Toulouse Lectures

Lecture II

A Theory of Coalition Formation

Model
n players $N=\{1, \ldots, n\}$
players divide up into coalitions, forming partition
of N
call partition a coalition structure
To capture externalities, what a coalition can get can depend on \mathscr{C}, i.e., for $S \in \mathscr{C}$,

$$
\begin{aligned}
v(S ; \mathscr{C})= & \text { what coalition } S \text { can get if } \\
& \text { coalition structure } \mathscr{C} \text { has formed }
\end{aligned}
$$

PRINCETON

- Coalition's composition public knowledge
- Coalition's agreement (contract) is secret (but predictable by other coalitions)
- Hence, partition function reduced form of game of (simultaneous) contract selection
- Continue to assume superadditivity: if $S_{1} \cap S_{2}=\varnothing$

$$
v\left(S_{1} ; \mathscr{C}\right)+v\left(S_{2} ; \mathscr{C}\right) \leq v\left(S_{1} \cup S_{2} ; \mathscr{C}_{12}\right),
$$ \mathscr{C}_{12} is \mathscr{C} with S_{1} and S_{2} replaced by $S_{1} \cup S_{2}$

- No longer so innocuous as in characteristic function case
- If S_{1} and S_{2} merge, remaining coalitions in \mathscr{C}_{12} may behave differently
- Classic example: Cournot oligopoly if $n=3$ and 2 firms merge, their total profit is reduced (because remaining firm expands output)
- Must assume that if S_{1} and S_{2} merge, can credibly commit to act independently (say, by remaining as separate divisions)

«TOULOUSE LECTURES IN ECONOMICS»

Suppose S_{1} and S_{2} merge (coalition structure changes from \mathscr{C} to \mathscr{C}_{12}). Consider effect on S
Three cases:
(1) $v(S ; \mathscr{8})=v\left(S ; \mathscr{C}_{12}\right)$
(2) $v(S ; \mathscr{C})<v\left(S ; \mathscr{C}_{12}\right)$ positive externality
(3) $v(S ; \mathscr{C})>v\left(S ; \mathscr{C}_{12}\right)$ negative externality

- Solution concept
- prediction of payoffs
- prediction of coalitions
- Need a pair of functions φ, ψ

$$
\begin{aligned}
& \varphi_{i}(v)=\text { player } i \text { 's predicted payoff } \\
& \psi(v)=\text { predicted coalition structure }
\end{aligned}
$$

PRINCETON

- Which players get to move determined randomly
- some realized order of players $R=\left(k_{1}, \ldots, k_{n}\right)$
- φ and ψ will be indexed by R

$$
\varphi^{R} \quad \psi^{R}
$$

- Overall solution given by randomization over R

PRINCETON

- $\left(\varphi^{R}, \psi^{R}\right)$ doesn't fully specify solution
- Given that some coalitions already partially formed, want to predict ultimate payoffs and coalition structure
- Suppose $\mathscr{\rho}$ is a partial partition, i.e., partition of $\{1, \ldots, i-1\}$
$\varphi_{j}^{R}(v \mid \mathscr{P})$ predicts ultimate payoff $j \notin\{1, \ldots, i-1\}$
$\psi^{R}(v \mid \mathscr{P})$ predicts ultimate coalition structure
- Solution is pair $\left(\varphi^{R}(\cdot \mid \cdot), \psi^{R}(\cdot \mid \cdot)\right)$
- $\varphi^{R}(v)=\varphi^{R}(v \mid \varnothing) \quad \psi^{R}(v)=\psi^{R}(v \mid \varnothing)$
- Henceforth, assume $R=1,2, \ldots, n$ and drop superscript

Axioms

- Want to capture idea that player can commit not to negotiate with certain other players
- Consider $\{1, \ldots, i-1\}$ and partial partition \mathscr{P}
- Suppose $j \in S \in \mathscr{P}$ and $k \in\{1, \ldots, i-1\}$ but $k \notin S$
- fact that j and k are separate, implies communication line cut between them
- so at later date, can't find them in same coalition together

Formally
(1) Non-negotiation Commitment:

Given $j, k \in\{1, \ldots, i-1\}$ and partial partition \mathscr{P}, suppose that $j \in S \in \mathscr{P}$ but $k \notin S$.

Then if $j \in S^{*} \in \psi(v \mid \mathscr{P})$, we have $k \notin S^{*}$.

PRINCETON

If negotiation does occur and results in coalition, then coalition is binding
(3) Binding Coalitions: Given $\{1, \ldots i-1\}$ and partial partition \mathscr{P}, if $S \in \mathscr{P}$, then there exists $S^{\prime} \in \psi(v \mid \mathscr{P})$ such that $S \subseteq S^{\prime}$.

- Too strong: coalition may break apart if all members gain from doing so
- Major qualitative results not much changed if rule out renegotiation of coalitions
- Analysis simpler without renegotiation, so will invoke Binding Coalitions
- Still, more satisfactory axiom would allow coalitions to break up if members collectively gain

In 3-player model (like yesterday's), suppose

- $\{1\}$ and $\{2\}$ already exist
- 3 could be allocated to $\{1\},\{2\}$ or could remain by self
- competition implies 3 will be allocated to maximize welfare of those involved: 1,2 , and 3.

«TOULOUSE LECTURES IN ECONOMICS»

Given $\{1, \ldots, i-1\}$ and partial partition \mathscr{P}, i could join any coalition $\hat{S} \in \mathscr{P} \cup\{\varnothing\}$
(" i joins $\varnothing "$ means starts own coalition)

- Welfare of coalition if $S \in \mathscr{P} \cup\{\varnothing\}$ if i joins $\hat{S} \in \mathscr{P} \cup\{\varnothing\}$
- if $\hat{S}=S$
$\underset{\text { where }}{\Phi(S \mid \mathscr{P}(S \cup\{i\}))}=v\left(S^{*} ; \psi(v \mid \mathscr{P}(S \cup\{i\}))\right)-\sum_{j>i} t_{j}(S \mid \cdot \mathscr{O}(S \cup\{i\}))$
$-S \bigcup\{i\} \subseteq S^{*} \in \psi(v \mid \mathscr{P}(S \cup\{i\}))$
- $\mathscr{P}(S \cup\{i\})$ is \mathscr{P} with S replaced by $S \cup\{i\}$,
$-t_{j}(S \mid \mathscr{P}(S \cup\{i\}))$ is payment that coalition S later makes to player j if i joins S

«TOULOUSE LECTURES IN ECONOMICS»

- if $S \in \mathscr{F}, \hat{S} \in \mathscr{P} \cup\{\varnothing\} \quad S \neq \hat{S}$

where

$$
-S \subseteq S^{*} \in \psi(\nu \mid \mathscr{O}(\hat{S} \cup\{i\}))
$$

$$
-\mathscr{H}(\hat{S} \cup\{i\}) \text { is } \mathscr{F} \text { with } \hat{S} \text { replaced by } \hat{S} \cup\{i\}
$$

$$
\text { (if } \hat{S}=\{\varnothing\} \text {, then just add }\{i\} \text { to } \mathscr{P} \text {) }
$$

- $t_{j}(S \mid \mathscr{P}(\hat{S} \bigcup\{i\}))$ is payment S (or successor coalition) makes to j if i joins \hat{S}
- if $S=\varnothing, S \neq \hat{S}$

$$
\Phi(S \mid \Phi(\hat{S} \cup\{i\}))=0 .
$$

$Q^{R R T E N A / A}$

- Recall public good game $\{1,2,3\}$ can produce 24
$\{1,2\}$ can produce 12 , and 3 obtains 9
$\{1,3\}$ can produce 13 , and 2 obtains 9
$\{2,3\}$ can produce 14 , and 1 obtains 9
if no coalitions, everyone gets 0

PRINCETON

«TOULOUSE LECTURES IN ECONOMICS»

In public good example, if $\mathscr{P}=\{\{1\},\{2\}\}$

$$
\begin{aligned}
& \Phi(\{1\} \mid\{1,3\},\{2\})=13 \\
& \Phi(\{1\} \mid\{1\},\{2,3\})=9 \\
& \Phi(\{2\} \mid\{1\},\{2,3\})=14 \\
& \Phi(\{2\} \mid\{1,3\},\{2\})=9 \\
& \Phi(\{1\} \mid\{1\},\{2\},\{3\})=\Phi(\{2\} \mid\{1\},\{2\},\{3\})=\Phi(\{\varnothing\}\}\{1\},\{2\},\{3\})=0
\end{aligned}
$$

- Player i should be allocated to coalition \hat{S} (including possibly \varnothing) for which total welfare of coalitions (including \varnothing) maximized:
(4) Competitive Allocation: Given $\{1, \ldots, i-1\}$ and partial partition \mathscr{P}
if

$$
S^{\circ}=\underset{\hat{S} \in \mathscr{M} \cup\{\varnothing\}}{\arg \max } \quad \sum_{S \in \mathscr{O} \cup \varnothing\}} \Phi(S \mid \cdot \mathscr{P}(\hat{S} \cup\{i\})),
$$

then there exists $S^{\circ *} \in \psi(v \mid \mathscr{P})$ such that

$$
i \in S^{\circ} \subseteq S^{\circ *}
$$

«TOULOUSE LECTURES IN ECONOMICS»

In the public good example, if $\mathscr{P}=\{\{1\},\{2\}\}$

$$
\left.\begin{array}{rl}
23 & =\Phi(\{1\} \mid\{1\},\{2,3\})+\Phi(\{2\} \mid\{1\},\{2,3\}) \\
& >\Phi(\{14 \mid\{1,3\},\{2\})+\Phi(\{2\} \mid\{1,3\},\{2\})=22 \\
9
\end{array}\right)
$$

- Thus, according to Competitive Allocation, 3 gets allocated to $\{2\}$.

«TOULOUSE LECTURES IN ECONOMICS»

Consider example where player 3 can stand alone

$$
\{1,2,3\} \text { can get } 28
$$

$\{1,3\}$ can get 18 and 2 obtains 8
$\{2,3\}$ can get 16 and 1 obtains 9
$\{1,2\}$ can obtain 8 and 3 obtains 13

$$
\begin{aligned}
& v(1 ;\{1\},\{2\},\{3\})=v(2 ;\{1\},\{2\},\{3\})=0 \quad v(3 ;\{1\},\{2\},\{3\})=12 \\
& 26=\Phi(\{1\} \mid\{1,3\},\{2\})+\Phi(\{2\} \mid\{1,3\},\{2\}) \\
& >\Phi(\{1\} \mid\{1\},\{2,3\})+\Phi\left(\left.\{2\}\right|_{6} ^{\mid\{1\},}\{2,3\}\right)=25 \\
& >\Phi(\{1\} \mid\{1\},\{2\},\{3\})+\Phi(\{2\} \mid\{1\},\{2\},\{3\})+\Phi(\{\varnothing\} \mid\{1\},\{2\},\{3\}) \\
& =12
\end{aligned}
$$

- Thus, 3 gets allocated to $\{1\}$.
- Just as players are allocated to coalitions competitively should be paid competitively
- In public good game when $\mathscr{P}=\{\{1\},\{2\}\}$
-1 willing to pay 4 for player 3
-2 willing to pay 5 for player 3
- so $\varphi_{3}(v \mid\{1\},\{2\})=4 \quad$ (opportunity wage)
- In public good game when $\mathscr{P}=\{1,2\}$
- player 3 can get 9 by remaining on own
- so $\varphi_{3}(v \mid\{1,2\})=9 \quad$ (opportunity wage)

«TOULOUSE LECTURES IN ECONOMICS»

To generalize:

- Given $\{1, \ldots, i-1\}$ and \mathscr{P}, suppose competitive allocation of i is to $S^{\circ} \in \mathscr{P}$
- Coalition S willing to pay

$$
\begin{aligned}
& \max \left\{\left[\Phi\left(S \mid \mathscr{P}\left(S^{\prime} \cup\{i\}\right)\right)-\Phi\left(S \mid \mathscr{P}\left(S^{\circ} \cup\{i\}\right)\right)\right], 0\right\} \\
& \text { to get } i \text { allocated to } S^{\prime} \text { instead }
\end{aligned}
$$

- Total amount that players will pay to get i allocated to S^{\prime} rather than S°

$$
\sum_{S \in \mathscr{O} \cup\{\varnothing\}} \max _{\{ }\left\{\left[\Phi\left(S \mid \mathscr{P}\left(S^{\prime} \cup\{i\}\right)\right)-\Phi\left(S \mid \mathscr{P}\left(S^{\circ} \cup\{i\}\right)\right)\right], 0\right\}
$$

(4) Competitive (Opportunity) Wages: Given
$\{1, \ldots, i-1\}$ and \mathscr{P},
suppose i is competitively allocated to $S^{\circ} \in \mathscr{P} \cup\{\varnothing\}$

- Then,
$=$ total amount that players would pay to get i allocated to "favorite" alternative S^{\prime} rather than S°.

«TOULOUSE LECTURES IN ECONOMICS»

In public good example, with $\mathscr{P}=\{\{1\},\{2\}\}$

- player 3 should be allocated to $S^{\circ}=\{2\}$
- next best alternative $S^{\prime}=\{1\}$

$$
\begin{aligned}
\varphi_{3}= & \max \{[\Phi(\{1\} \mid\{1,3\},\{2\})-\Phi(\{1\} \mid\{1\},\{2,3\})], 0\} \\
& +\max \{[\Phi(\{2\} \mid\{1,3\},\{2\})-\Phi(\{2\} \mid\{1\},\{2,3\})], 0\} \\
= & \max \{13-9,0\}+\max \{9-14,0\} \\
= & 4+0
\end{aligned}
$$

$Q^{\text {R }}$ RTENA/P

Example where player 3 can stand alone,
with $\mathscr{P}=\{\{1\},\{2\}\}$

- player 3 should be allocated to $S^{\circ}=\{1\}$
- next best alternative is $S^{\prime}=\{\varnothing\}$, not $S^{\prime}=\{2\}$
- player 2 willing to pay only $16-8=8$ to change allocation from $\{1\}$ to $\{2\}$
- but \varnothing is willing to pay 12 to change allocation from $\{1\}$ to $\{3\}$.
- Hence, $\varphi_{3}(v \mid\{1\},\{2\})=12$

	allocations		
$\{1\}$	$\{1,3\}$ coalitions$\{2\}$	$\{2,3\}$	$\{3\}$
8	9	0	
$\{\varnothing\}$	16	0	
0	0	12	

First row, second column is $\Phi(\{1\} \mid\{1\},\{2,3\})$
$1 \geqslant$
PRINCETON

How will coalitions 1 and 2 divide up $\varphi_{3}=12$ in this example?

- $\{1\}$ won't pay for it all, because $\{2\}$ gains from 3 being allocated to $\{1\}$ rather than $\{\varnothing\}$
- If coalition $\{1\}$ not present, then optimal to allocate 3 to $\{2\}$
- $\{1\}$'s marginal impact is to switch allocation from $\{2,3\}$ to $\{1,3\}$
- marginal effect on others, $\{2\}$ and $\{\varnothing\}$, is $16-8=8$
- so this is what $\{1\}$ must pay to get $\{1,3\}$

MAIRIE DE TOULOUSE

- replace $\{1\}$'s payoffs by his payment 8
- if coalition $\{2\}$ not present, then optimal to allocate 3 to $\{\varnothing\}$
- $\{2\}$'s marginal impact is to switch allocation from $\{3\}$ to $\{1,3\}$
- marginal effect on others, $\{1\}$ and $\{\varnothing\}$, is $12-8=4$
- so this is what $\{2\}$ will pay
- Thus $t_{3}(\{1\} \mid\{1,3\},\{2\})=8$ and $t_{3}(\{2\} \mid\{1,3\},\{2\})=4$

«TOULOUSE LECTURES IN ECONOMICS»

Given $S, T \in \mathscr{P} \bigcup\{\varnothing\}, S<T$ if $\min \{i \mid i \in S\}<\min \{i \mid i \in T\}$ or $T \in\{\varnothing\}$
(5) Vickrey Payments: Given $\{1, \ldots, i-1\}$ and \mathscr{P}, suppose i is competitively allocated to $S^{\circ} \in \mathscr{P} \cup\{\varnothing\}$
for all $S \in \mathscr{F}, \hat{S} \in \mathscr{P} \cup\{\varnothing\}$

- $t_{i}\left(S \mid \mathscr{P}\left(S^{\circ} \cup\{i\}\right)\right)$

$$
\begin{aligned}
= & \max \left\{\begin{array}{l}
0, \max _{\left.S^{\circ} \in \mathscr{O} \cup \mathscr{Q}\right\}}[
\end{array} \sum_{S^{\prime \prime}>S}\left(\Phi\left(S^{\prime \prime} \mid \mathscr{O}\left(S^{\prime} \cup\{i\}\right)\right)-\Phi\left(S^{\prime \prime} \mid \mathscr{O}\left(S^{\circ} \cup\{i\}\right)\right)\right)+\right. \\
& \left.\left.\sum_{S^{\prime \prime}<S}\left(t_{i}\left(S^{\prime \prime} \mid \cdot \mathscr{O}\left(S^{\prime} \cup\{i\}\right)\right)-t_{i}\left(S^{\prime \prime} \mid \cdot \mathscr{O}\left(S^{\circ} \cup\{i\}\right)\right)\right)\right]\right\}
\end{aligned}
$$

$Q^{\text {R }}$ RTENA/P

«TOULOUSE LECTURES IN ECONOMICS»

- if $t_{i}\left(S \mid \mathscr{P}\left(S^{\circ} \cup\{i\}\right)\right)>0$

$$
t_{i}\left(S \mid \mathscr{P}\left(S^{\prime} \bigcup\{i\}\right)\right)=0, \text { for all } S^{\prime} \neq S^{\circ}
$$

- if $t_{i}\left(S \mid \mathscr{P}\left(S^{\circ} \cup\{i\}\right)\right)=0$

$$
\begin{aligned}
t_{i}\left(S \mid \cdot \mathscr{O}\left(S^{\prime} \cup\{i\}\right)\right)= & \max \left\{0,\left[\Phi\left(S \mid \cdot \mathscr{O}\left(S^{\prime} \cup\{i\}\right)\right)-\Phi\left(S \mid \cdot \mathscr{O}\left(S^{\circ} \cup\{i\}\right)\right)\right.\right. \\
& \left.\left.+\sum_{S^{\prime \prime}<S}\left(t_{i}\left(S^{\prime \prime} \mid \cdot \mathscr{O}\left(S^{\prime} \cup\{i\}\right)\right)-t_{i}\left(S^{\prime \prime} \mid \cdot \mathscr{O}\left(S^{\circ} \cup\{i\}\right)\right)\right)\right]\right\}
\end{aligned}
$$

«TOULOUSE LECTURES IN ECONOMICS»

- $t_{i}\left(\{\varnothing\} \mid \cdot \mathscr{P}\left(S^{\prime} \cup\{i\}\right)\right)=0$, for all $S^{\prime} \in \mathscr{P}$
- $t_{i}(\{\varnothing\} \mid \mathscr{P}(\{\varnothing\} \cup\{i\}))=\Phi(\{\varnothing\} \mid \mathscr{P}(\{\varnothing\} \cup\{i\}))$
- Lemma: Given $\{1, \ldots, i-1\}$ and
if i competitively allocated to $S^{\circ} \in \mathscr{P} \cup\{\varnothing\}$

PRINCETON

«TOULOUSE LECTURES IN ECONOMICS»

- Consider public good game and suppose $\mathscr{P}=\{\{1\}\}$

$$
\begin{aligned}
\Phi(\{1\} \mid\{1,2\}) & =v(\{1,2,3\} ;\{1,2,3\})-t_{3}(\{1,2\} \mid\{1,2\}) \\
= & v(\{1,2,3\} ;\{1,2,3\})-\varphi_{3}(v \mid\{1,2\}) \text { (from Lemma) }
\end{aligned}
$$

$$
=24-9=15
$$

$$
\Phi(\{1\} \mid\{1\},\{2\})=v(\{1\} ;\{1\},\{2,3\})-t_{3}(\{1\} \mid\{1\},\{2\})
$$

$$
=9-0=9
$$

$$
\Phi(\{\varnothing\} \mid\{1,2\})=0, \text { by definition }
$$

$$
\Phi(\{\varnothing\} \mid\{1\},\{2\})=v(\{2,3\} ;\{1\},\{2,3\})-t_{3}(\{2\} \mid\{1\},\{2\})
$$

$$
=v(\{2,3\} ;\{1\},\{2,3\})-\varphi_{3}(v \mid\{1\},\{2\})(\text { from Lemma) }
$$

$$
=14-4=10
$$

allocations

	$\{1,2\}$	$\{2\}$
	$\{1\}$	15
coalitions	9	
$\{\varnothing\}$	0	10

- Competitive allocation is $\{2\}$
- I.e., partial partition is $\{1\},\{2\}$
- Hence, final coalition structure: $\{1\},\{2,3\}$

PRINCETON

«TOULOUSE LECTURES IN ECONOMICS»

Suppose i competitively allocated to $S^{\circ} \in \mathscr{P} \cup\{\varnothing\}$

- predictions about payoffs, coalitions, and payments should be same before and after allocation
(6) Consistency: Given $\{1, \ldots, i-1\}$ and \mathscr{P}, if i is competitively allocated to S°, then

$$
\begin{aligned}
& \varphi_{j}(v \mid \mathscr{P})=\varphi_{j}\left(v \mid \mathscr{P}\left(S^{\circ} \cup\{i\}\right)\right) \\
& \psi(v \mid \mathscr{P})=\psi\left(v \mid \mathscr{P}\left(S^{\circ} \cup\{i\}\right)\right) \\
& t_{j}(S \mid \mathscr{P})=\left\{\begin{array}{l}
t_{j}\left(S \mid \mathscr{P}\left(S^{\circ} \cup\{i\}\right)\right), \text { for } S \in \mathscr{P}, S \neq S^{\circ} \\
t_{j}\left(S^{\circ} \cup\{i\} \mid \mathscr{P}\left(S^{\circ} \cup\{i\}\right)\right), \text { if } S=S^{\circ} \\
\text { for all } j>i .
\end{array}\right.
\end{aligned}
$$

Theorem 1: For generic v, there exist unique φ, ψ, and t satisfying

- Nonnegotiation Commitment (NC)
- Binding Coalitions
(BC)
- Competition Allocation
- Competitive Wages
- Vickrey Payments
- Consistency

«TOULOUSE LECTURES IN ECONOMICS»

Proof: Let $n=3$

- Consider $\mathscr{P}=\{\{1\},\{2\}\}$
- From NC and BA,

$$
\psi(v \mid\{1\},\{2\})=\{1,3\},\{2\}
$$

or

$$
\{1\},\{2\},\{3\}
$$

or

$$
\{1\},\{2,3\}
$$

- CA determines which of three holds
- CW and VP determine φ_{3} and t_{3}
- Can do same thing for $\mathscr{P}=\{\{1,2\}\}$
- Can use C, ψ, and t_{3} to calculate

$$
\Phi(S \mid\{1,2\}) \text { and } \Phi(S \mid\{1\},\{2\})
$$

- Hence, CA determines whether 2 allocated to $\{1\}$ or $\{\varnothing\}$
- continue iteratively

