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Abstract

If the owner of an object sells it through an auction run by an agent of hers, corruption

may appear. In a first-price auction, corruption can make honest bidders more or less

aggressive, or their behavior can remain unchanged. We identify sufficient conditions for

each of the three possibilities. We analyze the consequences of corruption on efficiency,

bidders’ welfare and expected revenue, and study how it influences the number of bidders

when participation is costly. Our results apply, as a particular case, to the situation

—unrelated to corruption— where one of the bidders is granted a right of first refusal.
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1 Introduction

Most auctions are not organized and run by the owner of the object on sale. Usually, that

task is delegated to an agent. Given this separation between the owner and the auctioneer,

corruption may appear. The auctioneer may be tempted to enter into an agreement with one

of the bidders to tilt the auction in her favor.

In this paper, we examine a particular form of corruption in a single-object, private-value

sealed-bid auction with risk-neutral bidders. We focus on the case where corrupt dealings

between the auctioneer and any bidder consist of revealing information on how much other

participants in the auction have bid. Specifically, we assume that bidders believe that the

auctioneer has reached, with a certain probability, an agreement with one of them by which,

after receiving all bids, (i) she will reveal to that bidder all of her rivals’ bids, and (ii) she

will allow that bidder to change her original bid upwards or downwards if she wishes to do

so. Bidders believe that it is possible, then, that bids are not submitted simultaneously but

sequentially. We are interested in the consequences that the possibility that such a deal exists

has on how bidders —particularly those not involved in the corrupt agreement— behave and on

the auction’s welfare and revenue properties.

Our exercise can be interpreted in more than one way. In this paper, we do not model

how the corrupt agreement between the auctioneer and one bidder is reached, but concentrate

on its influence on the auction itself. We assume that the agreement is arrived at before the

auction. We could consider our setup as part of a more complete, two-stage model of corruption,

where, first, who the favored bidder will be and how she will compensate the auctioneer are

determined, and, second, the auction takes place. Our analysis is useful for any such model.

Alternatively, the prior agreement could be part of a special relationship, or one that exceeds

the context of the individual auction under study. This is particularly relevant for the case

of public procurement,1 where officials in charge of the auction may have been captured by

parties interested not just in one but in a series of public contracts. We discuss further the

interpretation of our setup in Section 2.

1Although we model the auction as a selling mechanism, all of our results apply as well to procurement

auctions.
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We are particularly interested in the effect of the possible existence of this form of corruption

on how honest bidders behave in the auction. We want to ascertain how an honest bidder will

react when the probability that her bid be revealed to a rival grows; i.e., whether she will bid

more or less aggressively. This will turn out to be crucial for the effect of this form of corruption

on the auction’s result. Needless to say, in answering that question we will determine how the

behavior of honest bidders when corruption is possible compares to their behavior in standard

auctions without corruption.

In a second-price auction, since bidding her own valuation is a weakly dominant strategy

for every bidder, this form of corruption has no effect on bidding behavior or on the auction’s

result. In a first-price auction, however, the situation is more complex. We show below that

an honest bidder can become more or less aggressive or her behavior can remain unchanged

when she perceives as more likely that a rival is colluding with the auctioneer. In Proposition

1, we provide sufficient conditions for each of the three possibilities. Namely, if F is the cumu-

lative distribution function of a bidder’s valuation for the object being auctioned and f is the

corresponding density, if the ratio F/f is strictly convex (respectively, strictly concave, linear)

in the valuation, the honest bidder will become more aggressive (respectively, less aggressive,

equally aggressive) as corruption becomes more probable. Furthermore, we establish the extent

to which the most commonly used distributions satisfy one of those conditions.

As a corollary, we find a result that may be of independent interest. In standard, first-price

auctions —without corruption— if the ratio F/f is stricly convex (respectively, strictly concave,

linear) then bidding functions are strictly concave (respectively, strictly convex, linear).

We then move on to assess the effect of this form of corruption on efficiency, revenue and

bidders’ welfare. If the ability to bid last knowing her rival bids is conferred to a bidder with

positive probability, the first-price auction will not be efficient. In addition, we show that honest

bidders’ expected utilities are strictly decreasing in the probability of corruption (Proposition

2). The coalition between the auctioneer and the favored bidder always generates a positive

surplus to split between the two by reaching a corrupt deal (Proposition 3). However, whether

this surplus falls or grows with the probability that honest bidders attach to the existence of

the deal depends on whether the latter become more or less aggressive, as described above.
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As for expected revenue, it cannot be higher with than without corruption in “regular” cases,

but we provide an example of a “nonregular” case where corruption raises the expected price

received by the seller.

Finally, we extend our analysis to the situation where participation in the auction is costly,

and study bidders’ entry decisions in the face of corruption. We show that if corruption is

perceived as more probable, the equilibrium number of active bidders will fall, and evaluate the

consequences of this new effect on efficiency, bidders’ welfare and expected revenue.

Our general setup includes, as a particular case, a relevant application that is unrelated

to corruption. If it is common knowledge that there is a favored bidder and every party to

the auction knows who that favored bidder is, that bidder publicly enjoys the right to match

the highest bid that any of her rivals may submit. This is exactly the arrangement known

as right of first refusal, usually employed, for example, by firms to favor preferred suppliers

with whom they have long-term relationships, in the purchase of a partnership by one of the

current partners, and in professional sports. In this alternative context, our analysis attempts

to determine whether bidders respond more or less aggressively when facing a rival that enjoys

this privilege, and its consequences on expected revenue, efficiency and bidder participation.2

Other papers have dealt with related forms of corruption. In particular, Jones and Menezes

(1995), Lengwiler andWolfstetter (2004), Burguet and Perry (2004a) andMenezes andMonteiro

(2003) consider cases where a corrupt arrangement, just as in this paper, implies revealing to

one of the bidders what her rivals have bid. However, their analyses differ from the one we

present in several respects. In Jones and Menezes (1995), bidders are not aware of the possibility

of corruption when choosing their bids, so bidding behavior remains unaltered by assumption.3

Lengwiler and Wolfstetter (2004) and Menezes and Monteiro (2003) consider situations where

the auctioneer approaches the winning bidder offering the chance to lower her bid (while still

winning the auction) in exchange for a bribe. In this paper, on the contrary, who the auctioneer

2The right of first refusal has been studied in Burguet and Perry (2004b), Bikhchandani et al. (2003) and

Choi (2003).
3In addition, they consider a setting where bidders draw their valuations from uniform distributions. We

prove below that, for such distributions, even if bidders were aware of the possibility of corruption their behavior

would remain unaltered.
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may conspire with is independent of the auction’s result. That is, their agreement is reached

before the auction takes place. In addition, the favored bidder is allowed to raise or lower her

bid according to her interests.4 The identity of the favored bidder is also determined before

the auction in Burguet and Perry (2004a). However, they only focus on the two-bidder case

when corruption is certain to all parties and the favored bidder is only allowed to change her

original bid upwards to win the auction in cases where she would otherwise lose. Furthermore,

they do not concentrate on the effect corruption has on equilibrium bids. Here, we allow for the

existence of corruption to be uncertain, extend the analysis to the general, N-bidder case and

are able to provide a fuller characterization of the effect of corruption on bidding behavior.5

Finally, Compte et al. (forthcoming), consider the situation where the auctioneer reveals the

winning bid to all participants and allows them to compete for the chance to resubmit their

bids. Their focus, then, is on bribing competition and its effects.

While our interest here limits to the case where a single-dimensional object is auctioned,

another strand in the literature focuses on the possibility of corruption in multidimensional

procurement auctions. Specifically, in addition to the price, the object being procured has a

quality dimension that affects the procurer’s welfare. The procurer delegates the assessment

of quality on an agent, and the scope for corruption is thereby created. Celentani and Ganuza

(2002) and Burguet and Che (2004) examine different forms of corruption in that procurement

environment.

Our analysis is related as well to the literature on favoritism in auctions. In this literature,

some bidders are favored for reasons other than corruption —e.g. in a procurement auction,

domestic or local firms may be given preferential treatment when facing foreign rivals. Laffont

and Tirole (1991) and Vagstad (1995) study this issue in multidimensional auctions, where

favoritism may appear when the auctioneer assesses product quality. McAfee and McMillan

(1989), Branco (1994) and Naegelen and Mougeot (1998) examine single-dimensional auctions,

4Lengwiler and Wolfstetter (2004) call “type I” (“type II”) corruption the case where the auctioneer allows

the favored bidder to change her original bid downwards (upwards). In this paper, we assume both types of

corruption are possible.
5However, they consider the case where bidders’ valuations are distributed asymmetrically, while we concen-

trate on a symmetric environment.
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where price-preferences may be used. In our model below, the case where the existence of a

favored bidder is certain and her identity known to all may be viewed as a very particular form

of favoritism.

The paper is organized as follows. In Section 2 below, we present the auctioning context and

provide sufficient conditions to characterize the effect of corruption on honest bidders’ behavior.

Then, we ascertain the extent to which standard distributions satisfy each of those sufficient

conditions. In Section 3, we study the consequences of corruption on efficiency, welfare and

revenue, and in Section 4 we analyze entry into the auction when participation is costly. We

conclude in Section 5. Proofs are provided in Appendix 2.

2 The Model

The owner of a single, indivisible object is selling it through an auction6 organized and run

by an agent of hers. There are N bidders7 whose valuations vi (i = 1, ...N) for the object are

distributed identically and independently according to the c.d.f. F with support on the interval

[v, v] and a density f that is positive and bounded on the whole support. The context is, then,

one of independent private values. We will assume below that F is logconcave.8 For future

use, let α(vi) = F (vi)/f(vi). Note that the logconcavity of F means that α is increasing. All

bidders, the auctioneer and the owner are risk neutral.

We will focus below on sealed-bid auctions with no reserve prices. Given the fact that

the owner of the object being sold and the auctioneer are not the same, there is scope for

corruption. The auctioneer may tilt the auction in favor of one of the bidders9 in exchange

for a compensation. The exact form this collusion may take is open to multiple possibilities.

6All of our results, however, are applicable as well to the case of procurement auctions.
7In this section, the number of bidders is taken as given, and participation is assumed to be costless. The

case of costly participation is analyzed in Section 4.
8Logconcavity of the c.d.f. function holds for most well known distributions, such as the uniform, normal,

logistic, extreme value, chi-squared, chi, exponential, Laplace, Pareto and any truncation of these distributions.

For details see Bagnoli and Bergstrom (1989).
9We are not allowing for the possibility of collusion between the bidders (see Hendricks and Porter, 1989, for

a general analysis of this phenomenon), but only between one bidder and the auctioneer.
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Here, we concentrate on one particular case. We assume that before the auction takes place

the auctioneer may have reached an agreement with one bidder before the auction takes place

whereby she will reveal to that bidder all of her rivals’ bids10, and then allow her to modify her

original bid upwards or downwards if she wishes to do so. In essence, a bidder that is awarded

such an advantage would take part in a sequential auction, where all of her rivals would bid

first in the first stage and she would bid in the second.

In what follows, then, any given bidder may be in one of two situations. If she is colluding

with the auctioneer, she will be sure that none of her rivals is colluding at the same time –

we rule out the possibility that the auctioneer colludes with more than one bidders. If she is

not colluding with the auctioneer, i.e. if she is “honest”, she believes that one of her rivals

is colluding with probability p. Furthermore, we will consider a situation that is completely

symmetric among honest bidders. Any honest bidder believes, then, that with probability p she

is facing one dishonest bidder and (N − 2) honest bidders, all of whom are in the exact same

situation as she is –each of them believes that, with probability p, there is a favored rival.

And she believes that, with probability (1 − p) she is facing (N − 1) rivals in her exact same
situation.

Several interpretations of this setup are possible. Our analysis may be viewed as part of

a more complete study of how corruption affects the result of an auction. A two-stage model

could be constructed where, first, who the favored bidder may be and what kind of agreement

she will reach with the auctioneer are determined. Then, the auction would take place. Within

this, more general approach, we concentrate on the second stage. We do not model how the

auctioneer and the favored bidder bargain when deciding if they will collude. Still, one of

the most relevant considerations in any such bargaining game will be what would happen if

honest bidders attached a given probability to the fact that one rival will be favored, i.e. if the

dishonest bidder would face more or less aggressive competitors. So our results below will be

crucial in any study of this form of corruption. In particular they determine which is the total

surplus that this coalition will have to split. Furthermore, examining how the auctioneer and a

10It is immaterial whether the auctioneer reveals to the favored bidder all or only the highest of her rivals’

bids.
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bidder bargain is open to many modelling alternatives. Different assumptions could be made,

for instance, on what knowledge the auctioneer has of the bidder’s valuation, or on how much

bargaining power each party has. Our own results will be relevant to any such specification.

We will assume, though, that the auctioneer and the colluding bidder bargain efficiently: they

will reach an agreement whenever they can both gain by doing so.

Alternatively, we could think of the prior agreement between the auctioneer and the favored

bidder as part of a special relationship, or one that exceeds the context of the individual auction

under study. Examples where public officials in charge of procurement have —or are perceived

to have— relationships with firms in the private sector are abundant.

Our setup could be understood in a more specific and straightforward way as well. We

may assume that, before the auctioneer may approach any of them, all bidders believe that the

auctioneer is corrupt –and then expect her to make an approach to one of the bidders– with

probability s. Then, if a bidder has not been approached, this may mean that the auctioneer

is not corrupt or that the auctioneer has approached a rival. The updated probability that an

honest bidder attaches to the fact that the auctioneer be corrupt is then p = (N−1)s
N−s .

Independently of the exact interpretation of our model one may prefer, though, all that

will matter below is that each honest bidder believes there is a favored bidder with probability

p. Our main object of analysis will be how an honest bidder, who believes that this form

of corruption happens with probability p changes her behavior as p varies. That is, we are

interested in whether honest bidders become more or less aggressive when they perceive an

increase in the probability of corruption. Reaching such a conclusion, of course, would let us

as well compare, as a particular case, the differences in honest bidders’ behavior between the

cases where p > 0 and p = 0, the latter being a standard auction without corruption.

The effect of corruption on bidding behavior will clearly differ according to the sealed-bid

auction format. We consider the second- and the first-price auction in what follows.

2.1 The Second-Price Auction

In a second price auction, bidding her own valuation is a weakly dominant strategy for every

bidder without corruption, and, of course, remains so once the possibility of corruption appears.
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Thus, bidding behavior remains unaltered for all honest bidders. As for a dishonest bidder, she

will compare the highest rival bid to her own valuation. If the former is higher, she will have no

interest in winning the auction. If the latter is higher, she will then submit a bid high enough

to beat all honest rivals and win the object at a price equal to the highest honest bid. But this

is exactly the same result she would generate by originally submitting a bid equal to her own

valuation and leaving it unaltered: bidding her valuation remains optimal for the dishonest

bidder.

Hence, the result of the auction will not change. Information about rivals’ bids is useless

in this auction format. It remains true that the bidder with the highest valuation wins in

equilibrium, and she pays the highest valuation among her rivals’, exactly as occurs when

p = 0. The form of corruption we are examining has no effect in the case of the second-price

auction.11

This result can be useful to analyze, as we will next, the first-price auction. Given that

the second price auction is unaffected by the value of p, and given that –by the Revenue (and

Payoff) Equivalence Theorem– the two auction formats are equivalent when p = 0, it follows

that, for any p > 0, comparing the first- and the second-price auctions for that value of p is

exactly the same as comparing the first-price auction for that value of p with the first-price

auction without corruption (i.e. with p = 0).

2.2 The First-Price Auction

In a first-price auction, however, the possibility of corruption has a significant effect. If a bidder

colludes with the auctioneer and learns her rivals’ bids, she may have an incentive to change

her original bid.

Remark 1 When a first-price auction is used, a particular case of our model can be given a

different interpretation. If p = 1, then all honest bidders are certain that there is a favored

rival. In addition suppose that the identity of the favored bidder is known to all.12 Then, it is

11These conclusions could change if we allowed for corrupt coalitions where the auctioneer and more than one

bidder could be involved. See Lengwiler and Wolfstetter (2004) for an examination of this issue.
12In our symmetric context, it is irrelevant whether the identity of the favored bidder is public or secret.
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common knowledge that one specific bidder will have the right to match the highest bid made by

any of her rivals. This situation describes exactly what is usually called “right-of-first-refusal.”13

Although it is not related to corruption, all our results below apply in this particular case as

well.

Let d be the dishonest bidder, and let bh be the highest bid submitted by an honest bidder

(i.e. bh = maxi6=d bi). Let bd be d’s revised bid. If, according to her original bid, d is winning

the auction, then she will revise her bid downwards and set bd = bh + ε.14 If she is losing the

auction, there are two possibilities. If vd > bh, then she will again set bd = bh + ε and win the

auction. If bh > vd, then she will submit a revised bid bd < bh (she may leave her original bid

unchanged), and lose.

Viewing the auction from the standpoint of an honest bidder that may face a colluding rival,

this means that the former will have to bid above the latter’s valuation to win. In other words,

she will be competing against the dishonest rival’s valuation instead of competing against her

bid.

Let bpi : [v, v] −→ IR be bidder i’s bidding function when i is honest and believes that there is

a favored rival with probability p. We will look for an equilibrium in strictly increasing strategies

that is symmetric among honest bidders. That is, we will look for a Bayesian equilibrium where

bpi (v) = bp(v) for all i such that i is honest. For convenience, we will use the inverse bidding

function, φp(.). An honest bidder i with valuation vi who faces a dishonest rival with probability

p and all of whose honest rivals bid according to the inverse bidding function φp(.) that is strictly

increasing will choose her bid by solving the following expected utility maximization problem

max
b
(vi − b)

£
pF (N−2)(φp(b))F (b) + (1− p)F (N−1)(φp(b))

¤
(1)

By bidding b, an honest bidder will defeat any particular honest rival with probability F (φp(b)),

and she will defeat the dishonest bidder (if there is one) with probability F (b). Then, the

expression in brackets is the probability of winning the auction by bidding b for an honest

13If a second-price auction is used, our model with p = 1 does not exactly become a right of first refusal.
14We may assume that bd = bh and, in the event of a tie, the auctioneer chooses the winner. Therefore, she

will always choose the bidder she is trying to favor.
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bidder. The first-order condition resulting from (1) is15

vi − b =
pF (φp)F (b) + (1− p)F 2(φp)

p [(N − 2)F (b)f(φp)φp0 + F (φp)f(b)] + (1− p) (N − 1)F (φp)f(φp)φp0

In a symmetric equilibrium we will have vi = φp(b), and the first-order condition becomes

φp − b =
pF (φp)F (b) + (1− p)F 2(φp)

p [(N − 2)F (b)f(φp)φp0 + F (φp)f(b)] + (1− p) (N − 1)F (φp)f(φp)φp0 (2)

The differential equation (2) characterizes the inverse bidding function φp(b). Note that

φ0(b) is the standard inverse bidding function in a first-price auction without corruption. In

addition, as mentioned in Remark 1, φ1(p), the inverse bidding function with the certainty that

there is a favored bidder, is the relevant one for the particular case of the right of first refusal.

It is straightforward that, as usual in the first-price auction, φp(v) = v for all p ∈ [0, 1].
Our main objective is to establish how the function φp(b) changes with p. That is, we want

to find out whether it is possible to say, when the probability attached by honest bidders to

the existence of an honest rival goes from p0 to p1 (with p1 > p0), that honest bidders become

uniformly more aggressive (φp1(b) < φp0(b) for all b > v in their common support), uniformly

less aggressive (φp0(b) < φp1(b) for all b > v in their common support) or keep their behavior

unaltered (φp0(b) = φp1(b) for all b). In the remainder of this section, we provide sufficient

conditions for each of these three possibilities.

As we mentioned above, given the logconcavity of the c.d.f. F , we know that α(v) is

increasing. We will show in what follows that the key fact to ensure that a higher perception of

corruption generates more, equal or less aggressivenes is whether α(v) is strictly convex, linear

or strictly concave. The following Lemma is a first step towards that result.

Lemma 1 If α(v) is strictly convex (linear, strictly concave) then α(b) < α(φp)
φp0 (respectively,

α(b) = α(φp)
φp0 , α(b) >

α(φp)
φp0 ) for all b > v and for all p ∈ [0, 1].

Remark 2 Lemma 1 is useful to establish a result that is different but related to our main

question. Let eφ(b) be the inverse bidding function of an honest bidder who is certain that all of
her rivals will learn her bid and then be allowed to rebid.16 Thus, such a bidder would have to

15To economize on notation, we will omit the argument of the inverse bidding function φp where possible.
16This case is equivalent to ours only if N = 2 and p = 1.
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bid higher than the highest valuation among her rivals’ to win the auction. It is straightforward

to show that the analog of (2) in this case is:

eφ(b)− b =
F (b)

(N − 1)f(b) =
α(b)

N − 1 (3)

Corollary 1 If α(v) is strictly convex (linear, strictly concave) then eφ(b) < φp(b) (respectively,eφ(b) = φp(b), eφ(b) > φp(b)) for all b > v in their common supports, and for all p ∈ [0, 1].17

The result follows immediately by comparing (2) and (3) and using Lemma 1 and Lemma

3 in Appendix 1.

We are now ready to state the main result of this section. Proposition 1 provides sufficient

conditions to determine the effect of a change in the probability attached to corruption on the

behavior of an honest bidder.

Proposition 1 If α(v) is strictly convex (linear, strictly concave) then φp0(b) > φp1(b) (respec-

tively, φp0(b) = φp1(b), φp0(b) < φp1(b)) for all b > v in their common supports and for any p0,

p1 such that 0 ≤ p0 < p1 ≤ 1.

It follows that α(v) being strictly convex (concave) determines that corruption generates

more (less) aggressiveness, while α(v) being linear makes the possibility of corruption irrelevant

for the behavior of an honest bidder.

Furthermore, in the case where α(v) is linear the converse is also true. It can be easily

verified that α(v) being linear is also a necessary condition for bidding functions to remain

unaltered by corruption.

It turns out, in addition, that the curvature of α(v) determines as well the curvature of

bidding functions in standard, symmetric first price auctions in the absence of corruption. This

result, which —being unrelated to corruption— may be of independent interest, is established in

the following Corollary.

Corollary 2 If α(v) is strictly convex (linear, strictly concave) then b0(v), the bidding function

in a standard, symmetric first-price auction, is strictly concave (respectively, linear, strictly

convex).
17Porter and Shoham (forthcoming), independently proved this result for the particular case where p = 0.
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Let us use Corollary 2 to gain a better understanding of the results in Proposition 1. To

simplify, assume N=2 and v = 0, and compare φ0(b) with φ1(b). From (2), φ0(b)− b = α(φ0(b))

φ00(b)

and φ1(b)− b = α(b). Certainty of corruption shifts the rival’s valuation that the honest bidder

faces marginally (the valuation she ties with by bidding b) from φ0(b) to b, which is lower.

Whether the honest bidder will then have incentives to be more or less aggressive depends

on the relationship between α(φ0(b))

φ00(b) and α(b). From the logconcavity of F (v), we know that

α(b) < α(φ0(b)). That is, if the dishonest bidder’s inverse bidding function had a slope at b

which equaled φ00(b), then the honest bidder would necessarily become more aggressive with

corruption. However, there is a counteracting effect: with corruption, the dishonest bidder bids

her true valuation, so her inverse bidding function has a slope equal to 1. Since φ00(b) > 1,

this change in the marginal behavior of her rival provides the honest bidder with incentives to

become less aggressive.

Suppose α(v) is linear. Corollary 2 tells us, then, that φ0 is linear, so α(φ0)

φ00 =
α(φ00b)
φ00 . From

the linearity of α(v), the last expression equals α(b). That is, the ratio α(φ0)/α(b) is constant

and equal to the (constant) slope of the inverse bidding function, φ00. The two effects mentioned

above exactly offset each other in this case. Proposition 1, thus, tells us that the first effect

outweighs the second in the case where α(v) is strictly convex, and the opposite result obtains

when α(v) is strictly concave. It also tells us that this generalizes to any number of bidders

and any probabilities p0, p1 such that p1 > p0.

We have provided sufficient conditions to characterize how bidding behavior is affected by

the possibility of a corrupt arrangement between the auctioneer and one of the bidders. As

noted, how an honest bidder’s behavior will be influenced by the possible existence of corruption

will be determined by the concavity or convexity of α(v). The next natural question is, of course,

if most of the commonly used distribution functions imply that α(v) is concave or convex. The

next subsection briefly deals with this issue.

2.3 The effect of corruption for commonly used distributions

We have shown above that how a bidder who does not take part in any arrangement with the

auctioneer will alter her behavior in the presence of corruption will depend crucially on the
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convexity or concavity of α(v) = F (v)
f(v)

.

It is easy to verify that α(v) being linear is equivalent to F (v) being a power function

distribution, i.e. F (v) = (v−v)k
(v−v)k for some k > 0.18 Bidding functions are given by bp(v) =

1
k(N−1)+1 [v + k(N − 1)v] for all p ∈ [0, 1]. We can fully characterize, then, the family of distri-
butions where our necessary and sufficient condition for corruption not to have any effect on

honest bidding behavior applies.

Note that

α0(v) = 1− F (v)

f(v)

f 0(v)
f(v)

If F is strictly logconcave (logconvex), then F (v)/f(v) will be strictly increasing (decreasing).

By the same token, if f is strictly logconcave (logconvex), then f 0(v)/f(v) will be strictly

decreasing (increasing). Recall that we have assumed that F is logconcave. We can combine

these possibilities to provide simple sufficient conditions for the concavity or convexity of α(v).

Remark 3 (a) If f(v) is logconcave and decreasing (f 0(v) < 0), then α(v) is convex.

(b) If f(v) is logconvex and increasing (f 0(v) > 0), then α(v) is concave.

The exponential distribution is an example of part (a) in the Remark 3, while F (v) =

e−λ
1−e−λ

¡
eλv − 1¢ , with support [0, 1], is an example of (b). In addition, it can be easily verified

as well if α(v) is concave or convex for any of the standard distributions. Straightforward

calculations show that in the cases of the logistic, Laplace and Pareto distributions, for instance,

α(v) is strictly convex. Hence, for all of them the existence of corruption makes an honest bidder

more aggressive. As for the normal distribution, however, α(v) is not strictly concave or convex

on all of its support. Still, it is only strictly concave more than six standard deviations below

its mean, and it is strictly convex in the remainder of the support. Hence, most truncations

of the normal distribution would generate a strictly convex α(v) and more aggressiveness with

more probable corruption.

18For these distributions, α(v) = (v−v)
k . Note that, except in the case where k = 1 (i.e. when F (v) is the

uniform distribution), the proof of Proposition 1 does not apply to distributions in this family, since f(v) is

not positive and bounded. However, the validity of the proposition can be verified by computing the bidding

functions directly.
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3 Efficiency and Welfare

We have studied above how a specific form of corruption affects the behavior of honest bidders

in first-price auctions and provided sufficient conditions to assess how they adjust their bids

when facing a rival that is possibly dishonest. In this section we analyze the effect of this form

of corruption on efficiency, seller’s revenue, and bidders’ welfare.

As mentioned in Subsection 2.1 above, the form of corruption we study has no effects in

the case of a second-price auction. The second-price auction, then, preserves all its welfare

properties. In particular, it is efficient, as happens in the case where p = 0, since the winner is

always the bidder with the highest valuation. The seller’s expected revenue and the expected

utility of each of the bidders (honest or dishonest) are invariant to changes in p.19

In what follows, hence, we limit our analysis to the case of the first-price auction. It will be

useful, for expositional purposes, to split the total effect that an increasee in the value of p20

has on the different welfare measures into two effects, the “direct effect” and the “perception

effect”. The direct effect is the one that an increase in the value of p has on the expected

utility of any party to the auction holding the bidding functions of all honest bidders constant.

It reflects, then, the fact that the existence of a dishonest bidder is more likely, but does not

include any variation in optimal strategies. The perception effect, on the other hand, is the

change in the expected utility of any party that is exclusively due to the fact that honest bidders

change their behavior when they perceive that p grows. Notice that when α(v) is linear, the

perception effect vanishes, since there is no change in how honest bidders behave.

Let us start with efficiency. In the absence of corruption, and keeping all our other assump-

tions, it is well known that, just as the second-price auction, the first-price auction is efficient.

A natural consequence of our previous analysis, however, is that the first-price auction will be

inefficient when corruption is possible. Every honest bidder will shade her bid (i.e. her equilib-

19Note, however, that the second-price auction could be more vulnerable to the possibility of collusion among

bidders than the first-price auction. See, for example, Robinson (1985) and Marshall and Marx (2004).
20We use p as an indicator for the overall probability of corruption, although it is the probability that an

honest bidder attaches to it. Recall from one of the interpretations in Section 2 that we could write p as a

function of s, the probability that the auctioneer be corrupt (p = (N−1)s
N−s ).
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rium bid will be lower than her actual valuation). Let vd be the dishonest bidder’s valuation, as

above, and vh = maxi6=d vi. Given that honest bidders have increasing symmetric equilibrium

strategies bp(v), the highest honest bid will be bh = bp(vh). As Figure 1 shows, if the dishonest

bidder is allowed to examine bids and resubmit her own by the auctioneer and vd ∈ [bp(vh), vh],
she will win the auction in spite of the fact that her valuation is not the highest.

dv
hvhbv v

d loses d wins

inefficient outcome

Figure 1

This means as well that the first-price auction is worse in efficiency terms than the second-price

auction in the presence of corruption.

How does efficiency change when p varies? The direct effect on efficiency is always negative,

for any initial value of p: the probability that a bidder wins despite not having the highest

valuation grows with the probability of corruption, if we keep the behavior of honest bidders

constant. The size of the inefficiency, however, for a given probability of corruption, is an

increasing function of the difference between the valuation and the bid of the honest bidder

that values the object the most, (vh− bh). The perception effect affects the inefficiency only by

changing this difference. From Proposition 1, we know that (vh− bh) is constant in p if α(v) is

linear, it grows with p if α(v) is strictly concave, and it falls with p if α(v) is strictly convex.

Therefore, the perception effect on efficiency is zero in the first case, negative in the second and

positive in the third. We thereby know, combining both effects, that inefficiency grows with p

in the first two cases, but the sign of the total effect is not clear in the third.

Let us turn now to bidders’ welfare. Regarding the expected utility of honest bidders, we

know that the direct effect is always negative: given the behavior of honest rivals, a higher
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probability of corruption means that an honest bidder is more likely to lose in some cases where

she would have won. This is a consequence of the fact that a dishonest bidder is allowed by the

auctioneer to revise her original offer upwards to match the highest original bid. In addition, the

effect is monotone in p. As for the perception effect, it is not positive in the cases where honest

bidders do not become less aggressive in the presence of corruption (that is, if α(v) is linear or

strictly convex). Thus, in these cases, combining both effects, it is certain that corruption is

detrimental to the expected utility of an honest bidder in the auction. With corruption, any

honest bidder wins with a lower probability and, when she wins, she has to pay a (weakly)

higher price.

When α(v) is strictly concave, the perception effect is positive, since all honest rivals bid

strictly less agressively. We therefore have two effects of opposite

signs. However, Proposition 2 below establishes that the expected utility of honest bidders

falls monotonically with p in all cases, even in those where α(v) is not always concave or convex.

Proposition 2 The expected utility of an honest bidder is strictly decreasing in p.

As regards the coalition between a dishonest bidder and the auctioneer, how they will

distribute any gains they may reap from their agreement is undetermined in our analysis. So

we will talk of their surplus as the expected utility of the coalition. Suppose first that the

coalition exists, i.e. there is corruption. We may then ask how the surplus of the coalition

varies with the probability that honest bidders attach to its existence –in other words, we may

look purely at the perception effect. The answer follows straightforwardly from Proposition 1:

the coalition’s utility grows (falls) when α(v) is strictly concave (strictly convex), since honest

bidders respond by bidding less aggressively (more agressively) when they percieve an increase

in p; needless to say, the coalition’s surplus is invariant to p when α(v) is linear.

A related question is whether there will be a positive surplus for the coalition, i.e. if its

expected utility is larger when they reach an agreement (and honest bidders attach a probability

p to its existence) than if they reach no agreement and the auction is corruption-free (so that

p = 0). Here, the direct and perception effects are again combined. Clearly, the coalition is

better off whenever honest bidders do not become more aggressive with corruption (that is, if

17



α(v) is linear concave or strictly concave). The dishonest bidder wins with a higher probability

for any valuation (the direct effect is positive) and never pays a higher price (the perception

effect is also positive). For the case of α(v) strictly convex, the perception effect is negative,

and its absolute value grows with p. Is it possible that honest bidders become so much more

aggressive with corruption that there is no gain for the coalition in reaching an agreement? The

following proposition provides a negative answer.

Proposition 3 The coalition’s expected utility is larger when there is corruption (for any value

of p) than without corruption.21

Note that Proposition 3 applies in all cases, even in those where α(v) is not always linear,

strictly concave or strictly convex on [v, v].

Finally, let us examine the consequences of corruption on expected revenue. The direct

effect is always negative and monotone in p. The dishonest bidder may choose to revise her

bid upwards or downwards. When the former occurs, only the identity of the winner changes,

but not the price paid. When the latter occurs, however, the price paid to the owner falls.

Leaving the behavior of honest bidders unchanged, an increase in p raises the likelihood of such

a revision. The perception effect is zero when α(v) is linear, and negative if α(v) is strictly

concave. So we certainly know that an increase in p will lower expected revenue in those two

cases.

When α(v) is strictly convex, however, honest bidders become more agressive, so the two

effects go in opposite directions. In particular, when the change in honest bidders’ behavior is

large enough, it may be the case that the seller’s expected revenue grows with p. We do know,

however, that expected revenue for any p > 0 has to be lower than expected revenue with p = 0

in the cases that are usually called “regular,” that is, in those cases where a bidder’s “virtual”

valuation v − [(1− F (v)) /f(v)] is increasing in her “true” valuation v. In regular cases, the

standard first-price auction is revenue-maximizing within the class of mechanism where the

object is always sold. Within this class, to maximize revenue the object should be awarded to
21Another interesting question may be whether reaching an agreement with the auctioneer is better for a

bidder than a situation where another bidder becomes the favored one. The combination of Propositions 2 and

3 provides a positive answer.
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the bidder with the highest virtual valuation. For any regular case, that is just the bidder with

the highest valuation, and that is the bidder who wins in a standard first-price auction. When

p > 0, with positive probability the winner does not have the highest real of virtual valuation,

so expected revenue has to be lower.

This result, though, does not hold for nonregular cases. Moreover, honest bidders can

become so much more aggressive in the presence of corruption that expected revenue may grow

even if compared to a situation where p = 0, as we show in the following example.

Example 1 Suppose N = 2 and valuations are distributed according to the Pareto distribution

with parameters 1 and 0.75 (i.e. F (v) = 1 − ¡1
v

¢0.75
), with support on [1,+∞). Without

corruption, the seller’s revenue is 3, whereas it is 3.7431 when corruption is certain (i.e. when

p = 1).

4 Entry

So far, we have assumed that the number of bidders is fixed and that there is no cost attached to

participating in the auction. We now turn to the case where each bidder has to decide whether

to take part in the auction before she observes her valuation.22 Choosing to enter entails a cost

c.We will assume in what follows that if there is an agreement between the auctioneer and the

dishonest bidder, such a deal is reached before bidders make their entry decisions. Hence, if

there is corruption, the dishonest bidder faces a more favorable situation than her rivals.23

It is easy to see that when participation costs are low enough all our previous conclusions are

valid. Participation costs become economically interesting when they determine the number of

“active” bidders. The first question that arises then, is how the presence of corruption influences

that number. The following lemma is a first step towards providing an answer to that question.

22In this section, we concentrate on the first-price auction since, once again, the form of corruption we analyze

has no consequences for the second-price auction.
23Given this asymmetry, for any values of p and c, if there is an equilibrium with entry, then we know that

there is an equilibrium where the dishonest bidder participates. We will only consider equilibria of this type.
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Lemma 2 The expected utility of an honest bidder before paying any entry cost is decreasing

in the number of bidders for any given probability of corruption.

We can now examine how the probability of corruption affects the number of active bidders

when participation is costly. Honest bidders will enter as long as their expected utility is larger

than the entry cost c. Let N0 (N1) be the equilibrium number of bidders for a given probability

of corruption p0 (p1), with p1 > p0. From Lemma 2, we know that the utility of any honest

bidder is decreasing in the number of entrants for any given probability p of corruption. In

addition, from Proposition 2, for any number of active bidders N , any honest bidder’s utility is

decreasing in p. Hence, it has to be the case that N1 ≤ N0.24 We have thus proved the following

proposition.

Proposition 4 The equilibrium number of active bidders is nonincreasing in the probability of

corruption p.

Note that, as a consequence, the case were a bidder is granted a right of first refusal —i.e. the

case where p = 1— is the one where the preference awarded has the strongest effect in deterring

participation in the auction.

Once we have allowed for the number of bidders to be determined endogenously, we can

find how this influences our previous conclusions about efficiency and the welfare of each of the

parties involved. It is well known that if bidders make their costly entry decisions before knowing

their valuations in a first-price auction without corruption (i.e. with p = 0), the equilibrium

number of active bidders is socially efficient (see McAfee and McMillan (1987)). Combining

this result with Proposition 4, we can conclude that there is a new source of inefficiency due

to corruption: the number of bidders that participate is too small. Furthermore, this effect is

monotone in p, since additional reductions in the number of active bidders cause the inefficiency

to grow. If we add this new effect to the ones we identified in Section 3, it is straightforward

that whenever α(v) is linear or strictly concave any increase in p is detrimental to efficiency.25

24The inequality would be strict if we ignored the integer constraint.
25Recall from Section 3 that if α(v) is strictly convex, for a given number of bidders, we cannot rule out the

possibility that an increase in p enhances efficiency by making honest bidders more aggressive. Then, we may

have two effects of opposite signs.
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If, for convenience, we ignore the integer constraint, any honest bidder’s expected utility

is independent of the probability of corruption. This is so because honest bidders enter until

their expected utilities drop to zero. Any increase in p generates a reduction in honest bidders’

expected utilities, but these adjust upwards to zero through a reduction in the number of active

bidders. When the number of participants is set endogenously, though, the coalition formed by

the auctioneer and the dishonest bidder is better off for any positive value of p than without

corruption. In addition to those obtained in Section 3, there are two new effects, both of which

increase the coalition’s expected utility. First, they have less competition from honest bidders;

and second, as there are fewer active bidders, the honest bidders that enter bid less aggressively.

This reinforces the result that the coalition always has larger utility when there is corruption

(for any value of p) than without corruption. Since both new effects are monotone in p, the

monotonicity of the coalition’s expected utility in p still holds when α(v) is linear or strictly

concave.

Finally, the two new effects identified in the last paragraph are detrimental to expected

revenue as well. An increase in p, thus, will also lower expected revenue if α(v) is linear or

strictly concave when the number of bidders is endogenous.

5 Conclusion

We have analyzed above how a specific form of corruption affects the behavior of honest bidders

in sealed-bid auctions. Assuming that the auctioneer may have reached an agreement with one

of the bidders by which the latter will be shown all of her rival’s bids and will be allowed to

resubmit her bid accordingly, we have shown that this has no effects in the case of the second-

price auction. For the first-price auction, we have provided sufficient conditions to assess

how honest bidders adjust their bids when facing a rival that is possibly dishonest. Those

conditions determine whether honest bidders will behave more, equally or less aggressively

when the probability they attach to the existence of a corrupt agreement grows. In any case,

the first-price auction becomes inefficient with corruption. We have established as well that an

increased probability of corruption hurts honest bidders, and that the coalition of the auctioneer
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and the favored bidder always has a positive expected surplus to divide between its two members

if they reach an agreement —although how that surplus varies with the probability with which

corruption is believed to exist depends on whether honest bidders react more or less aggressively.

Corruption is detrimental to expected revenue in “regular” cases, though not necessarily so in

“nonregular” ones. In addition, when participation is costly a higher probability of corruption

deters entry .

Let us emphasize again that, even though we have been very precise in terms of the ad-

vantages that corruption confers to a dishonest bidder in our analysis, we have not studied

the negotiation between such a bidder and the auctioneer that leads to a corrupt arrangement.

Our results, then, can be regarded as relevant to any specific model for such negotiation in the

context of sealed-bid auctions. They are relevant as well, as explained above, to the situation

where one of the bidders is granted a right of first refusal, a particular case of the way we have

modeled corruption.

Our analysis could be extended in several directions. First, it would be instructive to allow

for the possibility that bidders’ valuations be distributed asymmetrically, or to explore the

case where bidders are risk averse. Second, the bargaining game between the auctioneer and

the favored bidder could be included in the analysis. Finally, we have studied a case where

corruption takes a very specific form. The effects of many other forms of corruption on behavior

in auctions remain unexplored.
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Appendix 1
This appendix provides two auxiliary lemmas that will be used in the proofs included in

Appendix 2.

Lemma 3 For any b, α(b) ≤ α(φp)
φp0 if and only if

α(b)

N − 1 ≤ φp − b ≤ α(φp)

φp0 (N − 1)
Naturally, an analogous condition applies reverting the inequalities.

Proof. Notice that, from (2),

φp − b− α(b)

N − 1
=

pF (φp)F (b) + (1− p)F 2(φp)

p [(N − 2)F (b)f(φp)φp0 + F (φp)f(b)] + (1− p) (N − 1)F (φp)f(φp)φp0 −
F (b)

f(b) (N − 1) ,

which is nonnegative if and only if

£
pF (φp)F (b) + (1− p)F 2(φp)

¤
f(b) (N − 1)

≥ {p [(N − 2)F (b)f(φp)φp0 + F (φp)f(b)] + (1− p) (N − 1)F (φp)f(φp)φp0}F (b)

or

[(1− p)(N − 1)F (φp) + p(N − 2)F (b)] [F (φp)f(b)− f(φp)φp0F (b)] ≥ 0

This is true if and only if α(b) ≤ α(φp)
φp0 .

In addition,

α(φp)

φp0 (N − 1) − (φ
p − b)

=
F (φp)

f(φp)φp0 (N − 1) −
pF (φp)F (b) + (1− p)F 2(φp)

p [(N − 2)F (b)f(φp)φp0 + F (φp)f(b)] + (1− p) (N − 1)F (φp)f(φp)φp0

is nonnegative if and only if

F (φp) {p [(N − 2)F (b)f(φp)φp0 + F (φp)f(b)] + (1− p) (N − 1)F (φp)f(φp)φp0}
≥ f(φp)φp0 (N − 1) £pF (φp)F (b) + (1− p)F 2(φp)

¤
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or

pF (φp) [F (φp)f(b)− F (b)f(φp)φp0] ≥ 0

Again, this is true if and only if α(b) ≤ α(φp)
φp0 .

Lemma 4 For any b > v, and holding the inverse bidding function φp(.) constant, the ratio

pF (φp)F (b) + (1− p)F 2(φp)

p [(N − 2)F (b)f(φp)φp0 + F (φp)f(b)] + (1− p) (N − 1)F (φp)f(φp)φp0

is weakly decreasing (weakly increasing) in p if and only if α(b) ≤ (≥)α(φp)
φp0 .

Proof. Holding φp(.) constant and differentiating with respect to p, the derivative thereby

obtained will be nonpositive (nonnegative) if and only if

£
F (φp)F (b)− F 2(φp)

¤
[p [(N − 2)F (b)f(φp)φp0 + F (φp)f(b)] + (1− p) (N − 1)F (φp)f(φp)φp0]

≤ (≥) £pF (φp)F (b) + (1− p)F 2(φp)
¤
[(N − 2)F (b)f(φp)φp0 + F (φp)f(b)− (N − 1)F (φp)f(φp)φp0]

or, after a few steps of algebra,

F 2(φp) [F (b)f(φp)φp0 − F (φp)f(b)] ≤ (≥)0.

But this is nonpositive if and only if α(b) ≤ (≥)α(φp)
φp0 .
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Appendix 2
Proof of Lemma 1: We only present the proof for the case where α(v) is strictly convex,

since the remaining two cases are analogous. We proceed in two steps:

1. We show first that if α(bb) = α(φp(bb))
φp0(bb) for some bb > v, then α(b) < (>)α(φ

p(b))
φp0(b) for b close

to but larger (smaller) than bb. This means that if these two functions cross at bb, α(b)
crosses α(φp(b))

φp0(b) from above and α(b) < α(φp(b))
φp0(b) for all b > bb. From Lemma 3 in Appendix

1, we know that α(bb) = α(φp(bb))
φp0(bb) if and only if α(bb)

N−1 = φp(bb)−bb. Then, combining these two
equalities yields,

φp0(bb)− 1 = α(φp(bb))
α(bb) − 1 = α(φp(bb))− α(bb)h

φp(bb)−bbi (N − 1)
By the strict convexity of α(v), hence,

φp0(bb)− 1 > α0(bb)
N − 1

Then, φ(b) − b is growing faster than α(b)
N−1 at b =

bb. Resorting to Lemma 3 once more,
our claim follows.

2. It is immediate that α(v) = α(φp(v))
φp0(v) = 026. Our second step proves that, for b close to v,

it has to be true that α(b) < α(φp)
φp0 . Given our first step, this claim would establish the

Lemma.

Assume, towards a contradiction, that α(b) ≥ α(φp)
φp0 for all b ∈ (v, v + δ) for some δ >

0 arbitrarily small. Take any b0 in that interval. Without loss of generality, we can

concentrate on the case where α(b0) >
α(φp(b0))
φp0(b0)

, since if α(b0) =
α(φp(b0))
φp0(b0)

, step 1 above

implies that α(b) > α(φp(b))
φp0(b) for b smaller but close to b0. From Lemma 3,

α(b0)
N−1 > φp(b0)−b0.

Then, as α(v)
N−1 = φp(v)−v = 0, there has to exist a bid b1 ≤ b0 such that

α(b1)
N−1 > φp(b1)−b1

and α0(b1)
N−1 > φp0(b1) − 1. Since α(b1) > α(φp(b1))

φp0(b1)
, Lemma 3 implies as well that φp0(b1) >

α(φp(b1))
[φp(b1)−b1](N−1) . Therefore,

α0(b1)
N − 1 >

α(φp(b1))− [φp(b1)− b1] (N − 1)
[φp(b1)− b1] (N − 1)

26It can be easily verified that, for any p ∈ [0, 1], φp0(0) = N
N−1 .
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Furthermore, from the strict convexity of α(v),

α(φp(b1))− α(b1)

[φp(b1)− b1] (N − 1) >
α0(b1)
N − 1

For these last two inequalities to hold it has to be the case that α(b1) < [φ
p(b1)− b1] (N−

1). We thereby conclude that such a b1 cannot exist.

Proof of Proposition 1: Lemma 1 implies that α(b) < α(φp(b))
φp0(b) for any b > v and for any

p < 1 (p ≤ 1 if N > 2). Hence, if φp0(b) ≤ φp1(b),

p0F (φ
p0)F (b) + (1− p0)F

2(φp0)

p0 [(N − 2)F (b)f(φp0)φp00 + F (φp0)f(b)] + (1− p0)(N − 1)F (φp0)f(φp0)φp00

≤ p1F (φ
p1)F (b) + (1− p1)F

2(φp1)

p1 [(N − 2)F (b)f(φp1)φp10 + F (φp1)f(b)] + (1− p1)(N − 1)F (φp1)f(φp1)φp10 (4)

<
p0F (φ

p1)F (b) + (1− p0)F
2(φp1)

p0 [(N − 2)F (b)f(φp1)φp10 + F (φp1)f(b)] + (1− p0)(N − 1)F (φp1)f(φp1)φp10

where the last inequality follows from Lemma 4 in Appendix 1.

Examining the extreme left and right-hand sides of (4), a few steps of algebra yield

 p2(N − 2)F 2(b)+

(1− p)2 (N − 1)F (φp0)F (φp1)

 [F (φp0)f(φp1)φp10 − F (φp1)f(φp0)φp00] + (5)

p(1− p)F (φp0)F (φp1)F (b)

 (N − 2)
 F (φp0)f(φ

p1)φp10
F (φp1)

− f(φp0)φp00+

f(φp1)φp10 − F (φp1)f(φ
p0)φp00

F (φp0)


+f(φp1)φp10 − f(b)

F (b)
F (φp10)−

³
f(φp0)φp00 − f(b)

F (b)
F (φp00)

´


< 0

It is straightforward to check that the left-hand side of this expression cannot be negative unless

α(φp0)

φp00(b)
<

α(φp1)

φp10(b)
(6)

The proof now proceeds in two steps that are analogous to the ones followed in the proof

of Lemma 1 above.
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First, note that if φp0(bb) = φp1(bb) for some bb > v, then (6) implies that φp00(bb) > φp10(bb).
This means that if the two bidding functions cross at some bb > 0, then φp0(b) crosses φp1(b)

from below and φp0(b) > φp1(b) for all b > bb.
Second, we want to show that φp0(b) > φp1(b) for all b larger than but close to v. Suppose,

towards a contradiction, that there exists some bid b0 > 0 such that φp0(b) ≤ φp1(b) for all

b ∈ (v, b0). Then, (6) holds again, which implies
d

db

·
F (φp1(b))

F (φp0(b))

¸
< 0

for all b ∈ (v, b0) It follows that Z b0

0

d

db

·
F (φp1(b))

F (φp0(b))

¸
db < 0

or
F (φp1(b0))

F (φp0(b0))
− lim

b→0
F (φp1(b))

F (φp0(b))
< 0

The second term on the right-hand side of this expression, using L’Hôpital’s rule, becomes

f(v)φp10(v)
f(v)φp00(v)

= 1

since φp00(v) = φp10(v), as can be easily verified. Therefore, it must be true that

F (φp1(b0))

F (φp0(b0))
< 1,

and then φp0(b0) > φp1(b0), a contradiction.

Proof of Corollary 2: From (2), we know that

φ00 =
α(φ0)

(N − 1) ¡φ0 − b
¢ (7)

Differentiating this expression,

φ000 =
α0(φ0)φ00(φ0 − b)− α(φ0)(φ00 − 1)

(N − 1) ¡φ0 − b
¢2
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Substituting according to (7), the numerator of this expression becomes

α0(φ0)α(φ0)
N − 1 − α(φ0)(φ00 − 1) = α(φ0)

N − 1
£
α0(φ0)− (φ00 − 1)(N − 1)¤ (8)

From (7), we know that

(N − 1)(φ00 − 1) = α(φ0)− (N − 1)(φ0 − b)

φ0 − b

Proposition 1 implies that if α(v) is linear, then (N − 1)(φ0 − b) = α(b). Then,

(N − 1)(φ00 − 1) = α(φ0)− α(b)

φ0 − b
= α0(φ0)

where the last equality follows from the linearity of α(v). It follows that the expression in (8)

equals zero, and we conclude that φ000 = 0, and so does b000. Analogoustly, if α(v) is strictly

convex (strictly concave), then, from Proposition 1, (N − 1)(φ0 − b) > (<)α(b), so

(N − 1)(φ00 − 1) < (>)α(φ
0)− α(b)

φ0 − b
< (>)α0(φ0)

where the last inequality follows from the strict convexity (strict concavity) of α(v). Therefore,

the expression in (8) is positive (negative), so φ000 > (<)0. Then, b000 < (>)0.

Proof of Proposition 2: The reasoning immediately above the statement of the Proposi-

tion proves the result when α(v) is linear or strictly convex on [v, v]. For the case where α(v) is

strictly concave on [v, v], we use standard mechanism design tools. Let us construct the direct

revelation mechanism that is equivalent to the first-price auction with probability of corruption

(as believed by honest bidders) p. Let x(v) be the probability with which an honest bidder that

announces a valuation v wins, and let T (v) be the expected price she has to pay. Then, the

expected utility of an honest bidder with valuation v is U(v) = vx(v)− T (v). By the envelope

theorem, U 0(v) = x(v), so U(v) = U(v) +
R v
v
x(s)ds. Since U(v) = 0, it follows that

U(v) =

Z v

v

x(r)dr =

Z v

v

£
(1− p)F (N−1)(r) + pF (N−2)(r)F (bp(r))

¤
dr (9)

When α(v) is strictly concave, bp(v) uniformly falls with p. Furthermore, bp(v) < v. Then, the

integrand of this expression is decreasing in p, and so is the expected utility.
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Take now any distribution F (v) such that α(v) is not strictly convex, linear or strictly

concave on its entire support. There has to exist an interval [v, v + δ) such that α(v) is either

strictly convex, linear or strictly concave on that interval. Then, for any v ∈ [v, v+δ), following

the same steps as above we can conclude that U(v) is strictly decreasing in p. Assume, towards

a contradiction, that U(v0) is not strictly decreasing in p for some valuation v0 ≥ v + δ. Thus,

there must exist probabilities p0, p1 such that 0 ≤ p0 < p1 ≤ 1 such that the expected utility of
an honest bidder with valuation v0 when the probability of corruption is p1 is weakly larger than

when the probability of corruption is p0. Given p0 and p1, let v∗ ≤ v0 be the lowest valuation

for which this is true. We know that v∗ ≥ v + δ. Since U(v) is strictly decreasing in p for the

lowest valuations, it has to be true thatZ v∗

v

[(1− p0)F
N−1(r) + p0F

N−2(r)F (bp0(r))]dr (10)

=

Z v∗

v

[(1− p1)F
N−1(r) + p1F

N−2(r)F (bp1(r))]dr

Furthermore, the expected utility of honest bidders under p1 must be growing faster with v at

v∗ than the expected utility under p0. That is possible only if the integrand on the right-hand

side of (10) is larger than the integrand on the left-hand side when both are evaluated at v∗.

But this, in turn, can only happen if bp1(v∗) > bp0(v∗). Then,

v∗ = φp1(bp1(v∗)) = φp0(bp0(v∗)) < φp0(bp1(v∗)) (11)

Now, since an honest bidder with valuation v∗ has the same expected utility under p0 and under

p1, we have

(v∗ − bp0(v∗))[(1− p0)F
N−1(v∗) + p0F

N−2(v∗)F (bp0(v∗))]

= (v∗ − bp1(v∗))[(1− p1)F
N−1(v∗) + p1F

N−2(v∗)F (bp1(v∗))]

< (v∗ − bp1(v∗))[(1− p0)F
N−1(φp0(bp1(v∗))) + p0F

N−2(φp0(bp1(v∗)))F (bp1(v∗))]

where the last inequality follows from (11). This contradicts the fact that bp0(v∗) is the optimal

bid under p0 when all honest rivals behave according to φ
p0(b).
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Proof of Proposition 3: Let bUp(v) be the expected utility of the coalition when the

dishonest bidder’s valuation is v and the probability that honest bidders attach to the existence

of corruption is p. Then,

bUp(v) =

Z φp(v)

v

(v − bp(r))F (N−2)(r)f(r)dr

But Z φp(v)

v

(v − bp(r))F (N−2)(r)f(r)dr >
Z v

v

(v − r)F (N−2)(r)f(r)dr

where the last expression is the expected utility of a dishonest bidder when all honest rivals

bid their own valuations, and the inequality follows from the fact that bp(r) < r for all r and

φp(v) > v. Since all honest bidder shade their bids for any value of p, the coalition, when

the dishonest bidder’s valuation is v, is better off than facing honest bidders that bid their

valuations. But the right-hand side is then the expected utility of the coalition in a second-

price auction, for any value of p–in particular, for p = 0. When p = 0, the expected utility of

the coalition in a second-price auction is just the expected utility of any bidder with valuation

v in a second-price or a first-price auction without corruption, since both auctions are payoff-

equivalent in that case. We conclude that for any valuation v > v of the dishonest bidder,

and for any value of p, there is a positive surplus from corruption for the coalition. Then, the

expected surplus of the coalition must be positive.

Proof of Lemma 2: This result follows if we prove that, for any given probability of

corruption p, all honest bidders become more aggressive when the number of bidders grows.

Let φp,N(b) be the equilibrium inverse bidding function of an honest bidder when she attaches

probability p to the existence of corruption and there are N active bidders. Then, from (2),

φp,N(b)−b = pF (φp,N)F (b) + (1− p)F 2(φp,N)

p
£
(N − 2)F (b)f(φp,N)φp,N 0 + F (φp,N)f(b)

¤
+ (1− p) (N − 1)F (φp,N)f(φp,N)φp,N 0

(12)

We follow the two usual steps. Take any numbers of bidders N0, N1 such that N1 > N0.

First, assume that for some bid bb > v we have φp,N0(bb) = φp,N1(bb) = bφ.
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From (12), h
p (N0 − 2)F (bb)f(bφ) + (1− p) (N0 − 1)F (bφ)f ³bφ´iφp,N00(bb)

=
h
p (N1 − 2)F (bb)f(bφ) + (1− p) (N1 − 1)F (bφ)f(bφ)iφp,N10(bb)

which implies φp,N00(bb) > φp,N10(bb).
But, since φp,N10 (v) = N1

N1−1 < N0
N0−1 = φp,N00 (v) , we know that φp,N1(b) < φp,N0(b) for b

larger than but close to v. We conclude that φp,N1(b) < φp,N0(b) for all b > v.
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