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1 Introduction

The dynamic general equilibrium framework is the fundamental analytical
instrument for macroeconomics, since it has huge advantages in helping us
to understand the behavior of modern economies. However, two important
shortcuts have being pointed out in the past years and induced some econo-
mists to look for alternative ways of modeling. Firstly, in the Arrow-Debreu
general equilibrium framework, transactions take place simultaneously at
equilibrium. This fundamental property of the equilibrium concept makes
it di¢ cult to model money in modern economic theory, since simultane-
ous transactions do not required a medium of exchange. Another important
shortcut of the equilibrium concept, particularly relevant in a dynamic frame-
work, is that agents are supposed to know the exact description of the world
and are able to do highly sophisticated computations in order to formulate
their optimal strategies. This is the well-known assumption of rational ex-
pectations.
An important e¤ort has been made in the last �fteen years to model

money as a medium of exchange in the framework of search theory. Kiyotaki
and Wright (1991) (1993) are key references in this literature. By using
search as a device for modeling the sequential nature of transactions, and
by excluding that all possible transaction are mutually bene�cial, they �nd
conditions for the existence of �at money as a medium of exchange.1 In
this paper, the economy is speci�ed in the spirit of the general equilibrium
theory without search, and an evolutionary approach is used to model money
as a medium of exchange. The paper is not addressed to understand the
conditions under which money emerges as a medium of exchange, even if it
may be extended in this way.
In the spirit of Clower (1967), this paper speci�es a simple general evo-

lutionary exchange economy,2 where money is needed for transactions and
plays the role of both a unit of account and a medium of exchange. The
environment is the one of a simple general equilibrium model with cash-in-
advance �see Lucas and Stokey (1987). The main result of the paper is that
the long run evolutionary allocation is equal to the competitive equilibrium
allocation of the cash-in-advance economy. In specifying the evolutionary
game, we assume that mutants behave as in Calvo (1983). Calvo mutants

1Wright (1995), Sethi (1999) and Luo (1999) have used alternative evolutionary frame-
works to show that the use of money as a medium of exchange does not require stringent
assumptions regarding information and rationality.

2In this paper, we use the term general evolutionary economy in the same sense that
equilibrium theorists refer to general equilibrium: An economy is fully described by its
environment and the (evolutionary) institutions governing transactions.
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are well-informed about the economy, in particular they know the rules of the
evolutionary game, and set prices consistently with the stationary solution.
Since mutants are the only agents allowed to optimally adjust prices at a
given moment in time, they bene�t from some market power and use it to
set a markup on the unitary cost of the endowment. By doing so, they allow
the economy to learn about itself and converge to a market allocation con-
sistent with the long term competitive equilibrium. Most of the time agents
repeat their past behavior; times to time they become imitators, observe the
actions and payo¤s of their competitors and follow the best local strategy;
and very rarely they become mutants and behave rationally, in the sense that
they have a deep understanding of the economy, even if it does not require
perfect knowledge, and behave consistently. In this framework, the behav-
ior of a very small number of mutants is enough to the economy learn and
converge to the competitive equilibrium.
This paper makes a bridge between the dynamic general equilibrium ap-

proach to macroeconomics and evolutionary game theory, with a particular
attention on the understanding of the e¤ects of money supply on prices and
quantities. In this sense, it is close to Saint-Paul (2005), who formulates an
evolutionary game to understand sticky price behavior and the propagation
of monetary shocks. As in Saint-Paul, price rigidity is a fundamental prop-
erty of our economy. The main di¤erence is that in our framework mutants
are allowed to behave consistently with the rational expectations equilibrium,
implying that in the long run the economy learns about itself and converges
to an e¢ cient allocation with a price distribution similar to the one generated
by Calvo models of sticky prices. In this sense, this paper can be seen as a
foundation of modern monetary theory as exposed in Woodford (2003).
As in Vega-Redondo (1997), evolutionary game theory is used to model

the implicit behavior of the Adam Smith�s invisible hand. This paper can
be seen as a general evolutionary extension of the Vega-Redondo imitation-
mutation game.3 In an economy where the number of agents is large enough
to preclude any of them to have a sizeable market power, prices are inde-
pendently set by �rms in an evolutionary game that puts the invisible hand
at work. In the case the money supply is constant over time, the distrib-
ution of prices converges to a monomorphic solution equal to the perfectly
competitive equilibrium. When the money supply is permanently increasing
at a constant rate, the price index converges to the competitive equilibrium
price and in�ation tends to the growth rate of money supply, however the
stationary distribution of prices does not collapse to a unique price. The

3Vega-Redondo speci�es and solves a partial evolutionary economy with an exogenously
given demand function.
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pro�le of the price distribution depends crucially on the main determinants
of the mutation-imitation process.
In the evolutionary game played by agents in this paper, the economy may

be alternatively in an excess supply or in an excess demand situation �market
clearing is a limit, rare object. Out-of-equilibrium dynamics is modeled in
the spirit of quantity rationing equilibrium theory, by the main of assuming
a proportional rationing scheme.4 A fundamental di¤erence with this ap-
proach is that we explicitly specify the price dynamics. Even if markets are
competitive, �rms set prices and an evolutionary dynamics is used to model
price dynamics explicitly.
Section 2 describes the economy, section 3 shows the main properties of

the long run dynamics and section 4 (still pending) presents some simulations
showing the main properties of the short run behavior of the evolutionary
economy. Section 5 concludes.

2 Description of the Economy

2.1 Environment

Following the general equilibrium tradition, let us �rst de�ne the environment
of this economy. Time is discrete. The economy is populated by a �nite,
countable and large number of both individuals and �rms denoted by N and
H, respectively ��rms and individuals have a negligible market power.
There is one, perishable and divisible good. Firm j 2 f1; :::; Hg receives

every period t, as manna from heaven, an endowment of measure q 2 R+. The
total amount of goods available at any period is Q = qH. The representative
individual has in�nite life and time additive preferences represented by an
instantaneous homothetic utility function with constant discount factor �̂ 2
(0; 1). Individuals are the owners of �rms and hold a total amount of money
Mt. A central bank increases the amount of money every period at the rate
� > 0. The increase in the money supply is distributed across individuals as
a lump-sum transfer.

2.2 A Cash-in-Advance Economy

It is well known that money do not play the role of a medium of exchange
in the general equilibrium theory, and as a stock of value it is dominated by
other assets �the market portfolio in our simple economy. Di¤erent theories
have been formulated to render money valuable by slightly changing the

4See Benassy (1982).
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general equilibrium framework. For example, it may be assumed that money
is required for transactions, making it optimal for individuals to hold money
in order to buy consumption goods.5 Under this assumption, the so-called
cash-in-advance constraint holds at equilibrium, implying the well-known
quantity theory of money PtQ = Mt, where Pt represents the equilibrium
price of the physical good with money as the unit of account. At a steady
state the market discount factor is equal to the individual discount factor �̂.

2.3 Evolutionary Game

Let us interpret the cash-in-advance constraint in the following way. By
assumption, transactions must always involve money �any form of barter is
forbidden. In addition of playing the role of a unit of account, money is
a medium of exchange. Individuals hold money at the beginning of every
period and use their money holdings to buy goods. Firms collect pro�ts in
the form of money and give the money back to individuals as dividends.
Instead of using an equilibrium concept to analyze this economy, let us

formulate it in the tradition of evolutionary game theory. Firm j announces
price pjt at the beginning of period t and engages on satisfying at this price
any demand until it runs out of stock �price rules are described in a following
section. Money is the unit of account and prices are supposed to be real
numbers. At the end of the period, it may be that some �rms keep unsold
units of the perishable good, which cannot be transferred to the next period.
In such a case, these �rms are said to be quantity constrained by a demand
shortage.
Let �rms be divided into groups according to the price they announce, so

that there are K � H groups of �rms, each setting a di¤erent price pk. In
the following, we will refer to price pk as the k-strategy. Without any lost of
generality, let us assume that p0 > p1 > ::: > pK�1. Let hk be the fraction of
�rms of type k, such that

P
k hk = 1.

Individuals use their money holdings to buy the physical good. They
are assumed to observe all prices every period. They order �rms by prices,
visit �rst the group of �rms announcing the lowest price and buy. When
�rms in this group cannot satisfy the total demand, individuals move to the
following group in the list. They continue visiting �rms until they spend the
total amount of money M or all �rms run out of stock. Finally, they return
home and consume. We say that individuals are quantity constrained when
they cannot buy as many units as they would like, because of a shortage of
supply.

5See Lucas and Stockey (1987) and Woodford (1994).
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To complete the description of time t transactions, we must specify how
agents are rationed. In order to keep a representative household, we assume
that any supply shortage is equally distributed across individuals. However,
the evolutionary dynamics does not depend on the particular way individuals
are rationed, implying that any alternative rationing scheme would generate
the same solution of the evolutionary game. How a shortage of demand is
distributed across �rms? Without any lost of generality, let us assume that
all �rms in group k+1 run out of stock at time t, but group k faces a demand
shortage. It would be the case if the residual demand faced by group k is
0 < M � qH

P
i>k pihi < qHpkhk. In such a situation, it is assumed that the

residual demand is equally distributed across �rms in group k.6

A huge literature in the seventies and eighties has developed equilibrium
concepts to deal with situations where markets are not cleared by prices.7

Typically, a rationing scheme is assumed. In this paper, we adopt propor-
tional rationing schemes to deal with excess supply and excess demand situ-
ations.

2.4 Evolutionary Dynamics

The description of the evolutionary economy in section 2.3 is still incomplete,
since the evolutionary rules telling how �rms set prices have not been de�ned
yet. In this paper, price rules rely on imitation and mutation. In particular,
we apply the imitate the best (IB) rule.8 Given that all �rms in the same
group set the same price and sell the same quantity, IB is equivalent to the
imitate the best average rule.
Each period, a �xed number of �rms L < H imitates the best price strat-

egy. Under IB, the performance of a particular price strategy is evaluated by
the pro�ts of a representative �rm following this strategy. To formalize the
rule, note that at each period K distinct, ordered prices are observed. Let
us denote xk at the number of goods sold by the k�s representative �rm, and
pro�ts by �̂k = pkxk. Let us de�ned the best local strategy r = argmaxk �̂k.
In the case more than one strategy generate the same pro�ts, the best lo-
cal strategy corresponds to the largest price. The IB rule speci�es that L
randomly chosen �rms set price pj;t+1 = prt in period t+ 1.
In addition to imitators, we allow for mutants. We assume there is exactly

6As an alternative, the rationing scheme may be random. Under this assumption, �rms
in group k would have di¤erent pro�ts, but the average pro�t will be the same that under
proportional rationing. In this case, the imitate the best average rule would generate
exactly the same solution as the IB rule in our framework.

7See Benassy (1982) and Dreze (1974).
8Cite the literature here.
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one mutant every period, which is selected randomly. Like imitators, the
mutant changes her price, but instead of choosing the price pr suggested
by the imitation rule, she chooses it as a factor � of the equilibrium price.
The mutant knows the cash-in-advance constraint holds, and has enough
information to compute the equilibrium price. She also knows she will keep
her price unchanged until she will become an imitator or she will mutate
again, and using this information she checks that in the long run her strategy
is optimal. In the following, we refer to them as Calvo mutants, since they
have a behavior close to the one described by Calvo (1983) and extensively
used in dynamic general equilibrium macro models.9

At the initial period t = 1, �rms carry a (past) price pj0. Initial prices are
randomly assigned on the support [p; �p], 0 < p < �p. In the following section,
we study the properties of the imitation and mutation dynamics.

3 Stationary Solution of the Evolutionary Dy-
namics

At the stationary solution, mutant prices may be written as p0t = �Pt, where
Pt =

Mt

qH
is the equilibrium price and � > 0. Note that Pt is the equilibrium

value of one unit of the endowment and measures its shadow value. In this
sense, we will refer to � as the markup set by the Calvo mutant over marginal
(shadow) costs. Notice that prices pkt for k � 1 have been set by previous
mutants, implying that pkt = �Pt�k = � (1 + �)

�k Pt. Consequently, the k-
strategy may be normalized by the equilibrium price Pt, such that ~pk =

pkt
Pt
=

� (1 + �)�k is time independent for all k � 0.
In a stationary situation, the best local strategy must be stationary. Let

us refer to it as the strategy b � 1. Imitators adopt this strategy in the
following period, by playing strategy b. The random selection of imitators
and mutants generates a distribution of �rms across price strategies hk, such
that

P
k�0 hk = 1. In the following, we assume that hk = � for k < b � 1.

Under this assumption, no mutant is allowed to move to another strategy
until she is playing the best local strategy. It guarantees that the best local
strategy is always being played.
As stated above, the representative �rm playing the k-strategy sells the

amount xk = min
n
q; Rk

pk

o
, where the residual demand is

Rk =
M � qH

P
j>k pjhj

hkH
=

1� �Ak+1
� (1 + �)�k hk

pkq; (1)

9See Woodford (2003).
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andAk =
P

j�k (1 + �)
�j hj. Normalized �rm pro�ts are�k = � (1 + �)

�k xk.
The price index at time t is de�ned as

Pt �
X
k�0

pkthk = �A0Pt:

The ratio of the evolutionary price Pt to the equilibrium price Pt has two
components, the mutant markup �, and the factor A0. In the evolutionary
economy, only the Calvo mutant is adjusting her price up in order to follow
the increase in money supply. The factor A0 < 1 measures the extent other
�rms follow mutant price changes. In the following, we will refer to A0 as
the extent of price adjustments. Consequently, in order to the price index be
close to the equilibrium price, the mutant�s markup must be strictly larger
than one. It is important to remind that supply is equal to demand only if
the evolutionary price index is equal to the equilibrium price. It is easy to see
that Calvo mutants have an incentive to charge a markup at least equal to
the adjustment factor A0 in order to take advantage of any excess demand.
By de�nition of the imitators�strategy, xb�1 > 0, implying that xk = q

for all k � b, xb�2 � 0, with xb�2 = 0 if xb�1 < q, and xk = 0 for all k < b�2.
Given that individuals visit �rms following the strict order of prices, b� 1 is
the best local strategy only if all �rms announcing a price smaller than pb�1
run out of stock. On the other side, �rms pricing more than pb�2 face a zero
residual demand. The situation of �rms following strategy b � 2 depends
on their residual demand, which may be positive only if xb�1 < q. It is
easy to see that normalized pro�ts, �k > �k+1 for all k � b, �b�1 � �b,
0 � �b�2 < �b�1, and �k = 0 for all k < b� 2.
The expected value of strategy k is given by

Vk = �k + �̂

�
Vk+1 if k 2 f0; : : : ; b� 2g
�V0 + �Vb + (1� � � �)Vk+1 otherwise

: (2)

The value function Vk is normalized by Pt. The probability of becoming
a mutant is � = 1

H�b+1 and the probability of becoming an imitator is � =
L

H�b+1 , and both are constant at a stationary solution. Note that L < H�b+1
is required for these two probabilities be well de�ned.
The main Proposition of the paper is proved in the next, but before we

need to prove some Lemmas.

Lemma 1 In a stationary solution, b 2 f1; 2g
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Proof. To prove this Lemma, we �rst study the value function Vk. From
(2),

Vk � Vk+1 = �k � �k+1 +

8<:
�̂ (Vk+1 � Vk+2) if k 2 f0; : : : ; b� 3g
� (Vk+1 � Vk+2) if k 2 fb� 1; : : :g
�̂ [(Vb�1 � Vb)� � (V0 � Vb)] if k = b� 2

where � = �̂ (1� � � �). Then,

1. For k 2 fb� 1; b; : : :g. Since ~pk = � (1 + �)�k for all k � 0, and xk = q
for all k � b, �k = � (1 + �)�k = (1 + �)�k+1, implying that

Vk � Vk+1 =
1X
j=0

�j (�k+j � �k+j+1) =
�

1 + � � ��k > 0;

for all k � b. Since �b�1 � �b from the de�nition of the best local
strategy b� 1, Vb�1 > Vb.

2. k 2 f0; 1; : : : ; b� 3g. As sated in point 6 above, �k = 0 for k � b� 3.
It implies that

Vk � Vk+1 = �̂
b�3�k h��b�2 + �̂ (Vb�2 � Vb�1)i

for k � b� 3. There are two possible situations:

(a) xb�1 < q, �b�2 = 0. Then,

Vb�2 � Vb�1 = ��b�1 + �̂ (Vb�1 � Vb)� �̂� (V0 � Vb)
� ��b�1 + �̂ (Vb�1 � Vb) ;

V0 � Vb because the mutant is playing an optimal strategy. Con-
sequently,

Vb�2 � Vb�1 � � (1� �)
"
�b�1 +

�̂ (1 + �)

1 + � � ��b

#
< 0:

(b) xb�1 = q, �b�2 � 0.

��b�2 + �̂ (Vb�2 � Vb�1) = �
�
1� �̂

�
�b�2 + �̂h

��b�1 + �̂ (Vb�1 � Vb)� �̂� (V0 � Vb)
i
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Since V0 � Vb

��b�2 + �̂ (Vb�2 � Vb�1) � �̂
h
�̂ (Vb�1 � Vb)� �b�1

i
= ��̂

(1 + �)�
�
� + �̂�

�
1 + � � � �b�1 < 0:

Since the mutant is playing the best strategy, V0 � Vk for all k � 1. It
implies b 2 f1; 2g :

Lemma 2 In a stationary solution, b = 1 i¤

A�10 � � � �̂ �
�
A0�

��

1 + �

��1
Proof. b = 1 requires

1. k = 0 is the best local strategy if �0 � �1. By de�nition of x0 in
point 4 above and some algebra, it�s easy to prove that �0 � �1 i¤
x0 � (1 + �)�1 q i¤ � � �̂.

2. By de�nition x0 � q, and x0 � q i¤ � � A�10 .

This completes the proof.

Lemma 3 In a stationary solution, b = 2 i¤

�̂ < � � ~� �
 
A0�

��

1 + �

1 + � + �̂�

1 + � � �

!�1
Proof. b = 2 requires

1. k = 0 is the mutant�s strategy if V0 � V1. From Lemma 1, under b = 2,

V0 � V1 = �0 � �1 + �̂ (V1 � V2)� �̂� (V0 � V2)
= �0 � �1 + �̂ (1� �) (V1 � V2)� �̂� (V0 � V1)
= �0 � �1 + �̂ (1� �)

�

1 + � � ��1 � �̂� (V0 � V1)

= �0 � �1
(1 + �)�

�
� + �̂ (1� �)�

�
1 + � � � � �̂� (V0 � V1) :
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Then, under b = 2 V0 � V1 � 0 i¤ �0 � �1
(1+�)�(�+�̂(1��)�)

1+��� i¤ x0 �

q
(1+�)�(�+�̂(1��)�)

(1+���)(1+�) . By de�nition of x0 in point 4 above, and some

algebra it�s easy to prove that x0 =
1��A1
��

q. Then, V0 � V1 � 0 i¤
� � ~�.

2. k = 1 is the best local strategy if �0 < �1, and �0 < �1 i¤ x0 <
(1 + �)�1 q i¤ � > �̂

This completes the proof.

It is easy to check that �̂ � ~�, with strict equality only if � = 0, or � = 0, or
�̂ = 0.

Proposition 4 At a stationary solution the Calvo mutant�s best strategy is
� = ~�

Proof. At a stationary solution, the Calvo mutant is restricted to play the
best strategy among the stationary strategies � 2

�
A�10 ; ~�

�
. Past and future

mutants play the same strategy �� 2
�
A�10 ; ~�

�
, since the economy is on a

stationary solution. Let us assume that � > (1 + �)�1 ~�, such that the Calvo
mutant is playing the 0-strategy. We will prove that it is always the case.
From the de�nition of �0 and x0 in points 5 and 4 above, (2) becomes

V0 =
1� ��A1
�

q + �̂V1;

and for all k 2 f1; 2; : : :g

Vk = � (1 + �)
�k q + �̂

�
�V0 + � �Vb + (1� � � �)Vk+1

�
:

�Vb is the imitators� value function. It�s clear that V0 is increasing in �.
Consequently, the � that maximizes V0 is equal to the upper-bound ~�, which
veri�es the condition � > (1 + �)�1 ~�.

Corollary 5 At the stationary solution, b = 2

Proof. It derives directly from the previous Proposition and Lemmas.

Under b = 2, the expected distribution of �rms across price strategies is

hk =

�
� if k = 0
[� (1� � � �) + �] (1� � � �)k�1 if k � 1 ;

11



implying that the extent of price adjustments is expected to be A0 = ��+�+�
�+�+�

.
In the extreme case, where all �rms are mutants or imitators, i.e. � + � = 1,
the extent of price adjustments is equal to 1+��

1+�
, which is increasing in the

frequency of mutations �. An increase in the number of imitators has always
a positive e¤ect on the extent of price adjustments factor A0, since other
�rms follow mutants more frequently. A cut on the in�ation rate increases
A0, because the need of adjusting prices is reduced when in�ation is low,
making the mutation-imitation process more e¢ cient.

Corollary 6 At the stationary solution with Calvo mutants Pt = ~�A0Pt >
Pt

Proof. It derives directly from Proposition 1.

Notice that at the stationary solution of the evolutionary economy there must
be a demand shortage since Pt > Pt. Let us call ~Q � M

P < Q, and de�ne the
excess supply as

Q� ~Q

Q
= 1� Pt

Pt
=
B
A0
;

where B = ��
1+�

1+�+�̂�
1+��� . Since there is only one mutant, and b = 2 requires the

mutant be selling something, xk = q for all k > 0. Then, only the mutant
may be rationed, making the extend of an excess supply be bounded by �,
which is small under the assumption that the number of �rms is large.

Remark 7 lim�!0Pt = Pt

When the number of �rms goes to in�nity, the economy converges to
the perfect market situation. In our framework, this is equivalent to let the
frequency of mutants goes to zero. In this case, Calvo mutants cannot take
any advantage of rising prices and optimally set the markup factor equal to
the extent factor. Under perfect competition, the long run behavior of the
economy is equal to the long run behavior of the cash-in-advance economy. In
this case, ~Q = Q and the economy converges to a market clearing situation.
The assumption that Calvo mutants behave rationally is enough for the

evolutionary economy to be consistent with the Lucas critique. Suppose the
monetary authority realizes that most �rms do not react directly to changes
in policy, and decides to increase the rate at which she injects money. Since
prices do not follow directly the change in money supply, money would have a
real e¤ect by increasing demand and consumption. However, Calvo mutants
would be informed about the change in policy, and would adjust their markup
consistently, which would allow the market economy to learn about it. It

12



is interesting to see that by increasing �, the monetary authority reduces
the extent of price adjustment at the time it increases the market power
of mutants. When the number of �rms is large enough to make markets
competitive, an increase in the growth rate of the money supply cannot
a¤ect the long run behavior of prices. Consequently, even if money is not
neutral in the short run, it is in the long run.

Remark 8 Under � = 0, A0 = ~� = 1

In the extreme case of a zero growth rate of money supply, Calvo mu-
tants have no incentive to rise prices. They just set as price the equilibrium
price and the imitation dynamics makes the price distribution collapse to a
monomorphic equilibrium with the unique price equal to the perfectly com-
petitive price. Anagnostopoulos et al (2005) show that in such a framework
mutants don�t need to be of the Calvo type for the economy converge to the
unique equilibrium price. It�s enough that the mutant chooses a price ran-
domly from a set of prices including the equilibrium price. At some point, a
mutant will get the equilibrium price by chance and the others will eventually
imitate her until the economy will converge to the unique equilibrium.

4 The Short Run Dynamics

5 Conclusions
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