type of models we present are ones where nominal rigidities play no role. Our interpretation of such models

is that they can correspond to models with sticky prices in which monetary authorities follow rules that implement
the flexible price outcomes.
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introduce habit persistence in consumption and adjustment costs to investment. We then estimate

the resulting (more complex) model using a minimum distance estimator, as adopting the indirect

inference approach. Our findings from the larger model suggest that the market expansion shock

is indeed a non negligible driving force underlying business cycle fluctuations. For instance, it

explains one third of the one-quarter ahead output volatility, and more than one tenth at a one

year horizon. It also explains more than two-third of hours worked volatility over the first two

years. The results from the larger model qualify our initial findings regarding the long run effects

of market shocks. In the larger model, we find that some market expansion shocks exert a positive

long run effect on output, but the effect remains very small. This supports the idea that a large

fraction of the fluctuations induced by a market expansion shocks may be excessive. Section 4

offers some concluding comments.

1 Some Interesting Properties of the Data

In this section, we present some properties of the data which were already put forward by Cochrane

[1994]. More precisely, we study a Consumption–Output system with one cointegrating relation.

Using a long run identification scheme à la Blanchard and Quah [1989], we first show that much

(all) of the short run volatility of consumption is explained by the permanent shock, while this

shock only account for half of that of output. We then use a short run identification à la Sims to

show that the output innovation does not indeed explain the long run of the two variables, nor the

short run of consumption. We then formally test for the identity of the temporary shock and the

output innovation. Next, we discuss the implications of these results, that we consider as being

properties of data, without the need to put names on the shocks. Finally, we assess the robustness

of the results to alternative definitions of consumption and output and to model specification.

1.1 Long Run and Short Run Identification

We consider quarterly data for the US economy. The sample spans the period 1947Q1 to 2004Q4.

Consumption, C, is defined as Real Personal Consumption Expenditures of nondurable goods and

services and output, Y , is Real Gross Domestic Product. Both series are first deflated by the 16-64

U.S. population and taken in logarithm.2 Later, we will make use of an Investment series, I, that
2The series are obtained from the following links:

- Real Personal Consumption Expenditures: Durable Goods, http://research.stlouisfed.org/fred2/series/PCDGCC96

- Real Personal Consumption Expenditures: Nondurable Goods, http://research.stlouisfed.org/fred2/series/PCNDGC96

- Real Personal Consumption Expenditures: Services, http://research.stlouisfed.org/fred2/series/PCESVC96

- Real Gross Private Domestic Investment, 3 Decimal, http://research.stlouisfed.org/fred2/series/GPDIC96

- Real Gross Domestic Product, 3 Decimal, http://research.stlouisfed.org/fred2/series/GDPC96
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will be defined as Real Personal Consumption Expenditures of Durable Goods plus Real Gross

Private Domestic.

Standard Dickey–Fuller, likelihood ratio and cointegration tests (see appendix) indicate that C and

Y are I(1) processes and do cointegrate. We therefore model their joint behavior with Vectorial

Error Correcting Model (VECM), where the cointegrating relation coefficients are [1;-1] (meaning

that the consumption to output ratio is stationary). Likelihood ratio tests suggests that the VECM

should include 3 lags. Omitting constants, the joint behavior of (C, Y ) admits the following Wold

representation (
∆Ct
∆Yt

)
= A(L)

(
µ1,t

µ2,t

)
, (1)

where L is the lag operator, A(L) = I +
∑∞

i=1AiL
i, and where the co-variance matrix of µ is given

by Ω. As the system possesses one common stochastic trend, A(1) is not full rank. More precisely,

it is composed of one column of zeros and one column of real and identical numbers. Given the

properties of A(1), it is possible to derive a representation of the data in terms of permanent and

transitory component of the form (
∆Ct
∆Yt

)
= Γ(L)

(
εPt
εTt

)
, (2)

where the covariance matrix of (εP , εT ) is the identity matrix and Γ(L) =
∑∞

i=0 ΓiLi. The Γ

matrices solve {
Γ0Γ′0 = Ω
Γi = AiΓ0 for i > 0

(3)

Note that once Γ0 is known, all Γi are pinned down by the second set of relations. But, due to

the symmetry of the covariance matrix Ω, the first part of the system only pin down 3 parameters

of Γ0. One remains to be set. This is achieved by imposing an additional restriction. We impose

that the 1, 2 element of the long run matrix Γ(1) =
∑∞

i=0 Γi equals zero, that is, we choose an

orthogonalization where the disturbance εT has no long run impact on C and Y (the use of this

type of orthogonalization was first proposed by Blanchard and Quah [1989]). Hence, εT is labeled

as being a temporary shock, while εP is a permanent one. Figure 1 graphs the impulse response

functions of C and Y to both shock as well as their associated 95% confidence band. Table 1 reports

the corresponding variance decomposition of the process.

Those results provide an interesting decomposition of macroeconomic fluctuations. The lower left

panel of Figure 1 clearly shows that consumption responds very little to the transitory shock, which

in turn accounts for less than 4% of consumption volatility at any horizon. Conversely it is very

responsive to the permanent shock and most of the adjustment dynamics takes place in less than

- Population: 15 to 64, annual, http://www.economy.com/freelunch/fl dictionary.asp?m=34174038-A1EF-
4C70-9374-59144B50A3F5&h=H00060004&f=0&c=undefined
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Figure 1: Impulse Responses to εP and εT , (C, Y ) Benchmark VECM.
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This Figure shows the response of consumption and output to temporary εT and
permanent εP one percent shocks in the long run indentification. Those impulse
response functions are computed from the benchmark VECM (C, Y ) estimated
with one cointegrating relation [1;-1], 3 lags, using quarterly per capita U.S.
data over the period 1947Q1–2004Q4. The shaded area is the 95% confidence
intervals obtained from 1000 bootstraps of the VECM.
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Table 1: Forecast Error Variance Decomposition, (C, Y ) Benchmark VECM.

Horizon Output Consumption
εT εY εT εY

1 62.01% 79.86% 3.90% 0.00%
4 28.10 % 46.05 % 1.16% 1.25%
8 17.20 % 32.73% 0.91% 1.26 %
20 9.79 % 22.21 % 0.42% 2.13%
∞ 0 % 3.89 % 0% 3.89%

This table shows the k-period ahead share of the forecast error variance of con-
sumption and output that is attributable to the temporary shock εT in the long
run indentification and to the output innovation εY in the short run one, for
k = 1, 4, 8, 20 quarters and for k −→ ∞. Those shares are computed from
the benchmark VECM (C, Y ) estimated with one cointegrating relation [1;-1], 3
lags, using quarterly per capita U.S. data over the period 1947Q1–2004Q4.

one year. In other words, consumption is basically a pure random walk, that responds only to

permanent shocks. On the contrary, short run fluctuations of output are mainly the consequence of

temporary shocks — which explain more than 60% of output volatility on impact— whose effects

are vanishing with time.

Now we consider an alternative orthogonalization that uses short run restrictions(
∆Ct
∆Yt

)
= Γ̃(L)

(
εCt
εYt

)
, (4)

where Γ̃(L) =
∑∞

i=0 Γ̃iLi and the variance covariance matrices of (εC , εY ) is the identity matrix.

The Γ̃ matrices are solution of a system of equations similar to (3). We however depart from (3)

as we impose that the 1, 2 element of Γ̃0 be equal to zero. Therefore, εY is the output innovation,

and the contemporaneous response of C to εY is zero.

Figure 2 graphs the impulse responses of C and Y associated to the last orthogonalization scheme.

The associated variance decompositions are displayed in Table 1. The striking result from those

estimations is that the consumption shock εC is indeed the permanent shock to consumption (εP

in the long run identification), so that the responses and variance decompositions are very similar

to those obtained using the long run identification scheme. This observation is further confirmed

by Figure 3, that plots εP against εC and εT against εY . It is then striking to observe that both

shocks align along the 45◦ line indicating for instance that the consumption innovation is essentially

identical to the permanent component.

The properties of the data that we want to highlight here are the following: (i) the permanent

shock to consumption (εP ) is indeed the εC shock in an consumption–output VECM, (ii) there is

virtually no dynamics in the consumption response to that shock, as it affects permanently and
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Figure 2: Impulse Responses to εC and εY , (C, Y ) Benchmark VECM.
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This Figure shows the response of consumption and output to consumption εC

and output εY one percent shocks in the short run indentification. Those im-
pulse response functions are computed from the benchmark VECM (C, Y ) esti-
mated with one cointegrating relation [1;-1], 3 lags, using quarterly per capita
U.S. data over the period 1947Q1–2004Q4. The shaded area is the 95% confi-
dence intervals obtained from 1000 bootstraps of the VECM.
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Figure 3: Plots of εC against εP and εY against εT in the (C, Y ) Benchmark VECM.
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This Figure has two panels. The left panel plots the estimated permanent innovation εP (from the
long run identification) against the consumption innovation εC (from the short run identification.
The right panel plots the estimated temporary innovation εT (from the long run identification)
against the output innovation εY (from the short run identification. On both panels, the straight
line is the 45 degre line. Those shocks are computed from the benchmark VECM (C, Y ) estimated
with one cointegrating relation [1;-1], 3 lags, using quarterly per capita U.S. data over the period
1947Q1–2004Q4.

almost instantaneously the level of consumption and (iii) the temporary shock (or the output shock

in the short run identification) is responsible for a significant share of output volatility at business

cycle frequencies. Therefore, much of the business cycle action seems to lie in investment, without

any short or long run implications for consumption. Next, we formally test for the equality between

εY and εT .

1.2 Formal Test and Interpretation

This section proposes a formal test for the equality between εY and εT (or equivalently between εC

and εP as the shocks are pairwise orthogonal). Consider the Wold representation (1), and consider

the following representation of the process:(
∆Ct
∆Yt

)
= B(L)

(
ν1,t

ν2,t

)
, (5)

where B(L) =
∑∞

i=0BiL
i and the variance covariance matrix of (ν1, ν2) is the identity matrix. We

want here to perform an overidentified orthogonalization and impose at the same time that the

shock ν1 has no impact effect on C and no long run effect on C and Y . More precisely, we look for

a matrix S such that µ = Sν and Bi = SAi. Imposing a zero impact effect of ν1 on B implies

s11 = 0. (6)
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The matrix giving the long run effect of ν on both variables is given by B̂ = ÂS, where Â =
∑∞

i=0Ai.

Imposing the long run restriction b̃11 = 0 implies

â11s11 + â12s21 = 0 (7)

When the two series are cointegrated, the matrix Â rewrites

Â =
(
â11 kâ11

â21 kâ21

)
where k is a real number.

When â12 6= 0 — which occurs when both k and â11 are non zero — equations (6) and (7) imply

that the first column of S is composed of zeros, meaning that S is not a full rank matrix. In other

words, the two restrictions cannot hold at the same time. On the contrary, if â12 = 0 — when

either k or â11 are zero — the long run and short run constraints are simultaneously satisfied. This

suggest that a convenient way of testing for the fact that both the short and long run constraints

are satisfied is to test for the nullity of a particular coefficient of the long run matrix Â of the Wold

representation of the process, â12. The following proposition states this result in a more general

case where the two series need not cointegrate.

Proposition 1 Consider a bivariate process whose Wold decomposition is given by(
∆X1

t

∆X2
t

)
= A(L)

(
µ1,t

µ2,t

)
,

with A(L) = I +
∑∞

i=1AiL
i, where the covariance matrix of µ is given by Ω, and where the matrix

of long run effect Â =
∑∞

i=0Ai is not singular. Consider a structural representation(
∆X1

t

∆X2
t

)
= B(L)

(
ν1,t

ν2,t

)
,

where B(L) =
∑∞

i=0BiL
i, the covariance matrix of ν is the identity matrix and µ = Sν. Then, the

two following statements are equivalent

(i) If the first structural shock ν1 has no short run impact on C, i.e. s11 = 0, then it has no long

run impact on C, i.e. b̂11 = 0, and conversely.

(ii) The (1, 2) element of the long run effect matrix of the Wold decomposition is zero, i.e. â12 = 0

Proof : We first prove that (i) implies (ii). Assume that

S =
(

0 s12
s21 s22

)
and B̂ =

(
0 b̂12
b̂21 b̂22

)
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Inverting S, we obtain

S−1 =
(
−s22/(s12s21) 1/s21

1/s12 0

)
.

The long run effect matrix of the Wold decomposition is Â = B̂ × S−1 and one can easily check

that â21 = 0.

We then prove that (ii) implies (i). We have the relation ÂS = B̂. We assume that â12 = 0. Then,

b̂12 = â11s11 . As Â is assumed to be non singular, â11 6= 0, to that b̂12 = 0⇐⇒ s11 = 0. Q.E.D.

Table 2: Over–identification Test

Benchmark (Tot. C,Y) (C,C+I)
Long–run Effect 0.2024 -0.3265 0.1646
95% Conf. Int. [-0.2276,0.7912] [-0.8134,0.2260] [-0.2145,0.5763]

This Table shows the estimates of the Wold decomposition long run effect matrix
(1,2) element, together with its 95% confidence interval, as obtained from 1000
bootstrap replications. In the first column, the estimates is computed from the
benchmark VECM (C, Y ) with one cointegrating relation [1;-1]. In the second
column, C is measured by total consumption and the cointegrating relation is
estimated. In the third column, Y is measured by consumption plus investment
instead of total output and the cointegrating relation being estimated. All models
are estimated with 3 lags, using quarterly per capita U.S. data over the period
1947Q1–2004Q4.

To formally test for the fact that εP = εC , we test for the nullity of â12. The confidence intervals

are obtained from 1000 bootstraps of the long run matrix. As shown in the first column of Table

2, one cannot reject the null of â12 = 0 at a 5% significance level. Therefore one cannot reject that

the consumption shock is indeed identical to the permanent shock.

1.3 Robustness

Recall that the properties of the data that we want to highlight here are threefold: (i) the permanent

shock to consumption (εP ) is identical to the εC shock in an consumption-output VECM, (ii) there

is virtually no dynamics in the response of consumption to that shock, as it affects permanently

and almost instantaneously the level of consumption and (iii) the temporary shock (or the output

shock in the short run identification) is responsible for a significant share of the output variance at

business cycle frequencies. This section investigates the robustness of these results to various change

of data and specification. First we keep the variables (C, Y ), but either estimate the cointegrating

relation rather than imposing a [1;-1] cointegrating vector, use eight lags in the VECM or estimate

the model in levels. As shown in Figures 4 and 5, results are strikingly robust. All impulse responses

lie in the confidence band of the benchmark model. Second, we use total consumption instead of
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consumption of nondurables and services, or consumption plus investment instead of total output.

In each case, we estimate the cointegrating relation and choose the number of lags according to

likelihood ratio tests. Again, as shown on Figures 6 and 7, results are robust.

Figure 4: Robustness I (Long Run Identification)
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This Figure shows the response of consumption and output to temporary εT

and permanent εP one percent shocks in the long run indentification, and for
different specification of the model. The bold line corresponds to the benchmark
VECM (C, Y ) estimated with one cointegrating relation [1;-1] with 3 lags. The
dashed line corresponds to a VECM in which the cointegrating relation is esti-
mated. The dashed-dotted line corresponds to a model with eight lags of data.
The line wih circles corresponds to a VAR estimated in levels (therefore with
four lags of data). All estimations are done using quarterly per capita U.S.
data over the period 1947Q1–2004Q4. The shaded area is the 95% confidence
intervals obtained from 1000 bootstraps of the benchmark VECM.

These results are confirmed by looking at the overidentification test reported in column three and

four of Table 1, in both cases we find that one cannot reject that εP = εC when different definitions

of C or Y are used, and that it is a robust features of the data.
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Figure 5: Robustness I (Short Run Identification)
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This Figure shows the response of consumption and output to consumption εC

and output εY one percent shocks in the long run indentification, and for dif-
ferent specification of the model. The bold line corresponds to the benchmark
VECM (C, Y ) estimated with one cointegrating relation [1;-1] with 3 lags. The
dashed line corresponds to a VECM in which the cointegrating relation is esti-
mated. The dashed-dotted line corresponds to a model with eight lags of data.
The line wih circles corresponds to a VAR estimated in levels (therefore with
four lags of data). All estimations are done using quarterly per capita U.S.
data over the period 1947Q1–2004Q4. The shaded area is the 95% confidence
intervals obtained from 1000 bootstraps of the benchmark VECM.
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Figure 6: Robustness II (Long Run Identification)
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This Figure shows the response of consumption and output to temporary εT

and permanent εP one percent shock in the long run indentification, and for
different ways of constructing the data. The bold line corresponds to the bench-
mark VECM (C, Y ) estimated with one cointegrating relation [1;-1] with 3 lags,
where C is the consumption of nondurable goodsand services, and Y total out-
put. The dashed line corresponds to a VECM in which C is measured by total
consumption, the cointegrating relation being estimated. The dashed-dotted line
corresponds to a VECM where Y is measured by consumption plus investment
instead of total output, the cointegrating relation being estimated. All estima-
tions are done using quarterly per capita U.S. data over the period 1947Q1–
2004Q4. The shaded area is the 95% confidence intervals obtained from 1000
bootstraps of the benchmark VECM.
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Figure 7: Robustness II (Short Run Identification)
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This Figure shows the response of consumption and output to consumption εC

and output εY one percent shocks in the long run indentification, and for differ-
ent ways of constructing the data. The bold line corresponds to the benchmark
VECM (C, Y ) estimated with one cointegrating relation [1;-1] with 3 lags, where
C is the consumption of nondurable goodsand services, and Y total output. The
dashed line corresponds to a VECM in which C is measured by total consump-
tion, the cointegrating relation being estimated. The dashed-dotted line corre-
sponds to a VECM where Y is measured by consumption plus investment instead
of total output, the cointegrating relation being estimated. All estimations are
done using quarterly per capita U.S. data over the period 1947Q1–2004Q4. The
shaded area is the 95% confidence intervals obtained from 1000 bootstraps of the
benchmark VECM.
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2 An Analytical Model of Market Rushes

In this section, we present a simple analytical model of market rushes. In each period, some new

varieties of intermediate goods are created randomly and exogenously. Startups then spend a fixed

setup cost to engage in a winner take all competition for securing the market of a newly created

variety. The unique winning firm then becomes a monopoly on the market. This position may then

be lost randomly at a given exogenous rate. Expansion in variety may or may not have a long run

impact on productivity, so that the market rush can be or not a gold rush. We first present the

model, then characterize its solution and discuss the equilibrium allocation properties. We contrast

those allocations with those from the social optimum. Finally, we show that under some parameters

restrictions, the model displays consumption–output dynamics that are in line with those found in

the data.

2.1 Model

Firms : There exists a raw final good, denoted Qt, produced by a representative firm using a

fixed factor (say capital) K, labor ht and a set of intermediate goods Xjt with mass Nt according

to a constant return to scale technology represented by the production function

Qt = (Θtht)
αh N ξ

t

(∫ Nt

0
Xχ
j,tdj

) 1−αh
χ

, (8)

where Θt is an index of disembodied exogenous technological progress and αh ∈ (0, 1). χ 6 1 drives

the elasticity of substitution between intermediate goods and ξ is a parameter that determines the

long run effect of variety expansion. Since this final good will also serve to produce intermediate

good, we will refer to Qt as the gross amount of final good. Also note that the raw final good will

serve as the numéraire. The representative firm is price taker on the markets.

Existing intermediate goods are produced by monopolists, who may produce more that one good.

Just like in the standard expanding variety model, the production of one unit of intermediate good

requires one unit of the raw final output as input. Since the final good serves as a numéraire, this

leads to a situation where the price of each intermediate good is given by Pj,t = 1
χ . Therefore, the

quantity of intermediate good j, Xj,t, produced in equilibrium is given by

Xj,t = (χ(1− αh)
1

αh ΘtN
ξ−1+(1−αh)/χ

αh
t ht. (9)

and the profits, πj,t, generated by intermediate firm j are given by

πj,t = π0ΘtN
ξ−1+(1−αh)/χ

αh
t ht, (10)
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where π0 = (1−χ
χ )(χ(1 − αh))

1
αh . Equalization of the real wage with marginal product of labor

implies

AΘN
ξ+(1−αh)/χ−(1−αh)

αh
t = wt, (11)

where A = (αh)(χ(1− αh))
(1−αh)

αh .

Value added is then given by the quantity of raw final good net of that quantity used to produce

the intermediate goods. Once we substitute out for Xjt, and take away the amount of Q used in

the production of Xjts, is given by

Yt = Qt −
∫ Nt

0
Pj,tXj,tdj

= ΘtN
ξ+(1−αh)(1/χ−1)

αh
t ht (12)

Note that π0/A represents the share of profits in the economy, and is therefore between zero and

one. This quantity will later appear a relevant parameter. Note that when ξ = −(1−αh)(1−χ)/χ,

an expansion in variety exerts has no long run impact. In this case, the value–added production

function reduces to

Yt = AΘtht (13)

The net amount of raw final good can serve for consumption, Ct, and startup expenditures, St,

purposes.

Yt = Ct + St. (14)

Variety Dynamics : In each period, there is an exogenous probability εt that a potential new

variety appears in the economy.

In such a case, any entrepreneur who is willing to produce this potential new variety has to pay a

fixed of one unit of the setup good to setup the new firm. In order to obtain a tractable solution,

we assume that it is always optimal to exploit the whole range of intermediate goods, so that there

is no difference between the potential number of varieties and the actual one. We later check that

full adoption is indeed optimal. St will denote the total expenditures in setup costs. A time t

startup will become a functioning new firms with a product monopoly at t+1 with the endogenous

probability ρt. Likewise, an existing firm/monopoly becomes obsolete at an exogenous probability

µ. Therefore, the dynamics for the number of products is given by

Nt+1 = (1− µ+ εt)Nt. (15)

In the above, µNt represents the existing firms that are destroyed, while there will be εtNt openings

which can be filled by startups. εt follows a random process, with unconditional mean µ. Note

that ε is akin to a news shock, as it is bringing some information on the future value of Nt.
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The St startups of period t compete to secure the εtNt new monopoly positions. We assume that in

equilibrium St > εtNt, which can later be verified as being satisfied. The εtNt successful startups

are drawn randomly and equiprobably among the St existing ones. Therefore, the probability that

a startup at time t will become a functioning firm at t+ 1 is therefore given by ρt = εtNt
St

.

Households : There exists an infinite number of identical households distributed over the unit

interval. The preferences of the representative household are given by

Et
∞∑
τ=0

βτ
[
log(ct+τ ) + g(h− ht+τ )

]
(16)

where 0 < β < 1 is a constant discount factor, ct denotes consumption in period t and ht is the

quantity of labor she supplies. Households choose how much to consume, supply labor, hold equity

(Et) in existing firms, and invest in startups (St) maximizing 16 subject to the following budget

constraint

Ct + P E
t Et + St = wtht + Etπt + (1− µ)P E

t Et−1 + ρt−1P
E
t St−1 (17)

where PEt is the beginning of period price of equity, prior to dividend payments. Dividends per

equity share are assumed to be equal to period–profits πt.

The first order conditions imply

gCt = wt (18)
1
Ct

= λt (19)

λt(P E
t − πt) = βEt

[
λt+1(1− µ)P E

t+1

]
(20)

λt = βEt
[
λt+1ρtP

E
t+1

]
(21)

2.2 Equilibrium Allocations

The three last first order conditions can be combined to give:

1
ρtCt

= βEt
[
πt+1

Ct+1

]
+ βEt

[
(1− µ)
ρt+1Ct+1

]
(22)

This condition can be interpreted as a free entry condition, whereby the cost of the startup is equal

to the discounted sum of profits. Using the labor demand condition (11) and the profit equation

(10), the free entry condition (22) rewrites as(
St
Ct

)
= βφ

(
εt

1− µ+ εt

)
Etht+1 + β

(
1− µ

1− µ+ εt

)
Et
[(

εt
εt+1

)(
St+1

Ct+1

)]
, (23)

with φ = gπ0/(Ã). Using the labor demand condition (11) and the resource constraint (14), we get(
St
Ct

)
= ψht − 1, (24)
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where ψ = gA/(Ã). The free entry condition can therefore we written as:(
1− µ+ εt

εt

)
(ψht − 1) = βφEtht+1 + βEt

[
1− µ
εt+1

(ψht+1 − 1)
]

(25)

or

(ht − ψ−1) = βδt
π0

A
Etht+1 + βδtEt

[(
1
δt+1

− 1
)

(ht+1 − ψ−1)
]
. (26)

where δt = εt/(1− µ+ εt) is a increasing function of the fraction of newly opened markets εt.

Equation (26) shows that current employment ht depends on ht+1, δt and δt+1, and therefore indi-

rectly depends on all the future expected δs. As δt is bringing news about the future, employment

is purely forward looking. The reason why future employment favors current employment can be

easily given an economic intuition: higher future employment reflects higher expected profits, which

therefore stimulates firms entry today. Note that the model possesses a lot of neutrality, as the de-

termination of employment does not depend on neither current nor future changes in disembodied

technological change Θt.

By repeated substitution, the above equation can be written as a function of current and future

values of δ only. Given the nonlinearity of equation (26), it is useful to compute a log–linear

approximation around the deterministic steady–state value of employment h. The latter is given

by:

h =
ψ−1(1− β(1− δ))

(1− βδ π0
A − β(1− δ))

,

and the log–linear approximation takes the form

ĥt = γEtĥt+1 +
(
h− ψ−1

h

)
Et
[
δ̂t − βδ̂t+1

]
where ĥt now represents relative deviations from the steady state and γ ≡ βδ(π0/A) + β(1 − δ)

with γ ∈ (0, 1). Solving forward, this can be written as

ĥt =
(
h− ψ−1

h

)(
δ̂t − δβ

(
A− π0

A

)
Et

[ ∞∑
i=0

γiδ̂t+1+i

])
(27)

Note that the model posses a unique determinate equilibrium path.

Once the equilibrium path of h is computed, output is directly obtained from equation (12). Fi-

nally, combining labor demand (11 and labor supply (18), we obtain an expression for aggregate

consumption:

Ct = ÃΘtN
ξ+(1−αh)(1/χ−1)

αh
t (28)

Equation (27)reveals that a positive δ̂t, – i.e. an acceleration of variety expansion, causes an instan-

taneous increase in hours worked, output and investment in startups S. This boom arises as the
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result of the prospects of profits derived from securing those new monopoly positions. This occurs

absent of any current change in the technology nor the number of varieties. Such an expansion

is therefore akin to a “demand driven” or “investment driven” boom. In this analytical model,

consumption does not increase on impact following a variety increase, but does with a lag. On

the contrary, hours respond negatively to positive δ̂t+i with i > 0. Ceteris paribus, the prospect

of more firms creation and therefore more competitors in the future makes current startups less

profitable.

2.3 Comparison to the social optimum

Optimality properties of those allocations are worth discussing, and it is useful to compute the

socially optimal allocations as a benchmark. The social planner problems is given by 3:

Max Et
∑∞

i=0

[
logCt+i + g(h− ht+i)

]
s.t. Ct ≤ ÂΘtN

ξ+(1−αh)(1/χ−1)

αh
t ht − εtNt,

(29)

with Â = (1− αh)
αh

(1−αh) (αh) and where we have already solved for the optimal use if intermediate

goods. The first order condition of the social planner program is given by

ÂΘtN
ξ+(1−αh)(1/χ−1)

αh
t

ÂΘtN
ξ+(1−αh)(1/χ−1)

αh
t ht − εtNt

= g (30)

There are many sources of inefficiency in the decentralized allocations. One obvious is the presence

of imperfect competition: ceteris paribus, the social planner will produce more of each intermediate

good. Another one is the congestion effect associated to investment in startups, because only a

fraction ρt of startups are successful. The social planner is internalizing this congestion effect, and

does not duplicate the fixed cost of startups, as the number of startups created is equal to the

number of available slots.4 Because of those imperfections, the decentralized allocation differs from

the optimal allocation along a balanced growth path.

The difference between the market allocations and the socially optimal ones that we want to

highlight concerns the response to expected future market shocks. It is remarkable that the social

optimal allocation decision for employment (30) is static, and only depends on εt (positively). This
3We assume again here that parameters are such that it is always socially optimal to invest in new variety. One

necessary condition for full adoption to be socially optimal is that the long run effect of variety expansion is positive,
– i.e ξ > −(1− αh)(1− χ)/χ

4Note that we consider here that parameters are such that it is always optimal to adopt all the new varieties.
Another potential source of sub-optimality would be an over or under adoption of new goods by the market. As
shown in Benassy [1998] in a somewhat different setup with endogenous growth, the parameter ξ is then crucial in
determining whether the decentralized allocations show too much or too little of new goods adoption.
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stands in sharp contrast with the market outcome, as summarized in equation (26), in which all

the future values of ε are showing up. To understand this difference, let us consider an increase at

period t in the expected level of εt+1. We assume that full adoption is always optimal in both the

decentralized and the socially optimal allocations. In the decentralized economy, larger εt+1 means

more startup investment in t+ 1 and more firms in t+ 2, and will therefore affect profits of period

t+2 and onwards. Therefore, a period t startup will face more competitors in t+2, which reduces its

current value, and therefore decreases startup investment and output. Such an expectation is not

relevant for the social planner, that does not respond to news about future values of ε. Therefore,

in that simple analytical model, part of economic fluctuations are driven by investors (rational)

forecast about future profitability that are inefficient from a social point of view.5

2.4 A Gold Rush Configuration

We now make a set of specific assumption on some parameters of the model. The discipline is to

obtain a VAR representation of that simple analytical model that provides a structural interpre-

tation of the shocks we have recovered in Section 1. We first assume that disembodied technical

change, Θt, follows (in log) a random walk without drift log Θt = log Θt−1 +εΘt . Second, we assume

that variety expansion exerts no effect on productivity in the long run. This is achieved by setting

that ξ = −(1 − αh)(1 − χ)/χ. Aggregate production function is then given by (13). Finally, we

assume that variety expansion shocks εt are i.i.d. with mean µ, and denote εNt = log(εt)− log(µ).

Under those assumptions, the log of consumption and output is given by:

log Yt = ky + log Θt−1 + εΘt + log ht (31)

logCt = kc + log Θt−1 + εΘt (32)

where kc and ky are constants. Using equation (26) to replace ht by its solution, it is straightforward

to write the MA(∞) representation of the system. For instance, ignoring constant terms, we obtain(
∆ log(Ct)
∆ log(Yt)

)
=
(

1 0
1 b(1− L)

)(
εΘt
εNt

)
= C(L)

(
εΘt
εNt

)
with b = (1−µ)(h−ψ−1)

h .

This particular version of the model shares a lot of dynamic properties with the data. First of all

the system clearly shows that consumption and output do cointegrate (C(1) is not full rank) with

cointegrating vector [1;-1]. Second, it shows that consumption is actually a random walk, that is

only affected —in the short run as well as in the long run— by technology shocks εΘ. Output is
5The very result that it is socially optimal not to respond to such news is of course not general, and depends on

the utility and production functions specification. The general result is not that it is socially optimal not to respond
news about ε, but that the decentralized allocations are inefficient in response to news shocks.
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also affected in the short run by a shock that is temporary (εN ). Hence, computing, sequentially,

our short run and long run orthogonalizations with this model would imply εP = εC = εΘ and

εT = εY = εN . Such a model therefore allows for a structural lecture of the results we obtained

in Section 1. Permanent shocks to C and Y are indeed technology shocks. Consumption does not

respond to variety expansion shocks, which however explain a lot output fluctuations and all the

fluctuations of hours. Those variety expansion shocks are creating market rushes that are indeed

gold rushes, therefore generating inefficient business cycles as the social planner would choose not

to respond the those shocks. In effect, those shocks only trigger rent seeking activities, as startups

creation allows to grab a part of the economy pure profits, without any change in the total value

of those pure profits.

Although such a simple model allow for a structural interpretation of the data, it is far too simple to

be considered as a credible alternative to quantitative DSGE. Furthermore, the orthogonalization

we have performed need not to imply a simple mapping from the orthogonalized shocks to the

structural ones. This is possible in this version of the model because the long run effect of variety

expansion is exactly zero and the response of consumption to ε is also exactly zero. In the next

section, we extend the model to incorporate capital, and use the estimated responses to the short

and long run identification VECMs to estimate the size of the technological and variety expansion

shocks, together with the long run effect of market expansion ξ. Once those parameters estimated,

we will be able to use the model to decompose economic fluctuations in a meaningful way, using

our model as a measurement tool.

3 Quantitative Assessment

In this section, we first present the extended model before describing the calibration and estima-

tion procedure. Then we comment the estimated parameters and derive some implications of the

estimated model.

3.1 Model, Calibration and Estimation Procedure

Our emphasis in this work is on the existence of a new type of shock, namely a market rush one.

In order to gauge the quantitative importance of this shock in the business cycle, we enrich the

propagation mechanisms of our baseline model, and estimate it on U.S. data.

An Extended Model: We amend the model by including capital accumulation, two type of

intermediate goods and habit persistence in consumption. The final good is now produced by means
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of capital, Kt, labor, ht and two sets of intermediate goods Xj,t and Zj,t, according to

Qt = K1−αx−αz−αh
t (Θtht)αhN ξ

x,t

(∫ Nx,t

0
Xt(i)χdi

)αx
χ

N
eξ
z,t

(∫ Nz,t

0
Zt(i)χdi

)αz
χ

, (33)

with αx, αz, αh ∈ (0, 1), αx + αz + αh < 1 and χ > 1. We impose that ξ = −αx(1 − χ)/χ so that

variety expansion in intermediate goods X has no long-run impact, and that ξ̃ = (χ(1−αx)−αz)/χ,

so that the aggregate value added production function is linear in Nz,t, the number of intermediate

goods Z. Θt denotes Hicks neutral technical progress that is assumed to grow at constant factor

γ > 1.

As in the analytical model, the number of available varieties evolves exogenously according to

Nx,t+1 = (1− µ+ εxt )Nx,t

Nz,t+1 = (1− µ+ εzt )Nz,t.

In equilibrium, full adoption will always be optimal. We assume that the stochastic processes for

productivity and the number of variety are given by:

log(εxt ) = ρx log(εxt−1) + (1− ρx) log(εx) + νxt

log(εzt ) = ρz log(εzt−1) + (1− ρz) log(εz) + νzt

log Θt = log Θt−1 + εΘt .

We assume that νx and νz are independently normally distributed with zero mean and variance σ2
x

and σ2
z . ε

Θ is normally distributed with zero mean and variance σ2
Θ.

Capital accumulation is governed by the law of motion

Kt+1 = (1− δ)Kt + F (It, It−1)

where δ ∈ (0, 1) is the constant depreciation rate. The function F(·, ·) accounts for the presence of

adjustments costs in the capital accumulation. F(·, ·) indeed rewrites as

F (It, It−1) =
[
1− S

(
It
It−1

)]
It

where S(·) reflects the presence of adjustment costs. We assume that S(·) satisfies (i) S(γz) =

S ′(γz) = 0 and (ii) ϕ = S ′′(γz)γ2
z > 0. It follows that the steady state of the model does not

depend on the parameter ϕ while its dynamic properties do. Notice that following Christiano,

Eichenbaum, and Evans [2005], Christiano and Fisher [2003] and Eichenbaum and Fisher [2005], we

adopt the dynamic investment adjustment cost specification. In this environment, it is the growth

rate of investment which is penalized when varied in the neighborhood of its steady state value.

In contrast, the standard specification penalizes the investment-to-capital ratio. The dynamic
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specification for adjustment costs is a significant source of internal propagation mechanisms as it

allows for a hump-shaped response of investment to various shocks.

Finally, we introduce some habit persistence in consumption, and the intertemporal utility function

is given by

Et
∞∑
i=0

[
log(Ct+i − bCt+i−1) + g(h− ht+i)

]
Note that introducing adjustment costs to investment and habit persistence, while not affecting the

main quantitative properties of the model we have presented in section 2, do improve the model

ability to capture the shape of the impulse response function.

The model then solves as in the preceding section, except that no analytical solution can be found

for the dynamics. Nevertheless, some ratios that are stationary along a balanced growth path can

be computed. In particular, the share of profits and intermediate good in value added are given by:

Πt

Yt
=

(αx + αz)(1− χ)
1− (αx + αz)χ

(34)

PxtXt + PztZt
Yt

=
αx + αz

1− (αx + αz)χ
. (35)

Those ratios will be useful in the calibration phase.

Calibration : Our quantitative strategy is to calibrate those parameters for which we have

estimates or that we can obtain by matching balanced growth path ratios with observed average.

The time period is the quarter. The discount factor is set such that the household discounts the

future at a 3% annual rate. We assume constant markups of 20%, so that χ = 0.833. Depreciation

rate is equal to 2.5% per quarter, as common the literature. We assume that the two set of

intermediate goods differ only regarding the long run impact of a variety expansion, and therefore

assume αx = αz. αh and αx are set such that the model generates a labor share and a share

of intermediate goods in value added of, respectively, 60% (Cooley and Prescott [1995]) and 50%

(Jorgenson, Gollop, and Fraumeni [1987]). µ is set such that the model generates a consumption

share of 70%. The calibrated parameters choice is summarized in Table 3.

Estimation Procedure: We estimate the following seven parameters : the standard deviation

of the technological shock innovation σΘ, the persistence ρx and ρz of the two numbers of variety

growth rate, the standard deviations σx and σz of the rate of growth of those number of variety

innovations, the habit persistence parameter b and the adjustment cost parameter ϕ. Those pa-

rameters are chosen in order to match the output impulse responses of the long run VECM that

we have presented in section 1, and that are displayed on Figure 1. As the long run identification
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Table 3: Calibrated Parameters

Preferences
Discount factor β 0.9926

Technology
Elasticity of output to intermediate goods αx 0.3529
Elasticity of output to hours worked αh 0.4235
Depreciation rate δ 0.0250
Elasticity of substitution bw intermediates χ 0.8333
Rate of technology growth γ 1.0060
Monopoly death rate µ 0.0086

scheme cannot recover the model structural shocks (three shocks in the model and only two inno-

vations in the VECM, we cannot directly simply match some model theoretical responses with the

empirical ones to εP and εT . Such a procedure would be exact only in the case of the analytical

model in the gold rush configuration of subsection 2.4. Therefore, we follow a simulated method

of moments approach, as advocated for example by Chari, Kehoe, and McGrattan [2005]. Let

V = (σΘ, ρx, σx, ρz, σz, b, ϕ) be the parameters to be estimated, M a column vector of estimated

moments to match and M(V ) a column vector of the same moments obtained from simulations of

the model with parameters V . The set of estimated parameters V̂ is then set so as to minimize the

distance D
D = (M(V )−M)′W (M(V )−M) ,

where W is a weighting matrix that has the inverse of the variance of the estimators of M on

its diagonal and zeros elsewhere. The simulated moments M(V ) are obtained as average of 20

simulations6 of the model over 232 periods, which is the length of our data sample.

The last issue concerns the choice of moments to match. We aim at matching the output impulse

responses obtained in section 1 for the long run identification, over the first twenty first quarters.

We leave the reproduction of the responses of output in the short run identification and consumption

in both identifications as a test for the model. In the long run identification, the output response to

a permanent shock display an important hump shape 7, and for that reason, we have supplemented

the model with habit persistence and adjustment costs to investment. There are therefore forty

moments to match. We will have two ways of testing our model. The first one is by making use of

the over-identifying restriction of the estimation procedure (seven parameters for forty moments),
6Michaelides and Ng [1997] have shown that efficiency gains are negligible for a number of simulations larger than

10.
7Cogley and Nason [1995] have also proposed the estimation of a (C, Y ) VAR, and show that the response of

output to the temporary shock is hump-shaped. We find in this study that it is the response to the permanent shock
that is hump-shaped. This difference comes from the choice of the output variable, that is Net Domestic Product in
Cogley and Nason and Gross Domestic Product in our work. We prefer the use of GDP as it is the most commonly
used measure of output in the literature.
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by mean of a J test, following Hansen [1982]. The second one will be to check whether or not the

estimated model possesses the property of the data that we have highlighted in section 1, namely

that the short and long run identification, performed on artificial data simulated from the model,

are indeed displaying colinearity between εP and εC (or equivalently between εT and εY ).

3.2 Results From Estimation

Table (4) presents the estimated values of the seven parameters of interest, together with the value

of the J-statistics for over-identification. A key result is that σz is very small compared to σx, and

not significatively different from zero, so that one cannot reject the fact that all market rushes are

indeed inefficient gold rushes.

Table 4: Estimated Parameters

Persistence of the X Variety shocks ρx 0.9166
(0.0336)

Standard dev. of X Variety shocks σx 0.2865
(0.0317)

Persistence of the Z Variety shocks ρx 0.9164
(0.6459)

Standard dev. of Z Variety shocks σz 0.0245
(0.1534)

Standard dev. of the Technology shocks σΘ 0.0131
(0.0015)

Habit Persistence parameter b 0.5900
(0.1208)

Adjustment Costs parameter ϕ 0.4376
(0.3267)

J–Stat 17.00
[99.03%]

This Table displays the estimated parameters of our extended model. Those
parameters have been estimated by a simulated method of moments. Standard
errors are into parenthesis, p–value into brackets.

The impulse responses of the VECM estimated on the artificial data generated with the model are

presented on Figure 8, together with the ones estimated on the data. The confidence bands are

the one computed from the data. Note that the models IRF are within the confidence band, which

confirms that the model does a good job not only on impact and in the long run (as shown by

the low level of the J–stat), but also for much of the dynamics. When one compute the distance

between the consumption IRF (which is χ2 distributed), one obtain a statistics value of 40.93, with

a p-value of 16.17%: the model is not rejected when evaluated on the consumption dynamics.
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The model already displays two of the three properties of the data that we put forward previously:

(ii) there is virtually no dynamics in the consumption response to the permanent shock, as it affects

permanently and almost instantaneously the level of consumption and (iii) the temporary shock is

responsible for a significant share of output volatility at business cycle frequencies.

Figure 8: Impulse Response Functions VAR versus Model (LR identification)
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It is now of interest to test whether the model also possesses the first property: (i) the permanent

shock to consumption εP is indeed the εC shock in an consumption–output VECM. We therefore

perform our test for the equality between εY and εT in the data generated by the model. We then

generate 1000 replications of the model simulations. In 87% of the cases we have the property that

the (1, 2) element of the long run effect matrix of the Wold decomposition of a (C, Y ) VECM is not

significantly different from zero. Figure 9 displays the estimated IRF of the short run identification

VECM in the date and using he simulated data of the model. Again, the fit is extremely good. As

shown on Figure 10, the two VECMs, as estimated on simulated data, have very similar IRF, as

obtained in the data. The model is therefore able to reproduce those three salient features of the

data we have put forward in section 1.
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Figure 9: Impulse Response Functions VAR versus Model (SR identification)
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Figure 10: Impulse Response Functions (LR vs SR)
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3.3 Accounting For Business Cycle

Once estimated, the model can be used to evaluate the importance of gold rush phenomena in the

U.S. business cycle. In effect, the model allow for a meaningful structural variance decomposition

of fluctuations. Those variance decomposition are computed on levels and on first-differences, and

are displayed in Tables 5 and 6

About one-third of output level fluctuations are explained by the “gold rush” shock on impact, and

at all horizons for output growth. When one considers hours, those shocks are responsible for much

of the business cycle fluctuations.

Table 5: Contribution of the Variety Expansion Shock to the Business Cycle in the Estimated
Model

Horizon Output Consumption Hours
εΘ νx νz εΘ νx νz εΘ νx νz

1 64.07 35.92 0.01 94.22 5.73 0.05 14.90 85.08 0.02
4 86.36 13.63 0.00 95.09 4.70 0.21 19.34 80.46 0.20
8 92.09 7.81 0.10 96.22 3.39 0.39 32.23 67.61 0.16
20 95.72 3.37 0.91 97.74 1.39 0.87 40.32 59.01 0.67
∞ 95.86 0.01 4.13 95.87 0.00 4.13 41.47 56.72 1.81

This table shows the k-period ahead share of the forecast error variance of hours,
consumption and output levels that is attributable to each shock in the estimated
model.

Table 6: Contribution of the Variety Expansion Shock to the Business Cycle in the Estimated
Model

Horizon Output Growth Consumption Growth Hours
εΘ νx νz εΘ νx νz εΘ νx νz

1 64.07 35.92 0.01 94.22 5.73 0.05 14.90 85.08 0.02
4 68.10 31.86 0.05 94.64 5.15 0.22 19.34 80.46 0.20
8 67.90 31.94 0.16 94.64 5.06 0.30 32.23 67.61 0.16
20 67.65 32.02 0.33 94.41 5.11 0.48 40.32 59.01 0.67
∞ 67.61 32.03 0.36 94.18 5.12 0.70 41.47 56.72 1.81

This table shows the k-period ahead share of the forecast error variance of hours
level, consumption and output growth that is attributable to each shock in the
estimated model.

Figures 11, 12 and 13 show the theoretical responses of the model main variable to the two structural

shocks, and Table 7 displays some statistics of the HP-filtered simulated series.
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Figure 11: Model Impulse Response Functions to a Technology shock (Θt))
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Table 7: Moments (HP–filtered)

σx ρ(·, y) ρ(·, h)
y 1.44 – –
c 0.78 0.79 –
I Total 3.56 0.95 –
h 1.12 0.66 –
y/h 1.09 0.64 -0.14
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Figure 12: Model Impulse Response Functions to a Stationary Variety Expansion Shock (εxt )
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Figure 13: Model Impulse Response Functions to a Permanent Variety Expansion Shock (εzt )
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3.4 Alternative Models

In this subsection, we show that alternative models cannot replicate the facts we have highlighted.

We consider three models. The first model is a RBC model with habit persistence, adjustment

costs to investment and with a permanent and a temporary technology shock (RPC–T). The sec-

ond model is a RBC model with habit persistence, adjustment costs to investment and with a

permanent technology and a temporary preference shock (RBC–P). The third model is the Chris-

tiano, Eichenbaum, and Evans [2005] model augmented with a permanent technology shock.

We estimate those three models with the same simulated methods of moments that we have used for

our model, matching the IRF of output in the long run identification. The estimated parameters

are presented in Table 8. Table 9 then present the J-statistics for those three models, together

with the distance statistics for the consumption IRF and for jointly the output and consumption

IRF. We also present those statistics for our model. What do we obtain? All the models pass the

J-stat, but then, the three alternative models are rejected without ambiguity when evaluated on

their capacity of also fitting the consumption IRF.

Table 8: Estimation Results

b ϕ σγ ρχ σχ ρz σz J–stat(Y)
RBC–P 0.8813 0.6682 0.0143 0.5973 0.0155 – – 30.13

(0.0289) (0.4305) (0.0019) (0.0996) (0.0077) [0.70])

RBC–T 0.8813 0.6683 0.0143 – – 0.4974 0.0099 30.13
(0.0289) (0.4369) (0.0019) (0.1024) (0.0050) [0.70]

CEE 0.0000 0.6353 0.0129 23.06
(0.0000) (0.1811) (0.0015) [0.96]

Note: Standard errors into parenthesis, p–values into brackets.

Table 9: Chi Tests

J–stat(Y) Distance–stat(C) Distance–stat(C,Y)
Our Model 17.41 42.51 92.78

[0.99] [0.12] [0.06]

RBC–P 30.13 160.60 271.73
[0.70] [0.00] [0.00]

RBC–T 30.13 160.58 271.70
[0.70] [0.00] [0.00]

CEE 22.43 136.16 456.11
[0.97] [0.00] [0.00]

Note: p–values into brackets.
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4 Conclusion

TO BE WRITTEN
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