
14-15-16 NOVEMBRE 2007

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少へ⊙

ARTENAIA

MAIRIE DE

TOULOUSE

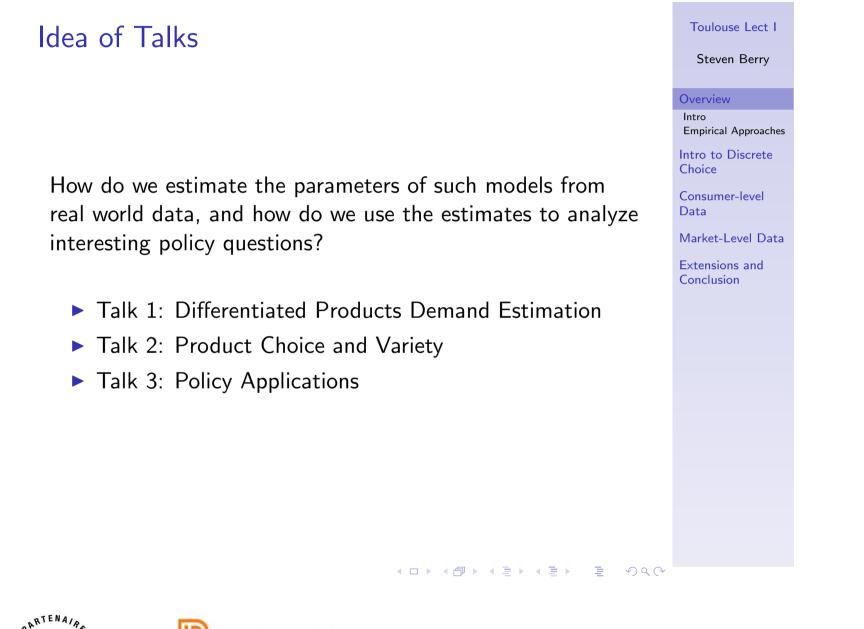
NSTITU

· ECONOMIE

14-15-16 NOVEMBRE 2007

Toulouse Lect I
Steven Berry
Overview
Intro Empirical Approache
Intro to Discrete Choice
well-described by models that feature: Consumer-level Data
firms Market-Level Dat
Products Extensions and Conclusion
n
naracteristics, location, etc.
・ 「 ・ ・ 「 ・ ・ 川 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
▲□▶▲□▶▲≡▶▲≡▶ ≡ ろくの

PRINCETON


TOULOUSE

www.toulouse.fr

MAIRIE DE

D'ECONOMIE INDUSTRIELLE

14-15-16 NOVEMBRE 2007

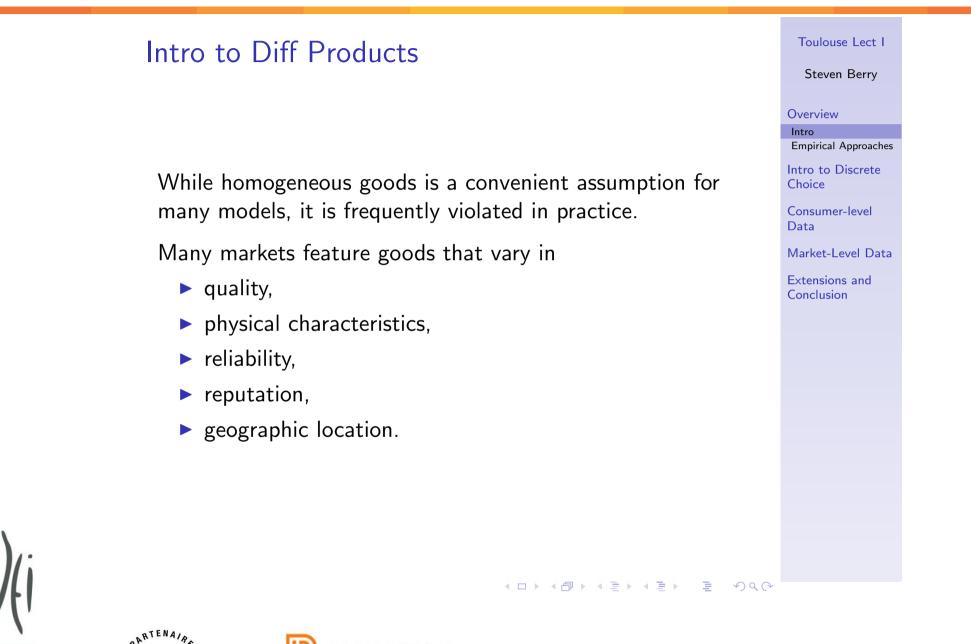
MAIRIE DE

NDUSTRIELL

TOULOUSE

14-15-16 NOVEMBRE 2007

Today's Outline		Toulouse Lect I
Overview Intro to Diff Products Empirical Approaches		Steven Berry Overview Intro Empirical Approaches Intro to Discrete
Intro to Discrete Choice		Choice Consumer-level
Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification		Data Market-Level Data Extensions and Conclusion
Market-Level Data BLP estimation Random Coefficients Pure Random Coeff. Partial Consumer Data		
Extensions and Conclusion		
	・ロ・・雪・・雪・・雪・ うへの	

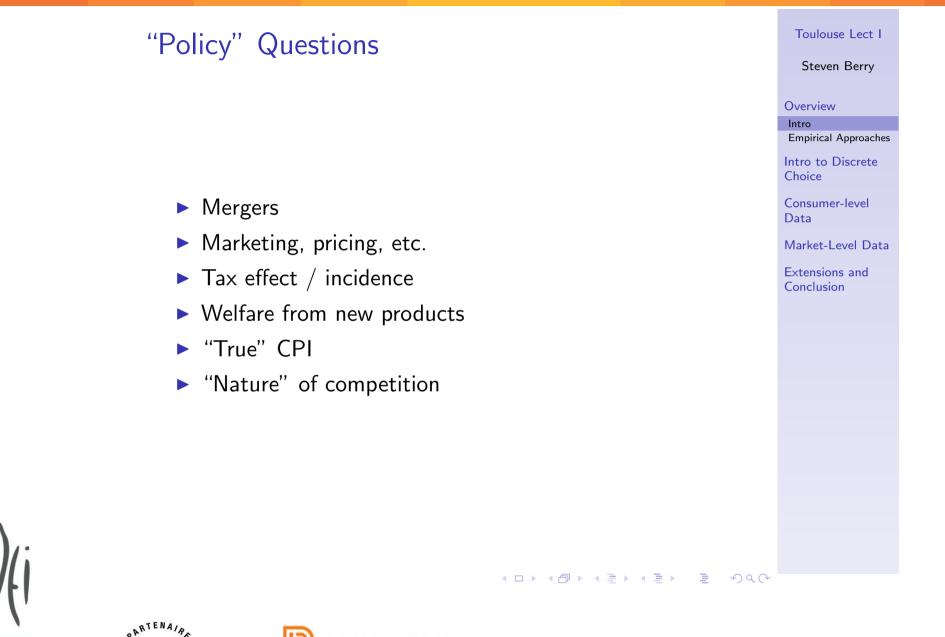

PRINCETON

RARTENAIA,

MAIRIE DE

D'ECONOMIE INDUSTRIELLE TOULOUSE

14-15-16 NOVEMBRE 2007


PRINCETON

MAIRIE DE

NDUSTRIELL

TOULOUSE

14-15-16 NOVEMBRE 2007

TOULOUSE

NSTITU

· ECONOMIE

MAIRIE DE

14-15-16 NOVEMBRE 2007

TOULOUSE

NSTITU

· ECONOMIE

MAIRIE DE

14-15-16 NOVEMBRE 2007

Toulouse Lect I Example: Anti-Trust Steven Berry Overview Intro **Empirical Approaches** Intro to Discrete Choice Consumer-level Diff. Products Homogeneous Goods Data Market Definition Degree of substitutability Market-Level Data Extensions and "In or out" of market Pattern of joint Conclusion ownership Level of concentration Entry into space of ► Ease of entry characteristics ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

PRINCETON

ARTENAIA

MAIRIE DE

TOULOUSE

14-15-16 NOVEMBRE 2007

Theories of Product Differentiation	Toulouse
Consumers	Steven E
	Overview
	Intro Empirical Ap
Preferences for	Intro to Dis Choice
Products, or	Consumer-l Data
Characteristics of products	Market-Lev
 "address" models (Hotelling), "Characteristics" models (Vertical, Lancasterian) 	Extensions Conclusion
< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < > < < < > < < < <	2

RARTENAIA,

MAIRIE DE

D'ECONOMIE INDUSTRIELLE TOULOUSE

14-15-16 NOVEMBRE 2007

Consumers	
	Overview Intro
Preferences for	Empirical Ap Intro to Dis Choice
Products, or	Consumer-I Data
Characteristics of products	Market-Lev
 "address" models (Hotelling), "Characteristics" models (Vertical, Lancasterian) 	Extensions Conclusion
We can have either	
 Discrete Choice, or 	
Continuous Choice, or	
Mixed choice	

PRINCETON

RARTENAIA,

MAIRIE DE

D'ECONOMIE INDUSTRIELLE TOULOUSE

14-15-16 NOVEMBRE 2007

Demand-Side Reasons for Product Diff	Toulouse Lect I Steven Berry
Variety Declining MU for each good, often representative consumer, continuous choice (e.g. Dixit-Stiglitz)	Overview Intro Empirical Approaches Intro to Discrete Choice Consumer-level Data Market-Level Data Extensions and Conclusion
 □ ▶ < 昼 ▶ < 王 ▶ 王 少へ() 	

PRINCETON

RARTENAIA,

MAIRIE DE

D'ECONOMIE INDUSTRIELLE TOULOUSE

14-15-16 NOVEMBRE 2007

Toulouse Lect I Demand-Side Reasons for Product Diff Overview Intro Choice Declining MU for each good, often representative consumer, Data continuous choice (e.g. Dixit-Stiglitz) Heterogeneous Tastes Conclusion Often pure discrete choice, both classic theory models (Hotelling) and classic empirical models (McFadden)

DUSTRIELL

Variety

TOULOUSE

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

14-15-16 NOVEMBRE 2007

Demand-Side Reasons for Product Diff

Variety

ARTENAIA

MAIRIE DE

Declining MU for each good, often representative consumer, continuous choice (e.g. Dixit-Stiglitz)

Heterogeneous Tastes

Often pure discrete choice, both classic theory models (Hotelling) and classic empirical models (McFadden)

How to combine?

Ideal model might have both a "taste for variety" and also heterogeneous tastes.

Toulouse Lect I
Steven Berry
Overview
Intro
Empirical Approaches
Intro to Discrete
Choice
Consumer-level
Data
Market-Level Data
Extensions and
Conclusion

▲日▼▲□▼▲□▼▲□▼ ● ④⊙⊙

14-15-16 NOVEMBRE 2007

14-15-16 NOVEMBRE 2007

Direct Tastes for Products

Good for empirical work if you have

- The same small set of products
- offered in many market

ARTENALA

TOULOUSE

MAIRIE DE

NDUSTRIELL

Can model with convenient function form (log-linear, Almost Ideal, etc.)

$$q_{jt} = f(p_j, p_{-j}, \theta) + \epsilon_j$$

Need instruments for price. See, e.g. Hausman (1996) [8].

RINCETON

Toulouse Lect I

Steven Berry

Overview Intro

Empirical Approaches

Intro to Discrete Choice

Consumer-level Data

Market-Level Data

Extensions and Conclusion

14-15-16 NOVEMBRE 2007

Direct Tastes for Products

Good for empirical work if you have

- ► The same small set of products
- offered in many market

Can model with convenient function form (log-linear, Almost Ideal, etc.)

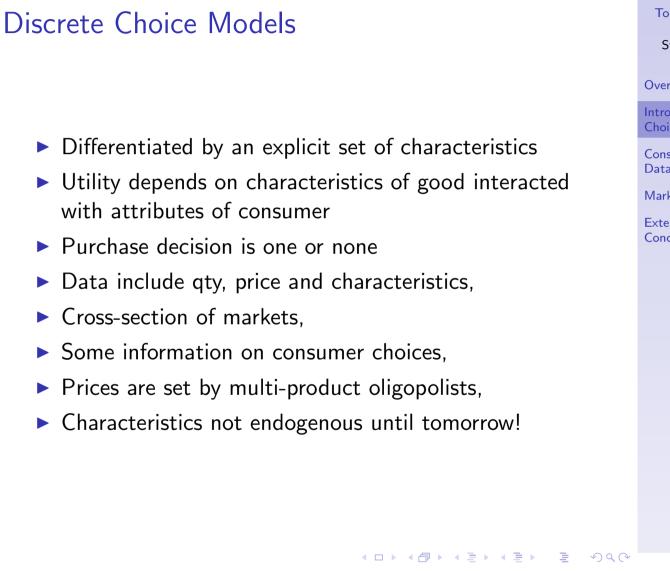
$$q_{jt} = f(p_j, p_{-j}, heta) + \epsilon_j$$

Need instruments for price. See, e.g. Hausman (1996) [8].

But,

ARTENAIA

MAIRIE


if we have many products per market, then have "too many elasticities" to estimate. And how to deal with product choice sets that change across markets? Steven Berry Overview Intro Empirical Approaches Intro to Discrete Choice Consumer-level Data Market-Level Data Extensions and Conclusion

Toulouse Lect I

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

14-15-16 NOVEMBRE 2007

Toulouse Lect I	
Steven Berry	
Overview	
Intro to Discrete Choice	
Consumer-level Data	
Market-Level Data	
Extensions and Conclusion	

PRINCETON

ARTENAIA

MAIRIE

14-15-16 NOVEMBRE 2007

Utility Specification

Utility

 $U(x_{jt},\xi_{jt},z_{it},\nu_{it};\theta_d),$

where

ARTENALA

TOULOUSE

MAIRIE

- x_{jt} is observed product characteristic,
- ξ_{jt} is unobserved (by us) product characteristic,
- z_{it} is observed consumer attribute (income, age, ...)
- \triangleright ν_{it} is unobserved consumer attribute ("random taste")
- θ_d is demand parameter

Toulouse Lect I Steven Berry	
Overview	
Intro to Discrete Choice	
Consumer-level Data	
Market-Level Data	
Extensions and Conclusion	

PRINCETON

14-15-16 NOVEMBRE 2007

Utility Specification

Utility

 $U(x_{jt},\xi_{jt},z_{it},\nu_{it};\theta_d),$

where

- ► x_{it} is observed product characteristic,
- ξ_{jt} is unobserved (by us) product characteristic,

Product characteristics

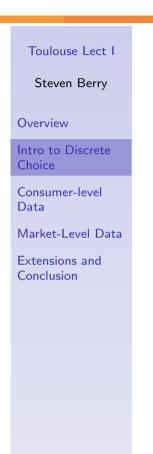
14-15-16 NOVEMBRE 2007

Utility Specification

Utility

 $U(x_{jt},\xi_{jt},z_{it},\nu_{it};\theta_d),$

where


ARTENALA

MAIRIE DE

TOULOUSE

- z_{it} is observed consumer attribute (income, age, ...)
- ▶ ν_{it} is unobserved consumer attribute ("random taste")

Consumer attributes

▲□▶▲□▶▲□▶▲□▶ ▲□ シペ?

14-15-16 NOVEMBRE 2007

Utility Specification

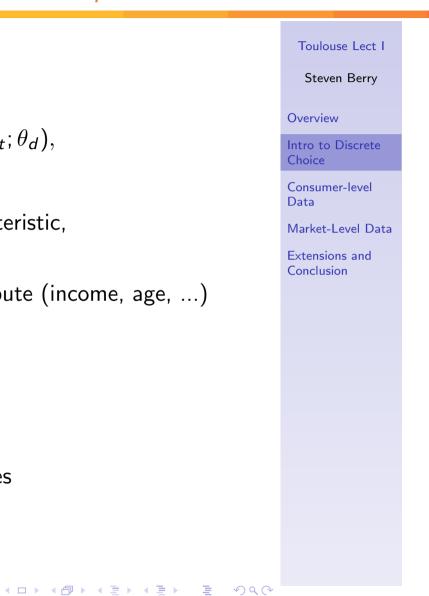
Utility

 $U(x_{jt},\xi_{jt},z_{it},\nu_{it};\theta_d),$

where

ARTENAIA

MAIRIE DE


TOULOUSE

► x_{it} is observed product characteristic,

PRINCETON

▶ *z_{it}* is observed consumer attribute (income, age, ...)

Observables

14-15-16 NOVEMBRE 2007

Utility Specification

Utility

 $U(x_{jt},\xi_{jt},z_{it},\nu_{it};\theta_d),$

where

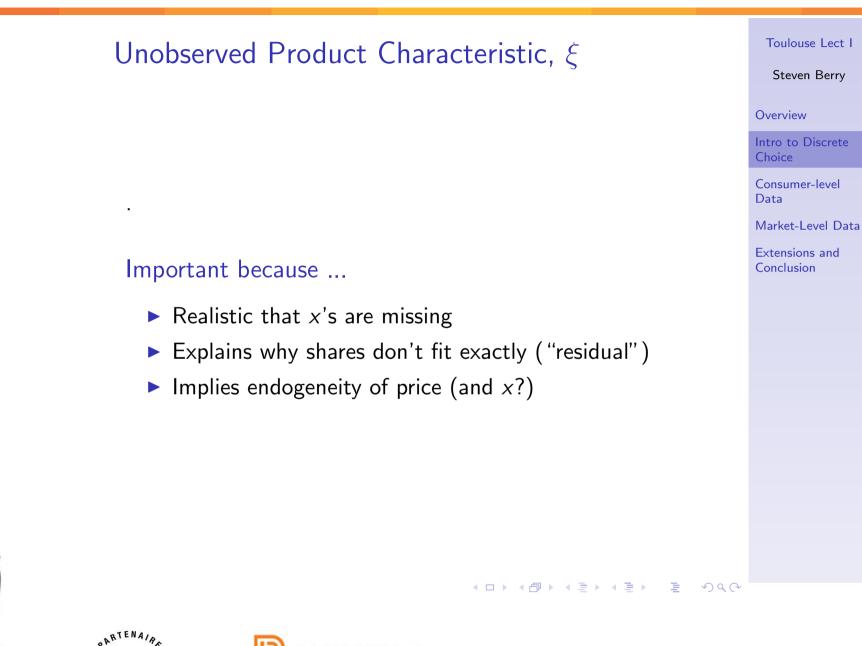
• ξ_{jt} is unobserved (by us) product characteristic,

 \triangleright ν_{it} is unobserved consumer attribute ("random taste")

Unobservables

PRINCETON

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

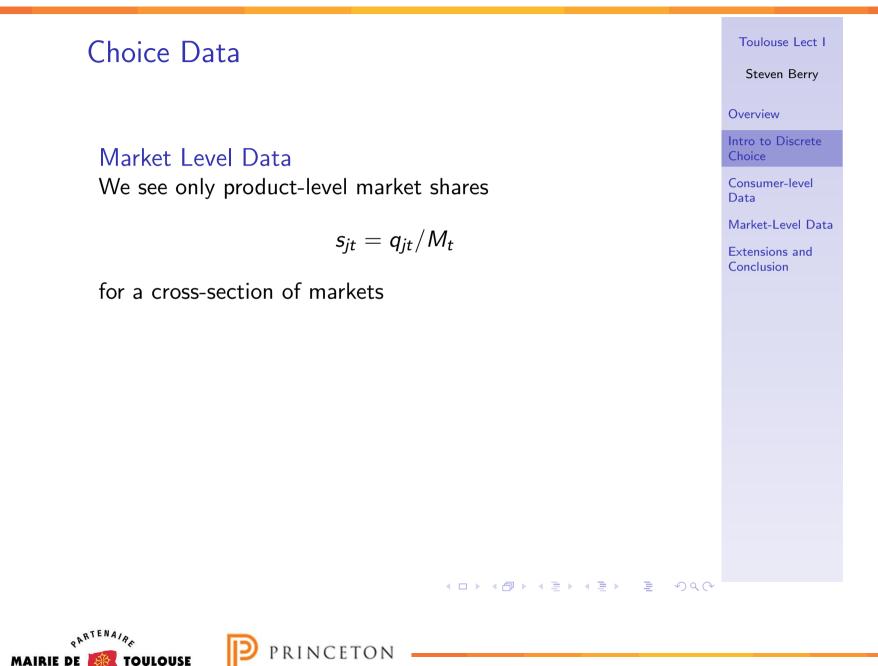


14-15-16 NOVEMBRE 2007

Utility Spee	cification		Toulouse Lect I Steven Berry
Utility $U(x_{jt},\xi_{jt},z_{it}, u_{it})$		Overview	
	$U(x_{jt},\xi_{jt},z_{it}, u_{it})$; θ_d),	Intro to Discrete Choice
where		Consumer-level Data	
			Market-Level Data
			Extensions and Conclusion
► θ_d is defined	mand parameter		
	Parameters		
		▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□	
STENAL	_		
	Princeton —		

D'ECONOMIE INDUSTRIELLE

14-15-16 NOVEMBRE 2007



PRINCETON

TOULOUSE

MAIRIE DE

14-15-16 NOVEMBRE 2007

NSTITU

· ECONOMIE

14-15-16 NOVEMBRE 2007

Choice Data

Market Level Data

We see only product-level market shares

$$s_{jt} = q_{jt}/M_t$$

for a cross-section of markets

Consumer Level Data

ARTENAIA

MAIRIE DE

We also see the match between consumers and their choices: y_{it} is an index of consumer *i*'s choice. Or, we might see less detailed information (e.g. the average income of purchasers of good *j*.) In unusual cases, see second-choice data and/or multiple choices by the same consumer.

Toulouse Lect I Steven Berry Overview Intro to Discrete Choice Consumer-level Data

Extensions and Conclusion

14-15-16 NOVEMBRE 2007

Endogeneity

ARTENAIA

Early discrete choice models ignored endogeneity because estimated on consumer-level data. We will see that this is wrong.

Either there is an product- or market-level unobservable (ξ) that is correlated with price (or other x's) or else there is not. This does not depend on the aggregation of the data.

When there is an unobservable, we face the problem of how to construct a *ceteris paribus* counterfactual – we want to know what happens when we change price, holding ξ constant. This is a special problem when p and ξ are correlated.

Toulouse Lect ISteven BerryOverviewIntro to Discrete
ChoiceConsumer-level
DataMarket-Level DataExtensions and
Conclusion

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ � ♥

14-15-16 NOVEMBRE 2007

Consumer Level Data

See McFadden (1977) [10] as modified by Berry (1994) [1], "BLP" (1994) [2], and "MicroBLP (2004)" [3]. With consumer ("micro") data, consumer purchase probability for product *j* is

$$Prob(y_{it} = j | z_{it}, x_t, \xi_t | \theta_d) \equiv P_j(z_{it}, x_t, \xi_t | \theta_d)$$

RINCETON

$$= \int_{\mathcal{A}_{j}(z_{it},x_{t},\xi_{t};\theta_{d})} \Phi(d\nu$$

where:

ARTENAIA

TOULOUSE

MAIRIE DE

$$A_j(z, x, \xi; \theta_d) = [\nu : U(x_j, \xi_j, z, \nu; \theta_d) \ge U(x_k, \xi_k, z, \nu; \theta_d), \quad \forall k \neq j]$$

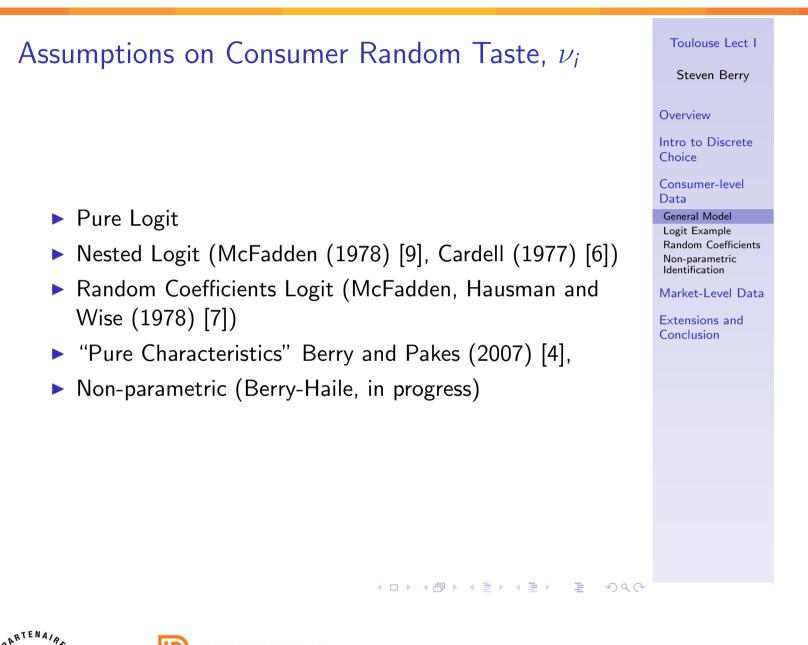
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice


Consumer-level Data

General Model Logit Example Random Coefficients Non-parametric Identification

Market-Level Data

Extensions and Conclusion

14-15-16 NOVEMBRE 2007

RINCETON

TOULOUSE

MAIRIE DE

NDUSTRIELL

14-15-16 NOVEMBRE 2007

Logit

Random consumer tastes are:

$$\nu_{it} \equiv (\epsilon_{i0t}, \epsilon_{i1t}, \ldots, \epsilon_{iJt}),$$

where the ϵ 's are i.i.d. ''double exponential", and the utility is

$$u_{ijt} = \delta_{jt} + \sum_{k} \sum_{r} z_{ikt} x_{jrt} \gamma_{rk} + \epsilon_{ijt}$$
$$= \delta_{jt} + z'_{it} \Gamma x_{jt} + \epsilon_{ijt}$$

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data

General Model

Logit Example Random Coefficients Non-parametric Identification

Market-Level Data

Extensions and Conclusion

14-15-16 NOVEMBRE 2007

Logit

Random consumer tastes are:

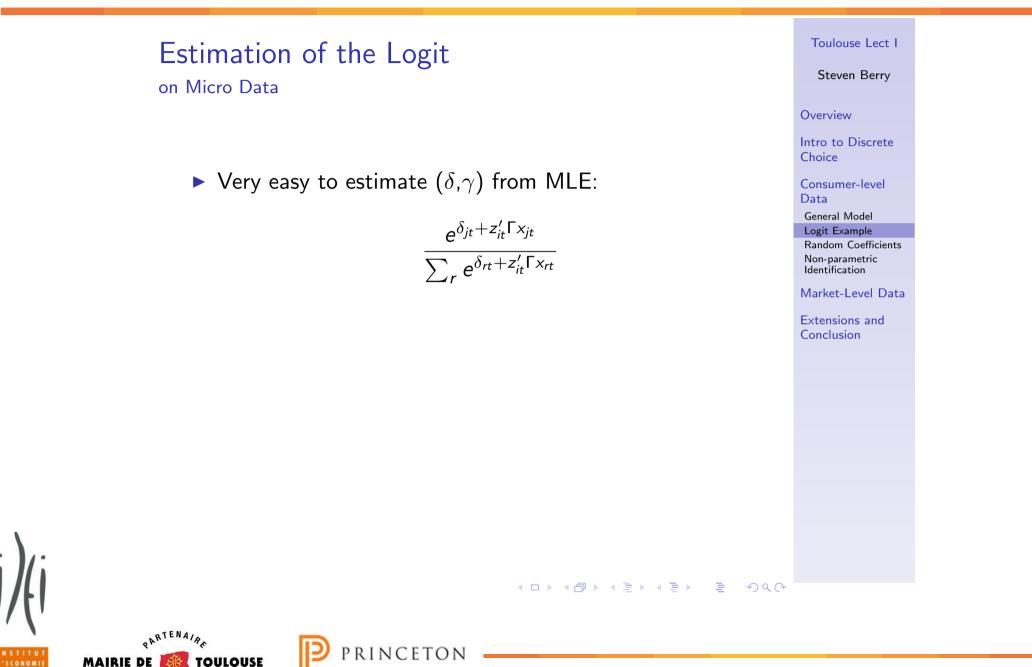
$$\nu_{it} \equiv (\epsilon_{i0t}, \epsilon_{i1t}, \ldots, \epsilon_{iJt}),$$

where the ϵ 's are i.i.d. ''double exponential", and the utility is

$$u_{ijt} = \delta_{jt} + \sum_{k} \sum_{r} z_{ikt} x_{jrt} \gamma_{rk} + \epsilon_{ijt}$$
$$= \delta_{it} + z'_{it} \Gamma x_{it} + \epsilon_{jit}$$

The "product-specific constant" (Berry, 1994) is

PRINCETON


$$\delta_{jt} \equiv x_{jt}\beta + \xi_j$$

Toulouse Lect I Steven Berry Overview Intro to Discrete Choice Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification Market-Level Data Extensions and Conclusion

م^{و RTENA}/۹۶ MAIRIE DE Kartoulouse

NSTITU

14-15-16 NOVEMBRE 2007

MAIRIE DE

D'ECONOMIE

14-15-16 NOVEMBRE 2007

Estimation of the Logit on Micro Data

• Very easy to estimate (δ, γ) from MLE:

 $\frac{e^{\delta_{jt}+z'_{it}\Gamma x_{jt}}}{\sum_{r}e^{\delta_{rt}+z'_{it}\Gamma x_{rt}}}$

► Now, are left with the "aggregate" problem:

PRINCETON

$$\delta_{jt} = x_{jt}\beta + \xi_j$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Consumer data identifies γ and δ , but doesn't say how x and ξ shift δ . Also, doesn't "solve" the endogeneity problem.

Toulouse Lect I Steven Berry Overview Intro to Discrete Choice Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification Market-Level Data Extensions and Conclusion

Ref MAIRIE DE

ARTENAIA

TOULOUSE

14-15-16 NOVEMBRE 2007

Price Endogeneity

Introduce price as a separate characteristic:

$$\delta_{jt} = \bar{x}_{jt}\bar{\beta} - \alpha p_{jt} + \xi_{jt}$$

We need cross-product variation in x and instruments for price. (Probably, ξ is correlated with p.) Price instruments could be:

Cost shifters

ARTENALA

MAIRIE DE

NDUSTRIELL

TOULOUSE

Mark-up shifters

One source of variation in mark-ups: cross-market changes in choice sets (effects markups.)

RINCETON

Toulouse Lect I Steven Berry Overview Intro to Discrete Choice Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification Market-Level Data Extensions and Conclusion

14-15-16 NOVEMBRE 2007

"Panel Data" Identification

Perhaps ξ_{jt} is constant for some product group (across markets, or across "sub-products" of a firm.) In this case, can get price coefficient from "within product group" variation in price.

With many consumers per product, can probably reject the assumption (because won't correctly predict total product shares.)

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data

General Model

Logit Example Random Coefficients Non-parametric Identification

Market-Level Data

Extensions and Conclusion

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

ARTENALA

MAIRIE DE

DUSTRIELL

TOULOUSE

14-15-16 NOVEMBRE 2007

Restrictiveness of Logit

With no variation in consumer tastes (other than ϵ), the logit own- and cross-product demand derivatives are

$$\frac{\partial s_j}{\partial p_k} = \alpha s_k s_j$$

Substitution is to popular, not similar, products. If choices vary with z_i , then

$$\frac{\partial s_j}{\partial p_k} = \int \alpha(z) s_j(z) s_k(z) dF(z)$$

If z's shift market shares "enough" can cause substitution to similar products – but may be insufficient.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data General Model

Logit Example Random Coefficients Non-parametric Identification

Market-Level Data

Extensions and Conclusion

PRINCETON

ARTENAIA

MAIRIE DE

DUSTRIELL

14-15-16 NOVEMBRE 2007

ARTENAIA

MAIRIE DE

TOULOUSE

STITU

Consider

Random Coefficients Logit

$$u_{ijt} = x_j \beta_i + \epsilon_{ijt}$$

$$\beta_{ir} = \sum_{k} z_{ik} \gamma_{rk} + \sigma_r \nu_{ir},$$

 $u_{ir} \sim N(0, \sigma_r^2)$

Larger variance (σ_r^2) in the "Random coefficients" leads to tighter substitution patterns.

Toulouse Lect I Steven Berry Overview Intro to Discrete Choice Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification Market-Level Data Extensions and Conclusion

▲□▶ ▲□▶ ▲ => ▲ => = のへで

PRINCETON

14-15-16 NOVEMBRE 2007

"Identification" of σ

In general, identification of demand comes from confronting the "same preferences" (demand parms) with "different choices."

Information on the nature of substitution patterns can come from

- changes in the choice set across markets,
- and/or information on second choices and/or
- repeated choices

ARTENALA

MAIRIE DE

DUSTRIELL

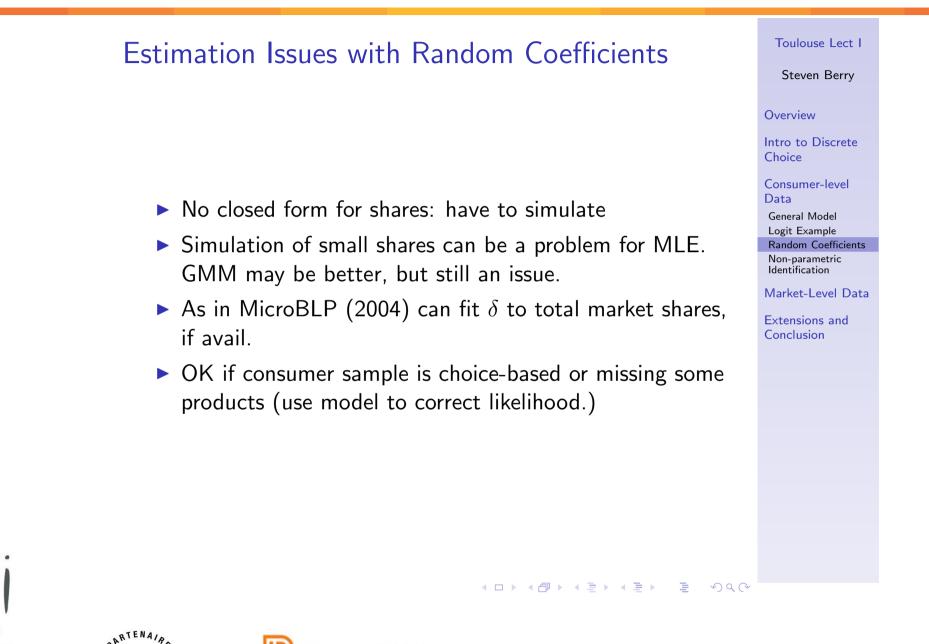
TOULOUSE

Toulouse Lect I Steven Berry Overview Intro to Discrete Choice Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification Market-Level Data Extensions and Conclusion

14-15-16 NOVEMBRE 2007

	Instruments capturing "changes in choice set"	Toulouse Lect I Steven Berry Overview
	 Functions of other product product's characteristics 	Intro to Discrete Choice Consumer-level Data General Model Logit Example Random Coefficients Non-parametric
	 With many products per market, interact own-x with a market (x has "different effect" in markets with different "Optimal Instruments" predict ∂ξ/∂θ. 	Identification Market-Level Data Extensions and Conclusion
)/i	▲□▶▲畳▶▲壹▶▲壹▶ ● ○○○	

PRINCETON


RARTENAIA,

MAIRIE DE

D'ECONOMIE INDUSTRIELLE TOULOUSE

www.toulouse.fr

14-15-16 NOVEMBRE 2007

PRINCETON

TOULOUSE

MAIRIE DI

DUSTRIELL

14-15-16 NOVEMBRE 2007

Semi-Parametric Identification Berry & Haile, in progress
One possible criticism of "structural model": are we imposing an answer by choosing the parametric assumption. With logit, maybe yes!
At at least in principle, would like to know if it is possible to uncover the distribution of random utility, conditional on x , ξ and z , with no parametric assumptions on ν and β .
Novel part here is the unobservable ξ .

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification

Market-Level Data

Extensions and Conclusion

PRINCETON

ARTENAIA

TOULOUSE

MAIRIE DE

D'ECONOMIE INDUSTRIELLE

14-15-16 NOVEMBRE 2007

Assume for each i there is some monotonic transformation of utility such that

$$\tilde{u}_{ijt} = \beta_i z_{ijt}^1 + \mu \left(x_{jt}, \xi_{jt}, z_{ijt}^2, \nu_i \right) \qquad \forall i, j = 1, \dots, \mathcal{J}^t$$

Toulouse Lect I Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification

Market-Level Data

Extensions and Conclusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

14-15-16 NOVEMBRE 2007

Assume for each *i* there is some monotonic transformation of utility such that

$$\tilde{u}_{ijt} = \beta_i z_{ijt}^1 + \mu \left(x_{jt}, \xi_{jt}, z_{ijt}^2, \nu_i \right) \qquad \forall i, j = 1, \dots, \mathcal{J}^t$$

which is further transformed to

OARTENAIA

MAIRIE DE

TOULOUSE

NSTITU

· ECONOMIE

$$u_{ijt} = z_{ijt}^{1} + \frac{\mu\left(x_{jt}, \xi_{jt}, z_{ijt}^{2}, \nu_{i}\right)}{\beta_{i}} \qquad \forall i, j = 1, \dots, \mathcal{J}^{t}.$$
$$\equiv z_{it}^{1} + \delta_{i}\left(x_{t}, \xi_{t}\right),$$
$$\equiv z_{it}^{1} + \delta_{i}^{t}.$$

Lou	louse	lect
	iouse i	LCCL

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification

Market-Level Data

Extensions and Conclusion

PRINCETON

14-15-16 NOVEMBRE 2007

Binary Choice (1 Product) Example Choose the good when: $z_{it}^1 + \delta_i^t > 0.$ First, consider identification under the following conditions. Li.d. random tastes $(\nu_i,\beta_i) \perp (x_t,z_{ijt},\xi_t).$ Full support on z^1 supp $z_{it}^1 | t = \mathbb{R} \ \forall t$. ▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで ARTENAIA

Toulouse Lect I Steven Berry Overview Intro to Discrete Choice Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification Market-Level Data Extensions and Conclusion

PRINCETON

MAIRIE DE

TOULOUSE

14-15-16 NOVEMBRE 2007

Step 1: Identification of the Within Market Taste Dist.

It is well know that

ARTENALA

TOULOUSE

MAIRIE DE

$$\Pr\left(y_{it}=1 \mid x_t, w_{it}\right) = \Pr\left(\delta_{it} \leq -z_{it}\right)$$

the distribution of δ_{it} is identified in each market from the variation in choices across z^1 .

But we want to know how this distribution varies with x and ξ – and we don't know ξ .

Toulouse Lect I Steven Berry Overview Intro to Discrete Choice Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification Market-Level Data

14-15-16 NOVEMBRE 2007

Inferring "mean tastes"

Idea (similar to logit), infer ξ from mean tastes,

$$\bar{\delta}^t = E\left[\delta_i^t(x_t, \xi_t, \nu_i)\right]$$

 $=g\left(x_{t},\xi_{t}\right)$

for some g that is strictly increasing in its second argument.

From prior step, we know $\bar{\delta}^t$ as mean of δ_{it} .

Or, might uncover median instead (need additive ξ now.)

Toulouse Lect I Steven Berry Overview Intro to Discrete Choice Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification Market-Level Data Extensions and Conclusion

▲□▶▲□▶▲□▶▲□▶ □ ろく?

ARTENAIA

TOULOUSE

MAIRIE DE

NDUSTRIELL

14-15-16 NOVEMBRE 2007

Step 2: Uncovering ξ

For each (j, t) we have the "mean taste" equation,

$$\bar{\delta}^t = g\left(x_t, \xi_t\right)$$

which is easily identified if x and ξ are independent. If some x (price?) is endogenous, then one could from the beginning assume that ξ enters utility additively and so the mean taste is

$$\bar{\delta}^t = g(x_t) + \xi_t$$

and "semi-parametric IV" (Newey-Powell) gives g and ξ . Also, if z's have a dense, but not full support, can still use quantile methods to uncover ξ . (Have to learn some quantile in every market.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少久(~

PRINCETON

ARTENAIA

MAIRIE

14-15-16 NOVEMBRE 2007

Step 3: Conditional Dist. of Tastes

Now that we know ξ and the tastes in each market, in principle can uncover, from enough cross-market data, how the full distribution of tastes varies with x and ξ .

This is a generalization of the random coefficient model.

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification

Market-Level Data

Extensions and Conclusion

AIRIE DE TOULOUSE

・ ト・ 4 聞 ト 4 聞 ト 4 団 ト 4 日 ト くの

14-15-16 NOVEMBRE 2007

Extension to Many Goods

- Now need different z_j¹, one for each product, that move separately to identified within market tastes. Example: distance from consumer to product. "Full support" is even less reasonable now.
- But given full support can then get mean utility levels and proceed as before.
- Extension can handle dense support over some region in R^J, but need overlap across markets in the region of identified tastes.

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification

Market-Level Data

Extensions and Conclusion

シック 正 エヨマエリ・エマー

ARTENAIA

MAIRIE

DUSTRIELL

14-15-16 NOVEMBRE 2007

Practical Application

In practice, will probably still use some parametric assumptions in the case with many goods, because of

1. problems with support of z

ARTENAIA

MAIRIE DE

DUSTRIELL

TOULOUSE

2. usual problem of dimensionality.

Can choose where parametric assumption is most useful, depending on problem. Also, get "goodness of fit" to non-parametric model.

Toulouse Lect I Steven Berry Overview Intro to Discrete Choice Consumer-level Data General Model Logit Example Random Coefficients Non-parametric Identification Market-Level Data Extensions and Conclusion

14-15-16 NOVEMBRE 2007

Estimation on Market-Level Data

As in BLP [2]:

ARTENAIA

TOULOUSE

MAIRIE DE

NDUSTRIELL

$$u_{ijt} = \delta_j + \left[\sum_r x_{jr} \sigma_r \nu_{ir}\right] + \epsilon_{ijt}$$
$$\nu_{ir} \sim N(0, \sigma_r^2)$$
$$\delta_j = x_j \beta + \xi_j$$

All the same issues as with micro data, but now don't have the z_i 's to "sweep out" the correct distribution of random tastes. So, have to make a parametric assumption on the ϵ 's. Still: key idea is for the function form to be "flexible enough" to match interesting patterns of substitution (e.g. *not* the pure logit.) Toulouse Lect I
Steven Berry
Overview
Intro to Discrete
Choice
Consumer-level
Data
Market-Level Data
BLP estimation
Random Coefficients
Pure Random Coeff.
Partial Consumer
Data
Extensions and
Conclusion

▲□▶▲□▶▲≡▶▲≡▶ ≡ めんの

PRINCETON

14-15-16 NOVEMBRE 2007

Identifying σ

Again, from cross-market variation in choice sets. This is similar to the "second stage" of the problem with consumer data.

Note: discrete choice model chooses a functional form, but in general we think market-level demand may be identified from sufficient exogenous variation in choice sets.

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data

Market-Level Data

BLP estimation Random Coefficients Pure Random Coeff. Partial Consumer Data

Extensions and Conclusion

وم^{RTENA}/گر MAIRIE DE TOULOUSE

NDUSTRIELL

PRINCETON

14-15-16 NOVEMBRE 2007

Idea of Estimation

$$s_j(\delta, x, \sigma) = q_j/M$$

Can "invert" this to uncover

$$\delta_j(s,q_j/M,\sigma)=x_j\beta+\xi_j$$

Want instruments that satisfy

ARTENAIA

MAIRIE DE

TOULOUSE

NSTITU

· ECONOMIE

$$E(\xi_{jt} | z_{jt}) = 0$$

or else "panel data" restrictions on ξ .

PRINCETON

Steven Berry

Toulouse Lect I

Overview

Intro to Discrete Choice

Consumer-level Data

Market-Level Data

BLP estimation Random Coefficients Pure Random Coeff.

Partial Consumer Data

Extensions and Conclusion

14-15-16 NOVEMBRE 2007

Example: Estimation of the Logit

On Market Data

Data

Market qty, price, characteristics. Market share $s_j = q_j/M$.

Market Share

TOULOUSE

$$s_j = rac{e^{\delta_j}}{1 + \sum_{r=1}^J e^{\delta_r}},$$

δ.

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data

Market-Level Data

BLP estimation Random Coefficients Pure Random Coeff. Partial Consumer Data

Extensions and Conclusion

get

$$\begin{aligned} \ln(s_j) - \ln(s_0) &= \delta_j - \delta_0 \\ &\equiv x_j \beta - \alpha p_j + \xi_j. \end{aligned}$$
 (1)

Can now estimate by 2SLS

PRINCETON

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

۹۴^{RTEN4}/۶۸ MAIRIE DE

STITU

14-15-16 NOVEMBRE 2007

Extensions to Logit

Nested logit McFadden (1978) ([9], Cardell (1997) [6]): logit within groups (nests) and "logit-like" choice of groups, but within group choices are more correlated than across group choices.

For product *i* in group *g*:

ARTENAIA

MAIRIE D

DUSTRIELL

$$u_{ij} = x_j\beta - \alpha p_j + \xi_j + \sigma_g \nu_{ig} + \epsilon_{ij}.$$

New "within-group correlation" parameter is σ_g .

Related to this: GEV models (e.g. Bresnahan, Stern and Trachtenberg (1997), [5])

Also: mixtures of logits (K "types" of logit parameters).

Toulouse Lect I Steven Berry Overview Intro to Discrete Choice Consumer-level Data Market-Level Data

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

BLP estimation Random Coefficients Pure Random Coeff. Partial Consumer Data

Extensions and Conclusion

14-15-16 NOVEMBRE 2007

Random Coefficients on Market Level Data

Extending the Logit Method

With random coefficients, can still solve for δ_j from market share equations, and estimate parameters of δ by IV. But now also need "instruments" (i.e. moment restrictions) for the substitution patterns.

Berry, Levinsohn and Pakes '95 (BLP) provide a simple algorithm for solving the share equations for δ . Many computational details ...

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data

Market-Level Data BLP estimation Random Coefficients Pure Random Coeff. Partial Consumer Data

Extensions and Conclusion

- ▲ ロ ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲

ARTENAIA

MAIRIE D

14-15-16 NOVEMBRE 2007

The GMM (generalized method of moments) estimation algorithm:

Guess a parameter

ARTENAIA

MAIRIE

- Solve for δ and therefore ξ .
- Interact ξ and instruments z − these are the moment conditions G(θ).
- Calculate an objective function how far is G(θ) from zero? f(θ) = G'AG for some positive definite A.
- ► Guess a new parameter and try to minimize *f*.
- Variance of \u00df includes variance in data across products and simulation error as well as any sampling variance in the observed market shares.

(Can simplify the algorithm since δ in linear in some parameters.)

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data

Market-Level Data

BLP estimation Random Coefficients Pure Random Coeff. Partial Consumer Data

Extensions and Conclusion

- ▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 → のへで

14-15-16 NOVEMBRE 2007

"Identification"

Need changes in choice set over time to identify substitution pattern.

In practice:

- cost shifters (price changes),
- "characteristics of other goods",
- interactions between x and market dummy,
- ▶ Panel Data: restriction on how ξ_{jt} changes over time.

Question:

ARTENAIA

MAIRIE DI

DUSTRIELL

Is there enough variance to identify substitution from demand alone? Solutions: more markets, consumer ("micro") data and/or add a "supply" side.

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data

Market-Level Data

BLP estimation Random Coefficients Pure Random Coeff. Partial Consumer Data

Extensions and Conclusion

- ▲ 日 ▶ ▲ 雪 ▶ ▲ 雪 ▶ ▲ 国 ▶ ④ � �

14-15-16 NOVEMBRE 2007

Pure Random Coefficients

Berry and Pakes (2007) consider the "no epsilon" model:

$$u_{ijt} = \delta_j + \left[\sum_r x_{jr} \sigma_r \nu_{ir}\right] + \epsilon_{ijt}$$

This is more similar to the theory literature (Hotelling, Salop, etc.) where there is typically not an "i.i.d." match value.

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data

Market-Level Data

BLP estimation Random Coefficients Pure Random Coeff. Partial Consumer Data

Extensions and Conclusion

14-15-16 NOVEMBRE 2007

Pure Random Coefficients

Berry and Pakes (2007) consider the "no epsilon" model:

$$u_{ijt} = \delta_j + \left[\sum_r x_{jr} \sigma_r \nu_{ir}\right] + \epsilon_{ijt}$$

This is more similar to the theory literature (Hotelling, Salop, etc.) where there is typically not an "i.i.d." match value.

• Can still invert for δ

ARTENAIA

MAIRIE DI

DUSTRIELL

- Inversion is computationally harder
- Problem of simulation is s not as bad
- Special case of the model with ε, but at the limit with Var(ε) = 0.

- ▲日▼ ▲国▼ ▲国▼ ▲国▼ ▲日▼

14-15-16 NOVEMBRE 2007

Non-parametric version

BLP and Berry-Pakes '07 [4] prove the existence of an "inverse" share equation that uncovers the unobserved product characteristeics":

$$\xi_j = f(s_j, s_{-j}, x_j, x_{-j}, \theta)$$

This looks like literature on estimation of non-parametric models with "non-separable" errors (e.g. Chernozukov and Hansen.)

Open question about conditions for non-parametric identification of this model.

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data

Market-Level Data BLP estimation Random Coefficients Pure Random Coeff.

Partial Consumer Data

Extensions and Conclusion

- ▲ 日 ▶ ▲ 雪 ▶ ▲ 雪 ▶ ▲ 国 ▶ ● 今 ♀ ◆

ARTENAIA

MAIRIE D

14-15-16 NOVEMBRE 2007

Partial Consumer Data

Often, have some limited data on consumers: tabulation of some consumer means, data on some products only, etc.

Advantage of model is can always make use of this data.

Example: additional moment is that model must predict average income of purchasing consumers in each market.

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete Choice

Consumer-level Data

Market-Level Data

BLP estimation Random Coefficients Pure Random Coeff. Partial Consumer Data

Extensions and Conclusion

ARTENALA

TOULOUSE

14-15-16 NOVEMBRE 2007

Example: Petrin

ARTENAIA

MAIRIE DE

NDUSTRIELL

TOULOUSE

Petrin's '02 [11] asked about the welfare of the introduction of the minivan.

From market-level data, poor estimates of the substitution within minivans. Add: demographics of minivan buyers. "Two or more children" is strong predictor and adding this greatly increasing the estimated substitutability across minivans.

Toulouse Lect I

Steven Berry

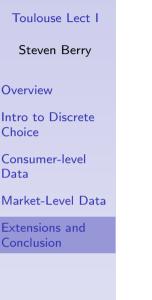
Overview

Intro to Discrete Choice

Consumer-level Data

Market-Level Data BLP estimation Random Coefficients Pure Random Coeff. Partial Consumer Data

Extensions and Conclusion


14-15-16 NOVEMBRE 2007

Conclusions

ARTENAIA.

MAIRIE

- We want to estimate a rich set of differentiated product models in order to do applications and policy analysis.
- On consumer level data, can estimate
 - Effect of consumers attributes from consumer choice data
 - Need choice-set variation to get further info on substitution patterns,
 - Need exogenous variation in costs and/or choice sets to solve endogeneity problem,
 - Variation in consumer-level data can provide non-parametric identification of random tastes within market; and then cross-market variation identifies effect of unobservables and, then, how the distribution of tastes changes with x and ξ.
- With market-level data, need some parametric assumptions, but still note the important of cross-market variation in choices.
- Extensions include multiple choices and the "pure characteristics" model.

PRINCETO

14-15-16 NOVEMBRE 2007

MAIRIE DE

D'ECONOMIE

۳

TOULOUSE www.toulouse.fr

14-15-16 NOVEMBRE 2007

Steven Berry.	Toulouse Lect I
Estimating discrete choice models of product	Steven Berry
differentiation. RAND Journal of Economics, 23(2):242–262, Summer	Overview
1994.	Intro to Discrete Choice
Steven Berry, James Levinsohn, and Ariel Pakes.	Consumer-level Data
Automobile prices in market equilibrium.	Market-Level Data
<i>Econometrica</i> , 60(4):889–917, July 1995.	Extensions and Conclusion
Steven Berry, James Levinsohn, and Ariel Pakes.	
Differentiated products demand systems from a	
combination of micro and macro data: The new vehicle market.	
Journal of Political Economy, 112(1):68–105, February	
2004.	
Steven T. Berry and Ariel Pakes.	
Estimating the pure characteristics model of	
discrete-choice demand.	
▲□▶▲□▶▲≡▶▲≡▶ □ シ۹ペ	

PRINCETON

RARTENAIA,

MAIRIE DE

D'ECONOMIE INDUSTRIELLE TOULOUSE

www.toulouse.fr

14-15-16 NOVEMBRE 2007

International Economics Review (Special Issue in Honor of Dan McFadden, 2007.

Timothy Bresnahan, Scott Stern, and Manuel Trajtenberg.

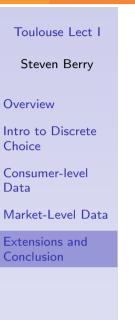
Market segmentation and the sources of rents from innovation: Personal computers in the late 1980s. *RAND Journal of Economics, Special Issue*, 28(0):S17–44, 1997.

N. Scott Cardell.

ARTENAIA

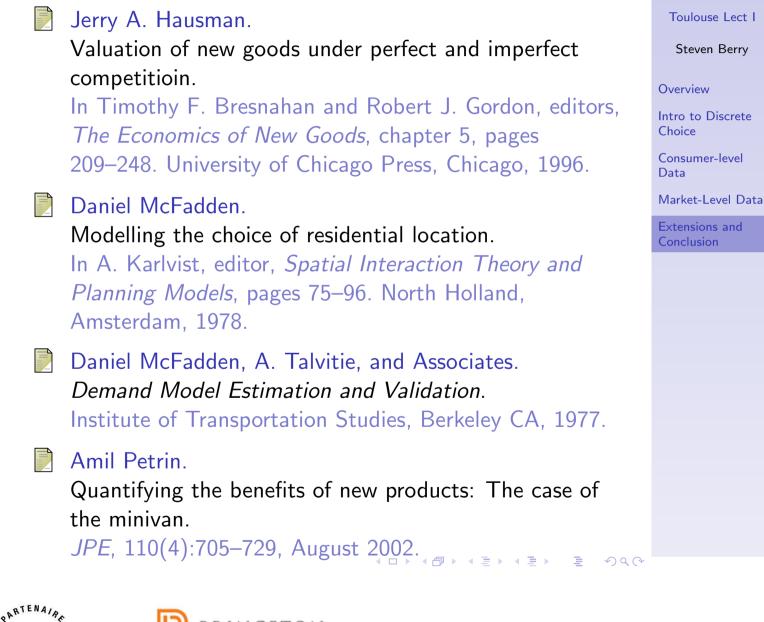
MAIRIE

Variance components structures for the extreme-value and logistic distributions with application to models of heterogeneity.


Econometric-Theory, 13(2):185-213, April 1997.

📄 J.A. Hausman and D. Wise.

A conditional probit model for qualitative choice: Discrete decisions recognizing interdependence and heterogeneous preferences.


◆□▶ ◆□▶ ◆三▶ ◆三▶

Econometrica, 46:403-426, 1978.

PRINCETO

14-15-16 NOVEMBRE 2007

1

MAIRIE D

