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Introduction

Many markets are well-described by models that feature:

◮ Oligopolistic firms

◮ Differentiated Products

◮ Competition in
◮ price
◮ quality, characteristics, location, etc.
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Idea of Talks

How do we estimate the parameters of such models from
real world data, and how do we use the estimates to analyze
interesting policy questions?

◮ Talk 1: Differentiated Products Demand Estimation

◮ Talk 2: Product Choice and Variety

◮ Talk 3: Policy Applications
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Today’s Outline

Overview
Intro to Diff Products
Empirical Approaches

Intro to Discrete Choice

Consumer-level Data
General Model
Logit Example
Random Coefficients
Non-parametric Identification

Market-Level Data
BLP estimation
Random Coefficients
Pure Random Coeff.
Partial Consumer Data

Extensions and Conclusion
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Intro to Diff Products

While homogeneous goods is a convenient assumption for
many models, it is frequently violated in practice.

Many markets feature goods that vary in

◮ quality,

◮ physical characteristics,

◮ reliability,

◮ reputation,

◮ geographic location.
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“Policy” Questions

◮ Mergers

◮ Marketing, pricing, etc.

◮ Tax effect / incidence

◮ Welfare from new products

◮ “True” CPI

◮ “Nature” of competition
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Example: Anti-Trust

Homogeneous Goods

◮ Market Definition

◮ “In or out” of market

◮ Level of concentration

◮ Ease of entry
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Example: Anti-Trust

Homogeneous Goods

◮ Market Definition

◮ “In or out” of market

◮ Level of concentration

◮ Ease of entry

Diff. Products

◮ Degree of substitutability

◮ Pattern of joint
ownership

◮ Entry into space of
characteristics
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Theories of Product Differentiation
Consumers

Preferences for

◮ Products, or

◮ Characteristics of products
◮ “address” models (Hotelling),
◮ “Characteristics” models (Vertical, Lancasterian)
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Theories of Product Differentiation
Consumers

Preferences for

◮ Products, or

◮ Characteristics of products
◮ “address” models (Hotelling),
◮ “Characteristics” models (Vertical, Lancasterian)

We can have either

◮ Discrete Choice, or

◮ Continuous Choice, or

◮ Mixed choice
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Demand-Side Reasons for Product Diff

Variety

Declining MU for each good, often representative consumer,
continuous choice (e.g. Dixit-Stiglitz)
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Demand-Side Reasons for Product Diff

Variety

Declining MU for each good, often representative consumer,
continuous choice (e.g. Dixit-Stiglitz)

Heterogeneous Tastes

Often pure discrete choice, both classic theory models
(Hotelling) and classic empirical models (McFadden)
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Demand-Side Reasons for Product Diff

Variety

Declining MU for each good, often representative consumer,
continuous choice (e.g. Dixit-Stiglitz)

Heterogeneous Tastes

Often pure discrete choice, both classic theory models
(Hotelling) and classic empirical models (McFadden)

How to combine?
Ideal model might have both a “taste for variety” and also
heterogeneous tastes.
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Empirical Approaches

◮ Direct Tastes for Products (AIDS) vs. Discrete Choice

◮ Market Level Data vs. Consumer Level Data vs. Panel
on Consumers across different Markets

◮ Or, combinations of these
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Direct Tastes for Products

Good for empirical work if you have

◮ The same small set of products

◮ offered in many market

Can model with convenient function form (log-linear, Almost
Ideal, etc.)

qjt = f (pj , p−j , θ) + ǫj

Need instruments for price. See, e.g. Hausman (1996) [8].
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Direct Tastes for Products

Good for empirical work if you have

◮ The same small set of products

◮ offered in many market

Can model with convenient function form (log-linear, Almost
Ideal, etc.)

qjt = f (pj , p−j , θ) + ǫj

Need instruments for price. See, e.g. Hausman (1996) [8].

But,
if we have many products per market, then have “too many
elasticities” to estimate. And how to deal with product
choice sets that change across markets?
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Discrete Choice Models

◮ Differentiated by an explicit set of characteristics

◮ Utility depends on characteristics of good interacted
with attributes of consumer

◮ Purchase decision is one or none

◮ Data include qty, price and characteristics,

◮ Cross-section of markets,

◮ Some information on consumer choices,

◮ Prices are set by multi-product oligopolists,

◮ Characteristics not endogenous until tomorrow!
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Utility Specification

Utility
U(xjt , ξjt , zit , νit ; θd),

where

◮ xjt is observed product characteristic,

◮ ξjt is unobserved (by us) product characteristic,

◮ zit is observed consumer attribute (income, age, ...)

◮ νit is unobserved consumer attribute (“random taste”)

◮ θd is demand parameter
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Utility Specification

Utility
U(xjt , ξjt , zit , νit ; θd),

where

◮ xjt is observed product characteristic,

◮ ξjt is unobserved (by us) product characteristic,

Product characteristics
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Utility Specification

Utility
U(xjt , ξjt , zit , νit ; θd),

where

◮ zit is observed consumer attribute (income, age, ...)

◮ νit is unobserved consumer attribute (“random taste”)

Consumer attributes
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Utility Specification

Utility
U(xjt , ξjt , zit , νit ; θd),

where

◮ xjt is observed product characteristic,

◮ zit is observed consumer attribute (income, age, ...)

Observables
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Utility Specification

Utility
U(xjt , ξjt , zit , νit ; θd),

where

◮ ξjt is unobserved (by us) product characteristic,

◮ νit is unobserved consumer attribute (“random taste”)

Unobservables
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Utility Specification

Utility
U(xjt , ξjt , zit , νit ; θd),

where

◮ θd is demand parameter

Parameters
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Unobserved Product Characteristic, ξ

.

Important because ...

◮ Realistic that x ’s are missing

◮ Explains why shares don’t fit exactly (“residual”)

◮ Implies endogeneity of price (and x?)
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Choice Data

Market Level Data
We see only product-level market shares

sjt = qjt/Mt

for a cross-section of markets
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Choice Data

Market Level Data
We see only product-level market shares

sjt = qjt/Mt

for a cross-section of markets

Consumer Level Data
We also see the match between consumers and their choices:
yit is an index of consumer i ’s choice. Or, we might see less
detailed information (e.g. the average income of purchasers
of good j .) In unusual cases, see second-choice data and/or
multiple choices by the same consumer.
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Endogeneity

Early discrete choice models ignored endogeneity because
estimated on consumer-level data. We will see that this is
wrong.

Either there is an product- or market-level unobservable (ξ)
that is correlated with price (or other x ’s) or else there is
not. This does not depend on the aggregation of the data.

When there is an unobservable, we face the problem of how
to construct a ceteris paribus counterfactual – we want to
know what happens when we change price, holding ξ
constant. This is a special problem when p and ξ are
correlated.
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Consumer Level Data

See McFadden (1977) [10] as modified by Berry (1994) [1],
“BLP” (1994) [2], and “MicroBLP (2004)” [3].
With consumer (“micro”) data, consumer purchase
probability for product j is

Prob(yit = j |zit , xt , ξt |θd) ≡ Pj(zit , xt , ξt |θd)

=

∫

Aj (zit ,xt ,ξt ;θd )
Φ(dν)

where:
Aj(z , x , ξ; θd) =

[ν : U(xj , ξj , z , ν; θd) ≥ U(xk , ξk , z , ν; θd), ∀k 6= j ]



Les 5èmes

« TOULOUSE LECTURES IN ECONOMICS »
14-15-16 NOVEMBRE 2007

Toulouse Lect I

Steven Berry

Overview

Intro to Discrete
Choice

Consumer-level
Data

General Model

Logit Example

Random Coefficients

Non-parametric
Identification

Market-Level Data

Extensions and
Conclusion

Assumptions on Consumer Random Taste, νi

◮ Pure Logit

◮ Nested Logit (McFadden (1978) [9], Cardell (1977) [6])

◮ Random Coefficients Logit (McFadden, Hausman and
Wise (1978) [7])

◮ “Pure Characteristics” Berry and Pakes (2007) [4],

◮ Non-parametric (Berry-Haile, in progress)
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Logit

Random consumer tastes are:

νit ≡ (ǫi0t , ǫi1t , . . . , ǫiJt),

where the ǫ’s are i.i.d. “double exponential”, and the utility
is

uijt = δjt +
∑

k

∑

r

ziktxjrtγrk + ǫijt

= δjt + z ′itΓxjt + ǫijt
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Logit

Random consumer tastes are:

νit ≡ (ǫi0t , ǫi1t , . . . , ǫiJt),

where the ǫ’s are i.i.d. “double exponential”, and the utility
is

uijt = δjt +
∑

k

∑

r

ziktxjrtγrk + ǫijt

= δjt + z ′itΓxjt + ǫijt

The “product-specific constant” (Berry, 1994) is

δjt ≡ xjtβ + ξj
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Estimation of the Logit
on Micro Data

◮ Very easy to estimate (δ,γ) from MLE:

eδjt+z ′
it
Γxjt

∑

r eδrt+z ′
it
Γxrt
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Estimation of the Logit
on Micro Data

◮ Very easy to estimate (δ,γ) from MLE:

eδjt+z ′
it
Γxjt

∑

r eδrt+z ′
it
Γxrt

◮ Now, are left with the “aggregate” problem:

δjt = xjtβ + ξj

Consumer data identifies γ and δ, but doesn’t say how x and
ξ shift δ. Also, doesn’t “solve” the endogeneity problem.
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Price Endogeneity

Introduce price as a separate characteristic:

δjt = x̄jt β̄ − αpjt + ξjt

We need cross-product variation in x and instruments for
price. (Probably, ξ is correlated with p.)
Price instruments could be:

◮ Cost shifters

◮ Mark-up shifters

One source of variation in mark-ups: cross-market changes
in choice sets (effects markups.)
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“Panel Data” Identification

Perhaps ξjt is constant for some product group (across
markets, or across “sub-products” of a firm.) In this case,
can get price coefficient from “within product group”
variation in price.

With many consumers per product, can probably reject the
assumption (because won’t correctly predict total product
shares.)
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Restrictiveness of Logit

With no variation in consumer tastes (other than ǫ), the
logit own- and cross-product demand derivatives are

∂sj
∂pk

= αsksj .

Substitution is to popular, not similar, products.
If choices vary with zi , then

∂sj
∂pk

=

∫

α(z)sj(z)sk(z)dF (z)

If z ’s shift market shares “enough” can cause substitution to
similar products – but may be insufficient.
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Random Coefficients Logit

Consider
uijt = xjβi + ǫijt

βir =
∑

k

zikγrk + σrνir ,

νir ∼ N(0, σ2r )

Larger variance (σ2r ) in the “Random coefficients” leads to
tighter substitution patterns.
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“Identification” of σ

In general, identification of demand comes from confronting
the “same preferences” (demand parms) with “different
choices.”

Information on the nature of substitution patterns can come
from

◮ changes in the choice set across markets,

◮ and/or information on second choices and/or

◮ repeated choices
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Instruments capturing “changes in choice set”

◮ Functions of other product product’s characteristics

◮ With many products per market, interact own-x with a
market (x has “different effect” in markets with
different

◮ “Optimal Instruments” predict ∂ξ/∂θ.
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Estimation Issues with Random Coefficients

◮ No closed form for shares: have to simulate

◮ Simulation of small shares can be a problem for MLE.
GMM may be better, but still an issue.

◮ As in MicroBLP (2004) can fit δ to total market shares,
if avail.

◮ OK if consumer sample is choice-based or missing some
products (use model to correct likelihood.)
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Semi-Parametric Identification
Berry & Haile, in progress

One possible criticism of “structural model”: are we
imposing an answer by choosing the parametric assumption.
With logit, maybe yes!

At at least in principle, would like to know if it is possible to
uncover the distribution of random utility, conditional on x ,
ξ and z , with no parametric assumptions on ν and β.

Novel part here is the unobservable ξ.
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Assume for each i there is some monotonic transformation
of utility such that

ũijt = βiz
1
ijt + µ

(

xjt , ξjt , z
2
ijt , νi

)

∀i , j = 1, . . . ,J t
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Assume for each i there is some monotonic transformation
of utility such that

ũijt = βiz
1
ijt + µ

(

xjt , ξjt , z
2
ijt , νi

)

∀i , j = 1, . . . ,J t

which is further transformed to

uijt = z1ijt +
µ
(

xjt , ξjt , z
2
ijt , νi

)

βi

∀i , j = 1, . . . ,J t .

≡ z1it + δi (xt , ξt) ,

≡ z1it + δt
i .
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Binary Choice (1 Product) Example

Choose the good when:

z1it + δt
i > 0.

First, consider identification under the following conditions.

I.i.d. random tastes
(νi , βi ) ⊥ (xt , zijt , ξt) .

Full support on z
1

supp z1it |t = R ∀t.
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Step 1: Identification of the Within Market Taste
Dist.

It is well know that

Pr (yit = 1 | xt ,wit) = Pr (δit ≤ −zit)

the distribution of δit is identified in each market from the
variation in choices across z1.

But we want to know how this distribution varies with x and
ξ – and we don’t know ξ.
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Inferring “mean tastes”

Idea (similar to logit), infer ξ from mean tastes,

δ̄t = E
[

δt
i (xt , ξt , νi )

]

= g (xt , ξt)

for some g that is strictly increasing in its second argument.

From prior step, we know δ̄t as mean of δit .

Or, might uncover median instead (need additive ξ now.)
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Step 2: Uncovering ξ

For each (j , t) we have the “mean taste” equation,

δ̄t = g (xt , ξt)

which is easily identified if x and ξ are independent. If some
x (price?) is endogenous, then one could from the beginning
assume that ξ enters utility additively and so the mean taste
is

δ̄t = g(xt) + ξt

and “semi-parametric IV” (Newey-Powell) gives g and ξ.
Also, if z ’s have a dense, but not full support, can still use
quantile methods to uncover ξ. (Have to learn some quantile
in every market.)
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Step 3: Conditional Dist. of Tastes

Now that we know ξ and the tastes in each market, in
principle can uncover, from enough cross-market data, how
the full distribution of tastes varies with x and ξ.

This is a generalization of the random coefficient model.
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Extension to Many Goods

◮ Now need different z1j , one for each product, that move
separately to identified within market tastes. Example:
distance from consumer to product. “Full support” is
even less reasonable now.

◮ But given full support can then get mean utility levels
and proceed as before.

◮ Extension can handle dense support over some region in
RJ , but need overlap across markets in the region of
identified tastes.
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Practical Application

In practice, will probably still use some parametric
assumptions in the case with many goods, because of

1. problems with support of z

2. usual problem of dimensionality.

Can choose where parametric assumption is most useful,
depending on problem. Also, get “goodness of fit” to
non-parametric model.
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Estimation on Market-Level Data

As in BLP [2]:

uijt = δj +

[

∑

r

xjrσrνir

]

+ ǫijt

νir ∼ N(0, σ2r )

δj = xjβ + ξj

All the same issues as with micro data, but now don’t have
the zi ’s to “sweep out” the correct distribution of random
tastes. So, have to make a parametric assumption on the
ǫ’s. Still: key idea is for the function form to be “flexible
enough” to match interesting patterns of substitution (e.g.
not the pure logit.)
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Identifying σ

Again, from cross-market variation in choice sets. This is
similar to the “second stage” of the problem with consumer
data.

Note: discrete choice model chooses a functional form, but
in general we think market-level demand may be identified
from sufficient exogenous variation in choice sets.
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Idea of Estimation

sj(δ, x , σ) = qj/M

Can “invert” this to uncover

δj(s, qj/M, σ) = xjβ + ξj

Want instruments that satisfy

E (ξjt |zjt) = 0

or else “panel data” restrictions on ξ.
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Example: Estimation of the Logit
On Market Data

Data
Market qty, price, characteristics. Market share sj = qj/M.

Market Share

sj =
eδj

1 +
∑J

r=1 eδr

,

get

ln(sj)− ln(s0) = δj − δ0 (1)

≡ xjβ − αpj + ξj .

Can now estimate by 2SLS
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Extensions to Logit

Nested logit McFadden (1978) ([9], Cardell (1997) [6]): logit
within groups (nests) and “logit-like” choice of groups, but
within group choices are more correlated than across group
choices.
For product j in group g :

uij = xjβ − αpj + ξj + σgνig + ǫij .

New “within-group correlation” parameter is σg .

Related to this: GEV models (e.g. Bresnahan, Stern and
Trachtenberg (1997), [5])

Also: mixtures of logits (K “types” of logit parameters).
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Random Coefficients on Market Level Data

Extending the Logit Method

With random coefficients, can still solve for δj from market
share equations, and estimate parameters of δ by IV.
But now also need “instruments” (i.e. moment restrictions)
for the substitution patterns.

Berry, Levinsohn and Pakes ’95 (BLP) provide a simple
algorithm for solving the share equations for δ. Many
computational details ...
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The GMM (generalized method of moments) estimation
algorithm:

◮ Guess a parameter

◮ Solve for δ and therefore ξ.

◮ interact ξ and instruments z – these are the moment
conditions G (θ).

◮ Calculate an objective function – how far is G (θ) from
zero? f (θ) = G ′AG for some positive definite A.

◮ Guess a new parameter and try to minimize f .

◮ Variance of θ̂ includes variance in data across products
and simulation error as well as any sampling variance in
the observed market shares.

(Can simplify the algorithm since δ in linear in some
parameters.)
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“Identification”

Need changes in choice set over time to identify substitution
pattern.
In practice:

◮ cost shifters (price changes),

◮ “characteristics of other goods”,

◮ interactions between x and market dummy,

◮ Panel Data: restriction on how ξjt changes over time.

Question:
Is there enough variance to identify substitution from
demand alone? Solutions: more markets, consumer
(“micro”) data and/or add a “supply” side.
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Pure Random Coefficients

Berry and Pakes (2007) consider the “no epsilon” model:

uijt = δj +

[

∑

r

xjrσrνir

]

+ ǫijt

This is more similar to the theory literature (Hotelling, Salop,
etc.) where there is typically not an “i.i.d.” match value.
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Pure Random Coefficients

Berry and Pakes (2007) consider the “no epsilon” model:

uijt = δj +

[

∑

r

xjrσrνir

]

+ ǫijt

This is more similar to the theory literature (Hotelling, Salop,
etc.) where there is typically not an “i.i.d.” match value.

◮ Can still invert for δ

◮ Inversion is computationally harder

◮ Problem of simulation is s not as bad

◮ Special case of the model with ǫ, but at the limit with
Var(ǫ) = 0.
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Non-parametric version

BLP and Berry-Pakes ’07 [4] prove the existence of an
“inverse” share equation that uncovers the unobserved
product characteristeics”:

ξj = f (sj , s−j , xj , x−j , θ)

This looks like literature on estimation of non-parametric
models with “non-separable” errors (e.g. Chernozukov and
Hansen.)

Open question about conditions for non-parametric
identification of this model.
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Partial Consumer Data

Often, have some limited data on consumers: tabulation of
some consumer means, data on some products only, etc.

Advantage of model is can always make use of this data.

Example: additional moment is that model must predict
average income of purchasing consumers in each market.
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Example: Petrin

Petrin’s ’02 [11] asked about the welfare of the introduction
of the minivan.

From market-level data, poor estimates of the substitution
within minivans. Add: demographics of minivan buyers.
“Two or more children” is strong predictor and adding this
greatly increasing the estimated substitutability across
minivans.
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Conclusions
◮ We want to estimate a rich set of differentiated product

models in order to do applications and policy analysis.
◮ On consumer level data, can estimate

◮ Effect of consumers attributes from consumer choice
data

◮ Need choice-set variation to get further info on
substitution patterns,

◮ Need exogenous variation in costs and/or choice sets to
solve endogeneity problem,

◮ Variation in consumer-level data can provide
non-parametric identification of random tastes within
market; and then cross-market variation identifies effect
of unobservables and, then, how the distribution of
tastes changes with x and ξ.

◮ With market-level data, need some parametric
assumptions, but still note the important of
cross-market variation in choices.

◮ Extensions include multiple choices and the “pure
characteristics” model.
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Next

◮ Endogenous Product Characteristics
◮ Static
◮ Dynamic

◮ Applications and Policy
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