
Les 3èmes

« TOULOUSE LECTURES IN ECONOMICS »
9-10-11 MAI 2005

Weathering Uncertainty in the Long Run

Lars Peter Hansen

and friends

Thomas J. Sargent, Jose Scheinkman, John Heaton

University of Chicago

Toulouse – p. 1/33



Les 3èmes

« TOULOUSE LECTURES IN ECONOMICS »
9-10-11 MAI 2005

Game plan

Connect three topics

1. Recursive and robust decision making with learning - decision

theory

2. Long run risk - operator theory

3. Estimation and specification uncertainty in time series - statistical

methods
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Recursive utility model

CES recursion as in Kreps and Porteus (1978):

Vt =
[

(1− β) (Ct)
1−ρ

+ βRt(Vt+1)
1−ρ

]
1

1−ρ

.

The recursion incorporates the current period consumption Ct and

makes a risk adjustment Rt(Vt+1) to the date t+ 1 continuation value

Vt+1 where:

Rt(Vt+1)
.
=

[

E (Vt+1)
1−α

|Xt

]
1

1−α

and Xt is the current period information set.

Do not reduce compound intertemporal lotteries.
Intertemporal composition of risk matters!
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Extraction of macro risk
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Estimated cash flow responses to macro shocks
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Related modelling challenges

1. Stochastic growth models with hidden growth regimes:

productivity slow downs and new economies

2. Permanent income models with uncertain and highly persistent

income processes
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Issues

• Econometricians face considerable specification uncertainty -

especially true in the long run - shouldn’t economic agents share

this burden?

• Probability models are adopted in part for tractability - confront

possible mistakes?

• Robust learning and actions should be reflected in forward looking

capital values

Toulouse – p. 7/33



Les 3èmes

« TOULOUSE LECTURES IN ECONOMICS »
9-10-11 MAI 2005

Game plan for remainder of the talk

1. Review stochastic formulations of robust control problems and

explore limitations.

2. Extend the analysis to address some of these issues using hidden

state Markov chains. Learning and model averaging.

3. Relate to risk-based counterparts that relax the reduction of

compound lotteries.
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Martingales and Distorted Probabilities

• Event collections {Xt : t ≥ 0} where Xt is the date t information

set. Let Pr denote a probability measure on X∞ = ∨t≥0Xt.

• Nonnegative martingale {Mt : t ≥ 0} whereM0 = 1. In particular,

E (Mt|X0) = 1.

• Distorted probability

Ẽ(xt|X0) = E (Mtxt|X0)

whereMt is a likelihood ratio or a R-N derivative.

Parameterize alternative probability models via martingales
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Entropy

• What is it?

EM logM

where EM = 1. Average log - likelihood.

Use gradient inequality

M logM ≥M − 1

• Why the name?

When Shannon had invented his quantity and consulted von Neumann

on what to call it, von Neumann replied: ‘Call it entropy. It is already in

use under that name and besides, it will give you a great edge in

debates because nobody knows what entropy is anyway.’
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Entropy
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Static entropy penalization problem

• Problem

min
M≥0,EM=1

E (M [V + θ log(M)])

• Solution - exponential tilting

M∗ =
exp

(

− 1
θ
V
)

E
[

exp
(

− 1
θ
V
)]

• Minimized objective

−θ logE

[

exp

(

−
1

θ
V

)]

• Special case of

h−1 [Eh(V )] .
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Static formulation of Robust Control

• Let a be an action in a feasible set A and x an unknown state.

Informational restrictions may be imposed on the action. Actions

and states can be processes. Objective can be discounted utility.

• Problem 1

sup
a∈A

inf
M≥0,EM=1

E (M [V (a, x) + θ log(M)])

Worst caseM∗ depends on action. Zero sum game.

• Problem 2 Reverse orders:

inf
M≥0,EM=1

sup
a∈A

E (M [V (a, x) + θ log(M)])

Action a∗ optimizes against a fixed probability. ’Bayesian solution’.
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Dynamic Stochastic Versions of Robust Control

• Petersen, James, and Dupuis (2000) IEEE Transactions in

Automatic Control

• Anderson, Hansen, and Sargent (2003) European Economic

Review

• Hansen, Sargent, Turmuhambetova, and Williams (2004)

forthcoming in JET
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Multiplicative decomposition of a martingale

Form mt+1:

Mt+1 = mt+1Mt

where E (mt+1|Xt) = 1.
Then

Mt =

t
∏

j=1

mj

The random variable mt+1 distorts the transition density between date

t and date t+ 1.

Factor a joint density as a product of conditionals
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Discounted Entropy

• Use a geometric average:

(1− β)

∞
∑

j=0

βjE [Mj+1 log(Mj+1)|X0]

• Summation by parts:

(1− β)
∑∞

j=0 βjE [Mj+1 log(Mj+1)|X0]

=
∑∞

j=0 βjE (MjE [mj+1 log(mj+1)|Xj ] |X0)
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Robust Control and Discounted Entropy

• Hansen and Sargent (1995),

Anderson, Hansen, and Sargent (2003) and

Hansen, Sargent, Turmuhambetova, and Williams (2004)

• Recursive solution in which date t minimizing agent chooses mt+1

subject to penalty Eθ[mt+1 log(mt+1)]. Infinite dimensional control

vector.

Vt = Ut + βE(mt+1Vt+1|Xt) + θE(mt+1 logmt+1|Xt)

• Link to recursive utility - Vt+1 continuation value for a future

consumption plan - use a risk adjustment:

−θ logE

[

exp

(

−
1

θ
Vt+1

)

|Xt

]

.

• Worst case mt+1 is:
exp(− 1

θ
Vt+1)

E[exp(− 1
θ

Vt+1)|Xt]
depends on value function.
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Questions

1. What about rational expectations? - small likelihood ratios -

statistical detection Anderson, Hansen, and Sargent (2003)

2. What about martingale convergence? - Kolomogorov versus

Doob Constraining discounted entropy does not require the

existence of an absolutely continuous limiting probability. A

limiting probability distribution will exist, however.

3. Why not average? - too many models on the table - we will

combine with model averaging over smaller dimensions

4. What about learning? - important limitation that I will now address
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Basic Idea

Two robustness recursions:

1. Allow for misspecified dynamics as before using mt+1 conditioned

on a big information set that includes information on a history of

hidden states.

2. Allow for robustness in the probabilities used for averaging over

the hidden states as in prior sensitivity analysis in Bayesian

statistics and econometrics

Observations

1. hidden states can be time invariant and hence index alternative

models

2. exploit tools for solving hidden state Markov chain models

3. minimizing agent has an informational advantage

4. recursive
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An alternative decomposition of Mt

Let St denote a signal history smaller that Xt.

• Decompose:

Mt = htGt

where E(ht|St) = 1.

• Use ht to distort the probabilities assigned to Xt events

conditioned on St.

• Use an entropy penalty on ht:

E(ht log ht|St)
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Review: Baseline Problem Setup

• Partition a state vector as xt =

[

yt

zt

]

, where yt is observed and zt

is not. Let st denote a vector of signals of the unobserved state zt.

• Let Z denote a space of admissible unobserved states, Z a

corresponding sigma algebra of subsets of states, and λ a

measure on the measurable space of hidden states (Z,Z). Let S
denote the space of signals, S a corresponding sigma algebra,

and η a measure on the measurable space (S,S) of signals.
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State Evolution

• Signals and states are determined by the transition functions

yt+1 = πy(st+1, yt, at),

zt+1 = πz(xt, at, wt+1),

st+1 = πs(xt, at, wt+1)

where {wt+1 : t ≥ 0} is an i.i.d. sequence of random vectors.

• Observable state evolution:

yt+1 = π̄y(xt, at, wt+1).

• {zt : t ≥ 0} can evolve according to a hidden state Markov chain.

Estimate a moving target with known transition probabilities, but

unknown transitions. For example, technology has hidden growth

states that must be inferred by investors.

• Evolution equations determine a conditional density

τ(zt+1, st+1|xt, at) relative to the product measure λ× η.
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Information

• Let {St : t ≥ 0} denote a filtration, where St is generated by y0, s1,

..., st.

• We can apply Bayes’ rule to τ to deduce a density qt, relative to

the measure λ, for zt conditioned on information St.

• Let {Xt : t ≥ 0} be a larger filtration where Xt is generated by x0,

w1, w2, ..., wt.

• Let A denote a feasible set of actions, which we take to be a Borel

set of some finite dimensional Euclidean space, and let At be the

set of A-valued random vectors that are St measurable.
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Benchmark Decision Problem

Decision problem under incomplete information about the state but

complete confidence in the model:

max
at∈At:t≥0

E

[

∞
∑

t=0

βtU(xt, at)|S0

]

,

and subject to the intertemporal evolution:

yt+1 = πy(st+1, yt, at),

zt+1 = πz(xt, at, wt+1),

st+1 = πs(xt, at, wt+1).
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Recursive Formulation

• Use τ to construct two densities for the signal:

κ(s∗|yt, zt, at)
.
=

∫

τ(z∗, s∗|yt, zt, at)dλ(z∗)

ς(s∗|yt, qt, at)
.
=

∫

κ(s∗|yt, z, at)qt(z)dλ(z).

• By Bayes’ rule,

qt+1(z
∗) =

∫

τ(z∗, st+1|yt, z, at)qt(z)dλ(z)

ς(st+1|yt, qt, at)

.
= πq(st+1, yt, qt, at).ν

πq can be computed by using filtering methods that specialize

Bayes’ rule (e.g., the Kalman filter, a discrete time version of the

Wonham filter or particle filtering).
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Constructed State Vector

• Take (yt, qt) as the state with transition law

yt+1 = πy(st+1, yt, at)

qt+1 = πq(st+1, yt, qt, at).

• Choose at as a function of (yt, qt).

One strategy is apply our earlier ”full information” approach to

stochastic robust control to this problem!! We will consider alternatives.
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Robustness and hidden states

• Two agents face different information restrictions. Minimizing

agent can find distortions conditioned on hidden states.

• Break link between recursive and commitment formulations.

• Control is forward looking and solved by backward induction.

Prediction is backward looking and solved by forward induction.

Tension in the construction of worst-case models.
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Recursive formulation

• Two distinct distortions at date t:

1. Distort dynamics for (xt+1, st+1) conditioned on (xt, qt). mt+1

distortion from before. Distort probabilities assigned to Xt+1

conditioned on Xt.

2. Distort hidden state probabilities qt or more generally the

conditional probabilities assigned to Xt events conditioned on

the signal history St.

• We do not simply ”reduce compound lotteries” where the

compounding is over hidden state zt.
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Recursive Distortion of State Dynamics

Consider a value function V (yt+1, qt+1, zt+1),

(T1V |θ)(y, q, z, a) =

−θ log

∫

exp

(

−
V [π(s∗, y, q, a), z∗]

θ

)

τ(z∗, s∗|y, z, a)dλ(z∗)dη(s∗).

The transformation T
1 maps a value function that depends on the state

(y, q, z) into a risk-adjusted value function that depends on (y, q, z, a).
Associated with this risk adjustment is a worst-case distortion in the

transition dynamics for the state and signal process:

φt(z
∗, s∗) =

exp
(

−V [π(s∗,yt,qt,at),z
∗]

θ

)

E
[

exp
(

−V [π(st+1,yt,qt,at),zt+1]
θ

)

|Xt

] .
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Recursive Distortion of State Probabilities

Consider a value function of the form: Ŵt = V̂ (yt, qt, zt, at) and
operator:

(T2V̂ |θ)(y, q, a) = −θ log

∫

exp

[

−
V̂ (y, q, z, a)

θ

]

q(z)dλ(z).

The worst case density conditioned on St is ψt(z)qt(z) where

ψt(z) =
exp

(

− V̂ (yt,qt,z,at)
θ

)

E
[

exp
(

− V̂ (yt,qt,z,at)
θ

)

|St

] .
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Recursive Game I

Consider an approach that keeps track of a value function that

depends on the hidden state.

W̌ (y, q, z) = U(x, a) + T
1
[

βW̌ ∗(y∗, q∗, z∗)|θ1
]

(x, q, a)

after choosing an action according to

max
a

T
2
{

U(x, a) + T
1
[

βW̌ ∗(y∗, q∗, z∗)|θ1
]

|θ2
}

(y, q, a),

Toulouse – p. 31/33



Les 3èmes

« TOULOUSE LECTURES IN ECONOMICS »
9-10-11 MAI 2005

Recursive Game II

Next consider an approach in which the value function depends only

on the reduced information encoded in y, q:

W (y, q) = max
a

T
2
(

U(x, a) + T
1 [βW ∗(y∗, q∗)|θ1] |θ2

)

(y, q, a)
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Issues and Extensions

• Construct well defined worst case probabilities over signals -

objects that restrict actions, contracts etc; but not over unverifiable

or hidden states.

• Related risk-based approach - relax the reduction of compound

lotteries as in Segal (1990),

Klibanoff, Marinacci, and Mukerji (2003) and

Ergin and Gul (2004). Preferences over hidden state risk or

subjective state risk are separated from preferences over risk

conditioned on the hidden state.

• Constraints instead of penalties - Epstein and Schneider (2003).

• Penalties that depend on states - Maenhout (2004) and

Lin, Pan, and Wang (2004).
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