Entry, Costs Reduction, and Competition in the Portuguese Mobile Telephony Industry

Philippe Gagnepain* Pedro Pereira†
Universidad Carlos III de Madrid Autoridade da Concorrência
February 2005

Abstract

We study the effect of entry on costs and competition in the Portuguese mobile telephony industry. We construct and estimate a model that includes demand, network, and cost equations. The latter accounts for inefficiency and cost reducing effort. We show that failure to account for cost reducing effort leads to biased estimates of competition in the industry. We also find that our estimated price-cost margins are similar to hypothetical Nash margins, if firms are patient, and have optimistic beliefs about the industry growth. Finally, our results suggest that the entry of a third operator in 1998 lead to significant cost reductions, and fostered competition.

Key Words: Mobile Telephony, Entry, Competition, Efficiency, Empirical Analysis

JEL Classification: L13, L43, L93

*Departamento de Economía, Universidad Carlos III de Madrid, C./ Madrid, 126, 28003 Getafe, Madrid, Spain. e-mail: philippe@eco.uc3m.es
†Autoridade da Concorrência, Rua Laura Alves, nº4, 4º, 1050-188 Lisboa, Portugal, e-mail: ppereira@autoridadedaconcorrencia.pt
1 Introduction

We analyze the mobile telecommunications industry in Portugal and test whether cost reduction and competition have been affected by the entry of an additional operator in 1998 and the liberalization of the telecommunications industry in 2000.

A common practice in the empirical industry models that focus on oligopolistic frameworks is to assume that firms are efficient and costs are exogenous. This is in contradiction with a rich empirical tradition related to the measurement of efficiency through the estimation of production and cost functions (Aigner, Lovell and Schmidt, 1977; Kumbhakar and Lovell, 2000). Moreover, the recent literature on incentives and informational asymmetries proposed a theoretical framework to account for the effect of cost reduction by firms, emphasizing the endogeneity of costs (Laffont, 1994). This literature suggests that the firms’ endogenous effort, depends closely on the constraints exerted by the competitive or regulatory environment it faces.

We construct and estimate an industry model that includes cross-price elasticities, and where firms choose both prices and cost reducing effort. The model consists of a system of equations that accounts for the demand, network, and the technology of each firm. Technology is described by a cost function that includes two non-observable parameters: (i) the exogenous technical inefficiency of each firm, and (ii) cost reducing effort. Cost reducing effort can be expressed by taking into account the competitive pressures impinging on the activity of each firm before and after the entry of a third firm or the liberalization of the telecommunications industry in 2000.

The Portuguese mobile telephony industry provides a suitable application for the framework we have in mind. In Portugal, the firm associated with the incumbent, TMN, started its activity in 1989 with the analogue technology C-450. In 1991, the sectorial regulator, ICP-ANACOM, assigned two licenses to operate the digital technology GSM 900. One of the licenses was assigned to TMN. The other license was assigned to the entrant VODAFONE. Initially, the service was provided by a consortium of two firms of the group of the telecommunications incumbent. In 1991, the consortium became one single firm called TELECOMUNICAÇÕES MÓVEIS NACIONAIS (TMN).

The licenses were assigned through a public tender, following the EU Directive 91/287 instructing member states to adopt the GSM standard. System GSM 900 operates on the 900 MHz frequency. System GSM 1800 operates on the 1800 MHz frequency, accommodates more customers than the GSM 900 system, and is compatible with the former. The upstream and downstream velocity is 9.6-14 kbps.

Initially the firm’s name was TELECEL-COMUNICAÇÕES PESSOAIS, S.A. and was later renamed TELECEL-VODAFONE, following changes in the shareholder structure.
In 1997, the regulator assigned three licenses to operate the digital technology \(\text{GSM 1800}\).\(^4\) Two licenses were assigned to \(\text{TMN}\) and \(\text{VODAFONE}\). A third license was assigned to the entrant \(\text{OPTIMUS}\).\(^5\) Finally, the legislation of the \(\text{E.U.}\) imposed the full liberalization of the telecommunications industry at the end of the nineties.\(^6\) This meant that any firm licensed by the sectorial regulator could offer its services. In particular, any firm could offer fixed telephony services, either through direct access based on their own infrastructures, or through indirect access, available for all types of calls. In Portugal the liberalization took effect in 2000.\(^7\)

After its inception in 1989, the Portuguese mobile telephony industry had a fast diffusion, measured by the number of subscribers.\(^8\) The speed of the diffusion lead to high and rising penetration rates.\(^9\) After entering the market in 1992, \(\text{VODAFONE}\) gained revenue market share rapidly as shown in Figure 1.\(^{10}\) During the duopoly period, i.e., from 1992 to 1997, \(\text{TMN}\) and \(\text{VODAFONE}\) essentially shared the market. The entry of \(\text{OPTIMUS}\) led to an asymmetric split of the market, which suggests that this event had a significant impact in the industry.

\[\text{Figure 1}\]

The objective of our work is threefold. First, we test whether the entry of \(\text{OPTIMUS}\) in 1998, or the full liberalization of the telecommunications industry in 2000, gave firms stronger incentives to reduce costs. Note that economic theory has no simple prediction about the

\(^4\)The licenses were assigned through a public tender, following the EU Directive 96/2, instructing member states to grant at least two \(\text{GSM 900}\) licenses, and to allow additional firms to use \(\text{GSM 1800}\).

\(^5\)\(\text{OPTIMUS-TELECOMUNICAÇÕES, S.A.}\) was also granted a license to operate \(\text{GSM 900}\).

\(^6\)Directive 90/388/EEC and Directive 96/19/EC

\(^7\)The date for the European liberalization was 1998. Portugal, like other countries, benefited from a derogation (Decision 97/310/EC of the Commission). Note that the entry of \(\text{OPTIMUS}\) in 1998 was independent from the liberalization process.

\(^8\)A \text{Subscriber} is a user with a contractual relationship with a national provider of the land mobile service, namely in the form of a subscription plan, or an active prepaid card. Between 1992, the date of the introduction of \(\text{GSM}\), and 2003, the number of subscribers increased at an average rate of 65% a year, duplicating, on average, every 16.6 months. Pereira and Pernias (2004) place the inflection point of the diffusion of curve of \(\text{GSM}\) in the fourth quarter of 2000.

\(^9\)The \text{Penetration Rate} is the number of subscribers per 100 inhabitants. In 1999, the penetration rate of mobile telephony overtook the penetration rate of fixed telephony. In 2003 the penetration rate of fixed telephony was 40% and decreasing, and the rate of penetration of mobile telephony was 89% and increasing. The penetration rate in Portugal, although above EU average, is not abnormal among EU countries. Twelve of the eighteen EU countries have a penetration rate equal or above 85%, with Luxembourg reaching the value of 117%. Lower penetration rates in big countries like France, 67%, and Germany, 76%, pull the average down.

\(^{10}\)After overtaking \(\text{TMN}\) in 1994, and reaching a market share of 58.6% in 1996, the market share of \(\text{VODAFONE}\) declined, particularly after the entry of \(\text{OPTIMUS}\) in 1998, and reached the level of 26.6% in 2003.
relation between the number of competitors in a market, and incentives to reduce costs.11 To do so, we construct a cost function that accounts for the firms’ cost reducing effort, and test several scenarios of incentive pressures against each other, in order to identify which fits the data better. We show that cost reducing effort increased significantly after the entry of OPTIMUS, while the 2000 liberalization had a mild impact.12 Second, we compare our estimates with those of a standard model with no effort and no inefficiency. We show that the two sets of estimates are significantly different from each other. A model accounting for technical inefficiency and effort is better. Third, given these estimates, we retrieve cost and demand parameters to construct marginal costs, and therefore price-cost margins. The results show that the standard model underestimates the toughness of competition. We then test whether price-cost margins correspond to a non-cooperative Nash behavior under alternative hypothesis, where firm either have a myopic or a long run perspective. We find that estimated price-cost margins are similar to hypothetical Nash margins, if firms are patient, and have optimistic beliefs about the industry growth. As a by-product, network effects and switching costs are also seen to play an important role in this industry.

The remainder of the paper is organized as follows. Section 2 presents the cost, network, and demand systems. Section 3 proposes a model of firms’ cost reduction activity. Section 4 presents an empirical evaluation of such activity. Finally, Section 5 evaluates the competitive forces in the industry, which entails determining the pricing rules set by firms. Section 6 concludes.

2 Building Blocks of the Model

In what follows, we specify a model of the firms’ behavior that encompasses two important aspects of our problem. We are interested in representing the firms’ cost reducing activity and pricing decisions, as well as the interconnection between these two aspects. This entails defining first a three part structure that includes cost, network growth, and demand equations.11The likely effect of the entry of an additional firm is a decrease in prices. If in addition the quantity produced by each firm increases, then firms will have more incentives to invest in marginal cost reducing effort. If, however, the quantity produced by each firm decreases, firms will have less incentives to invest in cost reduction. See Pereira (2001) for a model where lower prices can be associated with higher and lower investment in cost reduction.12Note that, on the one hand, more competition in fixed telephony should have pushed the prices of this service down, and reduced the substitution between fixed and mobile telephony (Barros and Cadima (2002), Rodini et al. (2003)). On the other hand, the liberalization involved a tariff rebalancing which increased the telephone subscription fee and the price of local calls. It is therefore unclear what the impact of the full liberalization of the telecommunications market in Portugal should have been.
2.1 Demand and Network Growth

We will refer to the three firms in the market by their order of entry, e.g., TMN is firm 1, and index them with subscript \(i = 1, 2, 3\). And we index time through subscript \(t\). The demand of firm \(i\) on period \(t\) depends on its price \(p_{it}\) and a vector of the competitors’ prices \(p_{jt}\). Moreover, we account for the consumers’ income \(r_t\), the size of the its network, i.e., numbers of subscribers, in the previous period \(n_{it-1}\), and a time trend \(t\). The inclusion of the size of the network in the previous period could be justified by two non-mutually exclusive reasons. The first reason involves network economies. The consumers’ marginal valuation of the service depends on the number of other consumers who belong to the network. However, consumers only observe with lag the size of the firms’ networks.\(^{13}\) The second reason involves switching costs or consumer inertia. An increase in a firm’s price relative to the prices of its rivals induces consumers to leave the firm. However, if consumers have switching costs, they will not respond immediately, but only over time. The time trend accounts for changes in preferences or consumer awareness. Denote by \(y_{it}\) the traffic, i.e., minutes of communication, supplied by firm \(i\) in period \(t\). Each firm faces then a demand of the form:

\[y_{it} = D_i(p_{it}, p_{jt}, r_t, n_{it-1}, t | \alpha), \]

(1)

where \(\alpha\) is a vector of parameters to be estimated.

We also assume that the size of firm \(i\)’s network in period \(t\), depends on its price \(p_{it}\). Thus, each firm faces a network function of the form:

\[n_{it} = N_i(p_{it} | \gamma), \]

(2)

where \(\gamma\) is a vector of parameters to be estimated. The network function will be useful in Section 5 where we disentangle short-run from long-run pricing decisions. Equations (1) and (2) give a dynamic structure to the model in the sense that a firm’s demand in period \(t\) depends on its price of the previous period.

2.2 Costs

We now turn to the cost side of the model. To produce a volume of traffic \(y_{it}\), firm \(i\) requires quantities of labor, \(l_{it}\), materials, \(m_{it}\), and capital, \(k_{it}\). Denote by \(\omega_{l_{it}}\), \(\omega_{m_{it}}\), and \(\omega_{k_{it}}\), the price of labor, materials and capital, respectively.

\(^{13}\)Network interconnection obligations mitigate, but do not eliminate network economies. Differences between intra and inter network calls resurface the value for a consumer of belonging to a large network as well as the strategic advantage for a firm of owning a large network.
Denote by \(c_{it} \) the observed operating cost of firm \(i \). An important feature of our model is that the actual operating cost may differ from the efficient operating cost. Inefficiency may prevent firms from reaching the required output level \(y_{it} \) at the minimum cost, and this may result in upward distorted costs.\(^{14}\) However, firms can undertake cost reducing activities to counterbalance their inefficiency. Firms can engage in process research and development, managers may spend time and effort in improving the location of inputs within the network, monitoring employees, solving potential conflicts, etc. Whatever these cost reducing activities may be, we will refer to them as effort. Denote by \(\theta_{it} \) and \(e_{it} \), firm \(i \)'s inefficiency and effort levels, respectively. Note that these two variables are unobservable. We also allow the possibility of technical progress, which is captured by a time trend \(t \). Each firm faces a long-run cost function, conditional on inefficiency and effort, of the form:

\[
c_{it} = C(y_{it}, \omega_{l_{it}}, \omega_{m_{it}}, \omega_{k_{it}}, t | \theta_{it}, e_{it}, \beta), \tag{3}
\]

where \(\beta \) is a vector of parameters to be estimated. Note that while inefficiency \(\theta_{it} \) is exogenous, cost reducing effort \(e_{it} \) is a choice variable for firm \(i \), and will therefore depend on the competitive pressures impinging on the activity of the firm.

In a second step, we need to define the structure of the system of equations (1), (2), and (3). This entails describing the firms’ pricing and effort decisions. Before entering into the analysis, it is worth reminding that the pricing structure itself is independent of the nature of the competitive pressures impinging on the activity of the firm.\(^{15}\) Thus, although prices and effort are determined simultaneously, the firms’ decisions will be presented separately, for ease of exposition.

3 Competitive Pressure and Cost Reduction

This section focuses on the construction of the structural cost function. The entry of \textit{OPTIMUS} in 1998, as well as the 2000 liberalization, may have influenced the cost reducing activities of firms. We propose to account for the competitive pressures potentially unleashed

\(^{14}\)There are several ways of thinking about inefficiency. First, it may simply be the result of the irreducible uncertainty that involves the creation of a new production process. This interpretation is in line with Lippman and Rumelt, (1982), Hopenhayn (1992), Jovanovic (1982), and Klepper and Graddy (1990). Alternatively, inefficiency may be related to the quality of the firm’s production factors.

\(^{15}\)The way we incorporate the technical inefficiency and effort parameters allows the incentive-pricing dichotomy principle to hold (Laffont and Tirole, 1993). This means that the same pricing formula applies whether we assume strong or weak competitive pressures.
by these two events through the cost function (3) that is conditional on inefficiency \(\theta_i \) and the effort level \(e_i \). Deriving the equilibrium level of effort and plugging it back into the conditional cost function allows us to derive a structural cost function that can be estimated. The aim of this approach is twofold. First, we can test against each other different scenarios associated with these two events in order to determine whether the entry of OPTIMUS or the 2000 market liberalization had a significant impact on the cost reducing effort of the Portuguese mobile telephony firms. Second, accounting for these changes in incentives through the cost structure enables us to reduce the source of mispecification, and avoid biases in the estimation of the technological parameters.\(^{16}\)

As mentioned before, a firm can exert effort \(e_{it} \) to reduce its operating costs \(c_{it} \). The cost reduction activity induces an internal cost \(\Psi(e_{it} | \mu) \) where \(\mu \) is a parameter to be estimated. Taking into consideration the operating cost reduction and the internal cost of effort, the firm sets the optimal effort level \(e_{it} \) that maximizes its profit. Firm \(i \)'s profit is the difference between revenue \(R_{it} = p_{it}D_{it} \) and total cost \(c_{it}(e_{it}, .) + \Psi(e_{it}, .) \):

\[
\Pi_{it}(p_{it}, e_{it}, n_{it-1}) = p_{it}D(p_{it}, p_{jt}, r_{it}, n_{it-1}, t) - C(y_{it}, \omega_{li}, \omega_{mi}, \omega_{ki}, t | \theta_i, e_{it}) - \Psi(e_{it}).
\]

Assuming an infinite horizon set-up, a firm’s effort choice problem, given the output level, is:

\[
\max_{e_{it}} \sum_{t=0}^{\infty} \Pi_{it}(p_{it}, e_{it}, n_{it-1}) \quad \text{s.t.} \quad n_{it} = N_{it}(p_{it})
\]

Denote by \(V(n_{it}) \) the optimal value function for firm \(i \), given the size of its network \(n_{it} \).

The Bellman equation for firm \(i \)'s effort choice problem, given the output level, is:

\[
V(n_{it}) = \max_{e_{it}} \left\{ \Pi_{it}(p_{it}, e_{it}, n_{it-1}) + \delta V(n_{it}) \right\}.
\]

where \(\delta \) is the discount factor. The first order condition for effort is:

\[
- \frac{\partial C(y_{it}, \cdot | \theta_i, e_{it})}{\partial e_{it}} = \Psi'(e_{it}),
\]

which implies that the optimal effort level equalizes marginal cost reduction and the marginal disutility of effort.

We consider two periods. First, a period ”\(B \)”, which refers either to the phase before the entry of OPTIMUS, or before the 2000 liberalization. And second, a period ”\(A \)”, which refers

\(^{16}\)Previous studies have attempted to account for cost endogeneity problems after a change in regulation. Among them, Parker and Roeller (1997) analyzes the impact of regulatory changes on the competitiveness of mobile telecommunications markets. Gagnepain and Ivaldi (2002) shows how firms’ cost reducing activity is related to the regulatory contracts set by public authorities in the public transit industry.
either to the phase after the entry of OPTIMUS, or after the 2000 liberalization. We expect operators to provide effort during both periods, and the effort level in the second period to be higher than the effort level in first period, i.e., \(e_A^i > e_B^i > 0 \). However, to be able to derive and identify two different closed forms for the cost function (3), we need to normalize \(e_B^i = 0 \), and let \(e_A^i > 0 \) be determined by Condition (6).\(^{17}\) Given these two effort levels, we can write the cost function as

\[
c^s(e_s^i, \cdot),
\]

where \(s \) denotes the type of competitive regime, that can be either ”B” or ”A”. Note that Equation (7) entails two different cost structures that are conditional on the period studied.

4 Evaluating Cost Reductions

The next step consists of proposing specific functional forms for the demand, network, and cost functions, as well as for the cost reducing effort, in order to derive the set of structural equations to be estimated. Using data from the Portuguese mobile telephony firms, we are capable of shedding light on the cost structure that fits reality the best, i.e., we are able of figuring out which event, the entry of OPTIMUS or the 2000 liberalization, had a significant impact on the firms’ behavior. This section presents the empirical model, as well as the estimation results. See Appendix 1 for a description of the data and the construction of the variables.

4.1 Empirical Implementation

The demand function corresponding to (1), is specified in a log-linear form as follows:

\[
\ln y_{it} = \alpha_0 + \alpha_{p_i} \ln p_{it} + \sum_{j \neq i} \alpha_{p_{ij}} \ln p_{jt} + \alpha_n \ln n_{it-1} + \alpha_r \ln r_t + \alpha_T t + u_{it}^d
\]

where \(u_{it}^d \) is an error term. Note that this specification includes cross-price elasticities \(\alpha_{p_{ij}} \).

The network growth function corresponding to (2), is specified as follows:

\[
\ln n_{it} = \gamma_0 + \gamma_{p_i} \ln p_{it} + \gamma_{n_{it-1}} \ln n_{it-1} + u_{it}^n
\]

where \(u_{it}^n \) is an error term. Note that the lagged network size term \(n_{it-1} \) is included in order to capture short-run dynamics.

\(^{17}\)This assumption is justifiable, given that what matters in our analysis is the difference \(e_A^i - e_B^i \).
We assume a Cobb-Douglas specification for the cost function presented in (3). This specification retains the main properties desirable for a cost function, while remaining tractable. Alternative more flexible specifications, such as the translog function, lead to cumbersome computations of the first order conditions when effort is unobservable.\footnote{In particular, in order to solve for Equation (6), plug it into Equation (3), and estimate Equation (7) applying parametric techniques, we need a Cobb-Douglas specification.} The cost function is then specified as:

\[
\ln c_{it} = \beta_0 + \beta_l \ln \omega_{l_{it}} + \beta_m \ln \omega_{m_{it}} + \beta_k \ln \omega_{k_{it}} + \beta_y \ln y_{it} + \beta_t t + \theta_i - e_{it} + u_{it}^c, \tag{10}
\]

where \(u_{it}^c \) is an error term. We will impose homogeneity of degree one in input prices, i.e., \(\beta_l + \beta_m + \beta_k = 1 \).

The reader should remember that \(\theta_i \) and \(e_{it} \) are both unobservable. First, the inefficiency \(\theta_i \) is characterized by a density function \(f(\theta_i) \), defined over an interval \([\theta_L, \theta_U]\), where \(\theta_L \) and \(\theta_U \) denote the most efficient and inefficient firms, respectively. Second, the effort \(e_{it} \) is defined as follows. Define the cost of effort as:\footnote{The function \(\Psi(\cdot) \) is a convex, with \(\Psi(0) = 0, \Psi'(e_{it}) > 0 \) and \(\Psi''(e_{it}) > 0 \).}

\[
\Psi_{it}(e_{it}) = \exp(\mu e_{it}) - 1, \quad \mu > 0. \tag{11}
\]

Then, using the functional forms of operating costs (10), the cost of effort (11), and the first order condition for effort (6), we can express the effort level for period \(A \). The first-order condition that determines the effort level \(e^A \) can now be written as:

\[
c_{it} = \mu \exp(\mu e_{it}). \tag{12}
\]

Substituting (10) in (12), we can solve for \(e_{it}^A \) as:

\[
e_{it}^A = \frac{1}{\mu + 1} \left(\ln \beta_0 + \beta_y \ln y_{it} + \beta_l \ln \omega_{l_{it}} + \beta_m \ln \omega_{m_{it}} + \beta_k \ln \omega_{k_{it}} + \beta_t t + \theta_i - \ln \mu + u_{it}^c \right), \tag{13}
\]

while \(e_{it}^B = 0 \).

As suggested by the new theory of regulation, the effort level of a firm increases with \(\theta_i \), i.e., a more inefficient firm needs to exert more effort than a less inefficient one to reach the same cost level. Moreover, firms are willing to provide less effort when effort is more costly, i.e., when the cost reducing technology parameter \(\mu \) is larger. Substituting back \(e_{it}^A \) and \(e_{it}^B \) into (10) allows us to obtain the final forms to be estimated \(c^B(\cdot) \) and \(c^A(\cdot) \). We therefore obtain:

\[
\ln c_{it}^A = c_0 + \beta_l' \ln \omega_{l_{it}} + \beta_m' \ln \omega_{m_{it}} + \beta_k' \ln \omega_{k_{it}} + \beta_y' \ln y_{it} + \beta_t' t + \zeta \theta_i + u_{it}^c, \tag{14}
\]
and
\[
\ln c_{it}^B = \beta_0 + \beta_1 \ln \omega_{it} + \beta_m \ln \omega_{mit} + \beta_k \ln \omega_{kit} + \beta_y \ln y_{it} + \beta_T t + \theta_i + u_{it}^c, \tag{15}
\]
where \(\zeta = \frac{\mu}{1+\mu} \), \(c_0 = \beta_0 + \frac{1}{1+\mu}(\ln \mu - \ln \beta_0) \), \(\beta' = \zeta \beta \), and \(u_{it}^\theta = \zeta u_{it}^\zeta \). Note that \(\lim_{\mu \to +\infty} \beta' = \beta_s \), i.e., as the cost of effort grows, the effort level falls, and expression (14) converges to (15). This implies that if effort is not taken into account, the estimates of the elasticities are biased.

The cost function to be estimated is then:
\[
\ln c_{it} = \xi_{it}^A \left[c_0 + \beta_1 \ln \omega_{it} + \beta_m \ln \omega_{mit} + \beta_k \ln \omega_{kit} + \beta_y \ln y_{it} + \beta_T t + \theta_i + u_{it}^\theta \right] + \xi_{it}^B \left[\beta_0 + \beta_1 \ln \omega_{it} + \beta_m \ln \omega_{mit} + \beta_k \ln \omega_{kit} + \beta_y \ln y_{it} + \beta_T t + \theta_i + u_{it}^\zeta \right], \tag{16}
\]
where \(\xi_{it}^A \) takes value 1 during period ”A”, and 0 otherwise, while \(\xi_{it}^B \) takes value 1 during period ”B”, and 0 otherwise. In the course of the estimation, several vectors \(\xi_{it}^A \) and \(\xi_{it}^B \) will be assumed, depending on which scenario is considered, and their results will be tested against each other, to unravel their effects on competition.

The system of equations formed by (8), (9) and (16) is determined simultaneously. Accordingly and in order to avoid endogeneity problems, these equations are estimated by the Instrumental Variables Estimation Method. The cost function (16) includes a non-observable parameter, \(\theta_{it} \), characterized by a Half-Normal density function \(f(\theta) \). When estimating this cost-function, one needs to compute the integral of the joint density function of \(\theta_{it} \) and \(u_{it}^\theta \) over \([0, \infty]\).\(^{20}\) Note that the system is identified and all parameters can be recovered, given the homogeneity of degree 1 in input prices.

4.2 Estimation Results

Tables 1 to 3 in Appendix 3 provide the results for the econometric model. We emphasize in this section the two main arguments discussed in this paper. First, depending on how incentives and cost reduction activities are interpreted, different cost structures can be estimated. Then, a non-nested test helps us to choose the best cost structure in the sense that it is the one that fits the data the best. Once this is done, a precise evaluation of the nature of competition in the industry can be obtained in a second step. This latter procedure also requires important ingredients on the demand and network growth sides which are discussed below.

\(^{20}\) For more details, the reader should refer to Kumbhakar and Lovell (2000).
4.2.1 Demand and Network

The results for demand are presented in Table 1, where different types of estimation procedures are considered. In all cases the goodness of fit measured by the R^2 is close to 1. Model 1 is a simple OLS procedure. To account for the presence of autocorrelation, we estimated Models 2 and 3 using the Cochrane-Orcutt method for a fourth-order autoregressive model. Note that Model 3 adds to Model 2 operator’s fixed effects and a time trend. A Wald Test whose statistic is $F = 9.11$, suggests that firms’ fixed effects and the trend are jointly significant, and thus favours Model 3. Finally, in order to account for short run dynamics, we estimated Model 4, which adds to Model 3 lagged output, y_{it-1}, as an explanatory variable.

Table 2 presents the estimates of the network growth equation obtained by the Cochrane-Orcutt method for a fourth-order autoregressive model.

Taken together, the demand and network equations allow us to evaluate short-run and long-run price as well as income elasticities, using a procedure described in Appendix 2. The demand and network functions exhibit a pattern of short-run dynamics. In Table 1, the estimate of the lagged output, $\alpha_{y_{t-1}}$, is significant at a 1% level and positive, which implies that a shock to one of the demand function variables will fully translate into demand only over time. Similarly, in Table 2, the estimate for the coefficient of the lagged network size, n_{t-1}, is significant at a 1% level.

The results obtained for Model 4 of Table 1, and those of Table 2, suggest the following three observations:

Observation 1: *The industry is characterized by significant network economies.*

From Model 4 of Table 1, the short-run demand network elasticity is $\alpha_n = 0.35$, and the long-run demand network elasticity is $\eta_{yn} = \frac{\alpha_n}{1-\alpha_{y_{t-1}}} = 0.48$. This implies that a 1% increase in the size of the network causes demand to increase by 0.351% (0.48% resp.) in the following quarter (in the long-run resp.). This result is in line with both economic theory and empirical studies (see Doganoglu and Grzybowski (2003), Madden et al. (2004), and Pereira and Pernias

21 Several tests were performed in order to test for the presence of heteroscedasticity and autocorrelation. The White’s statistic is 23.039, which discards the presence of heteroscedasticity. On the other hand, the Lagrange statistic is 80.492, indicating that the null hypothesis that there is no autocorrelation is rejected.

22 An initial simple OLS estimation showed evidence of autocorrelation with a Lagrange multiplier statistic equal to 49.596. The White’s statistic, equal to 5.395, failed to reject the null hypothesis that the residuals are homoscedastic.
With respect to the network function, it can be seen from Table 2 that the short-run network price elasticity is \(\eta_{np} = 0.139 \), while the long-run network price elasticity is \(\eta_{np} = \frac{\gamma_{p-1}}{1 - \gamma_{n-1}} = -1.112 \). This implies that a 1% increase in the price causes the size of the network to decrease by 0.13% in the same quarter, and to decrease by 1.11% in the long-run. This set of results has two main implications. First, it suggests that the size of the network responds to price variations. Second, it shows that there is considerable inertia in the way the size of the network responds to price. This can be taken as indirect evidence of the presence of consumer switching costs in the industry.

Observation 2: The market demand is inelastic with respect to price if indirect effects on the size of the network are not accounted for.

Model 4 of Table 1 shows that the estimate of the direct short-run price elasticity is \(\eta_{dsr} = -0.384 \), while the estimate of the direct long-run price elasticity is \(\eta_{dlr} = -0.53 \). This suggests that a 1% increase in price causes demand to decrease by 0.384% in the same quarter, and to decrease by 0.53% in the long-run. These estimates are small but highly significant. Besides, they are in line with the results reported in previous studies of the mobile telephony industry.

Note that, however, the total long-run price elasticity is \(\eta_{ltr} = -1.11 \). This interesting result shows that accounting for the long-run impact of a price change is important to evaluate the overall impact of price on demand.

The only cross-price demand elasticity that is statistically significant is the one that describes the interaction between **VODAFONE** and **OPTIMUS**. It suggests that the products of these two firms may be substitutes. The estimates of the cross-price elasticities of **TMN** and **VODAFONE**, and of **TMN** and **OPTIMUS**, are small and not significant. However, they seem to indicate that the products of **VODAFONE** and **OPTIMUS** may be complements of the product of **TMN**.

Observation 3: Mobile telephony is a luxury good and demand increases over time.

Demand increases with the gross national product per capita. This result is in line with other studies such as Gruber and Verboven (2001). Note that the income elasticity of demand

23These are average values across operators. We also estimated elasticities for each firm. The values are: \(-0.107\) for **VODAFONE**, \(-0.404\) for **TMN**, and \(-0.797\) for **OPTIMUS**. Note that the elasticity of **VODAFONE** is not significant.

24See Hausman (1997), Madden et al. (2004), and OFTEL (2002).
is \(\alpha_r = 1.94 \), suggesting that mobile telephony is a luxury good.

Finally, demand increases over time. The coefficient of the time trend although small is significant and positive. This highlights again the importance of accounting for dynamics in the industry. Note that the time trend captures the growth in demand that occurs for reasons unrelated to short-run dynamics or network economies, which also exert their impact on demand over time.

4.2.2 Costs

Table 3 presents the estimates for the cost function. This equation is estimated under alternative scenarios related to the entry of OPTIMUS in 1998 and the 2000 liberalization. In all cases but Model 1, we include the term \(\theta_{it} \) to measure inefficiency. Additionally, the following distinctions are made: (i) Scenario 1, with no effort and no inefficiency term, (ii) Scenario 2, where firms do not make any effort to reduce inefficiency after the entry of OPTIMUS and the 2000 liberalization, i.e., the effect of these two shocks to the industry is not accounted for, (iii) Scenario 3, where only the entry of OPTIMUS in 1998 affects firms’ behavior, and (iv) Scenario 4, where only the 2000 liberalization affects the firms’ behavior. Additionally, we considered Scenario 1’, which is similar to Scenario 1 without a time trend. The latter model will be useful to discuss returns to scale.

Note that the variables are significant and have the expected sign.\(^{25}\) In particular, costs increase with input prices and production. Moreover, we propose the following two observations:

Observation 4: The entry of OPTIMUS caused firms to increase their effort level and reduce costs.

The alternative scenarios are tested against each other, applying the non-nested hypothesis test proposed in Vuong (1989).\(^{26}\) The test shows that Scenario 4 is rejected against Scenario 3. This suggests that the 2000 liberalization had limited effect on the firms’ cost reduction activity, compared to the entry of OPTIMUS in 1998. Scenarios 1 and 2 are rejected against Scenario 3, which includes an inefficiency measure, and assumes that firms exert effort after the

\(^{25}\) The value of the Breusch-Godfrey Lagrange multiplier statistic is 3.14. Thus, the test fails to reject the null hypothesis that there is no autocorrelation. The value of White’s heteroscedasticity test is 18.033. Hence, the test fails to reject the null hypothesis that the residuals are homoscedastic.

\(^{26}\) Values for the Vuong test below –2 favor the alternative model against Model 4, and values above 2 favor Model 4 against the alternative model.
entry of *OPTIMUS* in 1998. Given that Scenario 1 represents the standard approach proposed by the literature on oligopolistic competition, its rejection advocates the construction of models including these components, and indicates that one has to be cautious when interpreting the results derived from other models. Moreover, the rejection of Scenario 2 shows the importance of accounting for the effects of cost reducing effort on firms’ technology and inefficiency.

Observation 5: *The industry is characterized by constant returns to scale.*

From Scenarios 1 to 4, it appears that the production parameter β_y ranges form 1.004 to 1.029. These parameters are not statistically different from 1, indicating that the industry is characterized by constant returns to scale. This result is consistent with the few previous studies on mobile telecommunications: McKenzie and Small (1997) shed light on constant or slightly decreasing returns to scale, while Foreman and Beauvais (1999) find mild scale economies. We expect costs to increase proportionally to output, since the mobile telephony is less lumpy, or more modular, than the fixed telephony technology which is characterized by increasing returns to scale. Mobile telephony firms can meet demand increases by splitting the cells where their capacity is binding.\(^{27}\) Note that Scenario 1’ contains a production parameter β_y that is significantly lower than 1. This clearly shows the importance of accounting for technological progress at the moment of identifying returns to scale. The equipment required to meet the increasing levels of demand is acquired at different points in time, representing different vintages of the technology. Technological progress during our period of observation was very robust. This makes it hard to disentangle whatever scale economies that might exist from technological progress if a time trend is not accounted for in the course of the estimation.

Taken together, the two periods before and after the entry of *OPTIMUS* allow us to identify the cost reducing activity since we considered different cost structure for each period.\(^{28}\) Ac-

\(^{27}\)A cell is an hexagonal geographic region. See Hausman (2002) for a description of the mobile telephone technology. A cell has a limited number of channels. However, this limit can be overcome. Cells can be split into smaller cells in order to increase capacity. This implies an increase in underlying infrastructure, such as the number of base transceiver stations, antennas, supporting towers, backhaul links, base station controllers, and possibly an upgrade of the mobile switching centers.

\(^{28}\)We could measure the cost reduction after the entry of *OPTIMUS* estimating two costs functions, one pre- and one post-entry, and comparing the predicted costs. Our methodology, however, improves upon this alternative approach for two reasons. First, we estimate the coefficients describing the underlying technology with a larger sample. Note that, for instance, in order to estimate β_y, the alternative methodology would use information only for the period 1992-1997, while with our methodology, we use information from the period...
cordingly, one can compute a direct measure of the effect of entry of OPTIMUS. From Equation (13), a cost reduction ratio is given by \(\varphi = \frac{e^{\lambda} - e^{B}}{C_B} = \exp(-e) - 1 \). The cost reduction ratio for the average firm for the period after the entry of OPTIMUS is \(\varphi = -0.266 \). This implies that, on average, the entry of OPTIMUS in 1997 led to a 26.6% cost decrease at the industry level.

In a second step, one can obtain a precise evaluation of the nature of competition in the industry after the entry of OPTIMUS. We turn in the following section to the competitive aspect of our study.

5 Evaluating Competition

We focus now on the competitive aspect of our study. Before turning to the evaluation of firms’ price-marginal cost margins, note that the analysis of the time series of the average prices of TMN and VODAFONE, presented in Figure 2, shows that the average prices of TMN and VODAFONE are co-integrated, and have a downward break in 1997. This suggests that the entry of OPTIMUS in 1998 caused the rivals to reduce prices.29 Note that these price reductions are in line with our previous results that firms reduced costs following the entry of OPTIMUS.

Having now the most adequate cost estimates in hand, we are capable of characterizing the degree of competition in the industry from the evaluation of firms’ price-marginal cost discrepancies.30 We will also compare our results with those obtained if cost endogeneity is not accounted for.

15 Having now the most adequate cost estimates in hand, we are capable of characterizing the degree of competition in the industry from the evaluation of firms’ price-marginal cost discrepancies.30 We will also compare our results with those obtained if cost endogeneity is not accounted for.

29 Note that economic theory is not always conclusive regarding the relation between the number of competitors in a specific industry and firms’ prices. Garcia et al. (2005), Rosenthal (1980), and Seade (1980) develop models where prices increase with the number of firms in the market.

30 By estimating cost and demand functions, we are able to generate direct measures of the price-cost margins. This approach follows the spirit of Genesove and Mullin’s (1998) paper that shows that direct estimations of the conduct parameter through the pricing rule may lead to significant underestimation of market power. Similarly, imposing a specific conduct and estimating costs may lead to over or underestimation of costs when perfect competition or monopoly are assumed respectively. On the contrary, estimates are quite insensitive to the assumed demand functional form.
In an infinite horizon set-up, a firm’s price choice problem, given the effort level, is:

$$\max_{p_{it}} \sum_{t=0}^{\infty} \Pi_{it}(p_{it}, e_{it}, n_{it-1}) \text{ s.t. } n_{it} = N(p_{it}),$$ \hspace{1cm} (17)

where the profit $\Pi_{it}(\cdot)$ is defined in (4). The Bellman equation for firm i’s pricing problem, given the effort level, is:

$$V(n_{it}) = \max_{p_{it}} \left\{ \Pi_{it}(p_{it}, e_{it}, n_{it-1}) + \delta V(n_{it}) \right\}.$$ \hspace{1cm} (18)

The associated first-order condition for firm i is:

$$y_{it} + p_{it} \frac{\partial y_{it}}{\partial p_{it}} - MC_{it} \frac{\partial y_{it}}{\partial p_{it}} + \delta \left[p_{it+1} \frac{\partial y_{it+1}}{\partial n_{it}} \frac{\partial n_{it}}{\partial p_{it}} - MC_{it+1} \frac{\partial y_{it+1}}{\partial n_{it}} \frac{\partial n_{it}}{\partial p_{it}} \right] = 0,$$ \hspace{1cm} (18)

suggesting that a firm’s optimal price at t should account for two effects. The first one is the direct impact of the current price on the current demand, $\partial y_{it}/\partial p_{it}$. The second one is the impact of the current price on the current size of the firm’s network, and thereby on the next period firm’s demand, $(\partial n_{it}/\partial p_{it})(\partial y_{it+1}/\partial n_{it})$. Equation (18) can be rewritten as:

$$M_{it} = \frac{p_{it} - MC_{it}}{p_{it}} = -\frac{1}{\eta_{d_{it}} + \delta \Delta_{y_{it}} \Delta_{\mu_{i}} \eta_{y_{it}} \eta_{n_{it}}},$$ \hspace{1cm} (19)

where MC_{it} denotes marginal cost, $\eta_{d_{it}}$ is the direct long-run price elasticity, $\eta_{y_{it}}$ is the long-run demand network elasticity, and $\eta_{n_{it}}$ is the long-run network price elasticity. Additionally, we denote the demand growth for firm i by $\Delta_{y_{it}} = y_{it+1}/y_{it}$, and the margin growth for firm i by $\Delta_{\mu_{i}} = M_{it+1}/M_{it}$.\footnote{We are implicitly assuming a perfect information setting, otherwise we would have to incorporate the firms’ expectations about the future values of the relevant variables.}

Hence, using our estimates of the cost, network, and demand equations, we evaluate in a first step the price-cost margins expressed in the left-hand side of Equation (19) under the various scenarios under consideration. Thus, we determine whether different conclusions can be reached regarding firms’ competitive behavior, depending on which scenario is accounted for. In a second step, we test these margins against those obtained if firms followed a Nash behavior, as expressed in the right-hand side of Equation (19).

From the expressions of costs (16), demand (8), and network growth (9), the first-order condition (19) can be rewritten as:

$$M_{it} = \frac{p_{it} - MC_{it}}{p_{it}} = \left\{ \left(\frac{\alpha_{p_{it}}}{1 - \alpha_{g_{it}}} \right) + \delta \Delta_{y_{it}} \Delta_{\mu_{i}} \left(\frac{\alpha_{n}}{1 - \alpha_{y_{it}}} \right) \left(\frac{\gamma_{p_{it}}}{1 - \gamma_{n_{it}}} \right) \right\}^{-1}.$$ \hspace{1cm} (20)
Through the estimation of the cost function, marginal costs MC_{it} can be easily recovered. Putting them together with the observed values of prices, we are able to evaluate the price-marginal cost margin M_{it} set by each firm, defined as the left-hand side of Equation (20). Table 4 presents the values obtained under Scenario 1 and Scenario 3.

One first interesting result is worth emphasizing. The traditional approach with no inefficiency and no effort, namely Scenario 1, underestimates the average marginal costs MC_{it}, and overestimates the average margin M_{it} of the industry. Hence, the traditional approach underestimates the competition faced by the Portuguese mobile firms. The margins obtained under Scenarios 1 and 3 are significantly different at the 10% level as shown by a t-test ($H_0 : M_{3it}^2 - M_{1it}^1 = 0$), whose statistic is equal to 1.718.

In a second step, we simulate the Nash margin M_{it}^N, as defined by the right-hand side of Equation (20). Our aim is to test whether firms follow a Nash behavior, i.e., we test whether the Nash margins M_{it}^N are close to the real margins M_{it}. Note that values of the elasticities η_{dlr}, η_{yn}, and η_{np} are obtained from the estimation of the network and demand equations while we need to simulate values for δ, Δ_{yi}, and $\Delta_{\mu i}$, since these latter parameters are unobservable.

If firms have a myopic behavior, i.e., if $\delta = 0$, Equation (20) becomes $M_{it} = -1/\eta_{dlr}$. The latter corresponds to the standard static Nash behavior index, whose value is 1.887. This theoretical value is unrealistic, and suggests that the behavior of firms producing on the inelastic part of the demand curve is not compatible with a static approach. This therefore calls for the dynamic approach that we advocate in this section.

In the case where firms care about the future, i.e., if $\delta \neq 0$, we adopt the following approach. We test the hypothesis that estimated margins M_{it} are equal to the dynamic Nash margins M_{it}^N expressed in Equation (20). To do so, we set $M_{it} = M_{it}^N = 0.088$, and solve for the corresponding values of δ, Δ_{yi}, and $\Delta_{\mu i}$. Table 5 presents these values. Note for instance that, if firms expect their margins to grow by 33%, ($\Delta_{\mu i} = 1.33$), and demand to grow by 58% ($\Delta_{y} = 1.49$), they should have a discount factor δ equal to 0.9, i.e., a discount rate $\epsilon = 1/\delta - 1 = 0.11$. These figures make sense only if firms have a high discount factor δ, i.e., a discount rate ϵ close to zero, and expect a large industry growth. Thus, in order to reconcile firms’ actual margins and the dynamic Nash margins, one has to assume that firms: (i) are patient, and (ii) have optimistic beliefs about the industry growth. These two latter assumptions seem to be relevant in the case of the Portuguese mobile telephony industry, as illustrated by the following observations: First, note that this is an industry where it took firms from 3 to 6 years to reach profitability and where network effects and switching costs play an important role. Our data set refers to a period where the industry had not yet reached the maturity phase. During this period, firms
were conceivably more concerned about building their customer base than extracting abnormal profits. Second, we could compare the discount rate ϵ to any relevant discount rate that is currently practiced. Note for instance that the average interest rate of Portuguese ten years treasury bonds is 6.8% over the period we study. Likewise, OFTEL (2002) presents estimates of the weighted average cost of capital for the UK mobile firms in the range of 13% to 17%. These values are in line with our results and seem to validate our test.

6 Conclusions

The results obtained in this paper have proved fruitful on both methodological and institutional sides. First, we showed that a cost-network growth-demand structure that accounts for the firms’ technical inefficiency and cost reducing activities fits the data better than the usual model of the oligopolistic competition literature. Our application of this methodology to the Portuguese mobile telephony industry shows that the estimates obtained from a standard oligopoly model are potentially biased and can lead to wrong conclusions about cost reduction and competition in the industry.

Second, it is suggested that the entry of a third operator in 1998 introduced a significant change in the behavior of operators regarding costs improvement. We show that the introduction of full liberalization in 2000 had very limited effects. We also showed that the standard oligopoly model underestimates the toughness of competition. This result is consistent with previous contributions that account for cost endogeneity.

The results of this paper illustrate nicely the two channels through which competition can increase welfare. Competition may lead to a reduction of both prices and costs. Such reduction occurred in the Portuguese mobile industry while operators were producing on the inelastic part of the demand function, suggesting that they were more concerned with increasing their customer base than with receiving high profits, as has been tested and validated in this article. Whether such concerns will vanish in the near future remains to be seen.

References

Appendix 1: Description of the data and variables

The dataset has been constructed for the period 1992-2003 from raw data collected by Autoridade da Concorrência, the Portuguese national competition authority. These data are quarterly data obtained directly from the three operators under consideration in our study, namely TMN and VODAFONE, which are the two initial competitors, and OPTIMUS, which is the third operator entering in 1998.

The variables have been constructed as follows. In the cost function, total costs (c_{it}), production (y_{it}), wages ($\omega_{l_{it}}$), prices of materials ($\omega_{m_{it}}$), and price of capital ($\omega_{k_{it}}$) correspond to total operating expenses, telecommunications traffic in thousands minutes supplied, total labor costs over number of employees, costs of supplies, and national interest rates on ten years treasury bonds, respectively.

With respect to demand and network growth, firm i’s price (p_{i}) is measured as total revenues over traffic supplied. Moreover, the size of i’s network (n_{it}) is measured by the number of i’s customers, and the average revenue (r_{t}) is measured by the Portuguese gross national product in 1995 prices.

In all three equations, t the time trend, is equal to one in the last quarter of 1992 and incremented by one each quarter.
Appendix 2: Short-run and long-run price elasticity

Using a lagged output variable y_{it-1}, Equation (8) can be rewritten as follows:

$$\ln y_{it} = \alpha_0 + \alpha_{pi} \ln p_{it} + \sum_{j\neq i} \alpha_{pij} \ln p_{jt} + \alpha_n \ln n_{it-1} + \alpha_r \ln r_t + \alpha_T t + \alpha_y \ln y_{it-1} + u^d_{it}.$$

Or

$$\ln y_{it} = \frac{1}{1 - \alpha_{y-1} L} \left[\alpha_0 + \alpha_{pi} \ln p_{it} + \sum_{j\neq i} \alpha_{pij} \ln p_{jt} + \alpha_n \ln n_{it-1} + \alpha_r \ln r_t + \alpha_T t + u^d_{it} \right], \quad (21)$$

where L is a lag operator. Similarly, equation (9) can be rewritten as

$$\ln n_{it} = \frac{1}{1 - \alpha_{n-it-1} L} \left[\gamma_0 + \gamma_{pi} \ln p_{it} + u^n_{it} \right]. \quad (22)$$

Replacing Equation (22) in (21) yields

$$\ln y_{it} = \frac{1}{1 - \alpha_{y-1} L} \left[\alpha_0 + \gamma_0 \frac{1}{1 - \alpha_{n-it-1} L} + \left(\alpha_{pi} + \alpha_n \gamma_{pi} \frac{L}{1 - \alpha_{n-it-1} L} \right) \ln p_{it} + \right.$$

$$+ \sum_{j\neq i} \alpha_{pij} \ln p_{jt} + \alpha_n \ln n_{it} + \alpha_r \ln r_t + \alpha_T t + u^d_{it} \frac{u^n_{it}}{1 - \alpha_{n-it-1} L} \left. \right],$$

which suggests that an increase in i's price can be decomposed into two effects. First, we define a direct effect which states that the consumers that choose to stay with firm i (they may have large switching costs) demand less of i’s product:

$$\frac{\partial y_{it}}{\partial p_{it}} = \frac{\alpha_{pi}}{1 - \alpha_{y-1}}. \quad (23)$$

Second, we define an indirect effect which states that some consumers choose to leave firm i for a different firm, reducing thus the size of i’s network:

$$\frac{\partial y_{it}}{\partial n_{it-1}} \frac{\partial n_{it-1}}{\partial p_{it-1}} = \frac{\alpha_n \gamma_{pi}}{(1 - \alpha_{y-1}) (1 - \alpha_{n-it-1})}. \quad (24)$$

Hence, we refer to the direct short-run price elasticity as the immediate partial impact of a change in p_{it} on the demand of firm i measured by

$$\eta_{dsr} := \alpha_{pi}. \quad (25)$$

As such partial impact fully translates into the demand of firm i only over time, we construct in a second step the direct long-run price elasticity measured by
\[\eta_{dlr} := \frac{\alpha_{p_1}}{1 - \alpha_{y_{-1}}}.\] (26)

Finally, we define the total long-run price elasticity which accounts for both direct and indirect effects, and is defined as the sum of the two elasticities in (24) and (25). It is therefore equal to

\[\eta_{tlr} := \frac{1}{1 - \alpha_{y_{-1}}} \left(\alpha_{p_1} + \frac{\alpha_n \gamma_{p_1}}{1 - \alpha_{n_{it_{-1}}}} \right).\] (27)
Appendix 3: Estimation Results

Table 1: Demand Function

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0</td>
<td>1.334$^{(a)}$</td>
<td>0.822</td>
<td>0.963</td>
<td>0.679</td>
</tr>
<tr>
<td></td>
<td>(0.530)</td>
<td>(0.107)</td>
<td>(0.118)</td>
<td>(0.139)</td>
</tr>
<tr>
<td>α_{p_1}</td>
<td>-0.402</td>
<td>-0.541</td>
<td>-0.373</td>
<td>-0.384</td>
</tr>
<tr>
<td></td>
<td>(0.084)</td>
<td>(0.094)</td>
<td>(0.091)</td>
<td>(0.086)</td>
</tr>
<tr>
<td>α_{p_2}</td>
<td>-0.016$^{(c)}$</td>
<td>-0.262</td>
<td>-0.068$^{(c)}$</td>
<td>-0.053$^{(c)}$</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.083)</td>
<td>(0.100)</td>
<td>(0.094)</td>
</tr>
<tr>
<td>α_{p_3}</td>
<td>0.353</td>
<td>-0.059$^{(c)}$</td>
<td>-0.007$^{(c)}$</td>
<td>0.012$^{(c)}$</td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.089)</td>
<td>(0.123)</td>
<td>(0.109)</td>
</tr>
<tr>
<td>α_{p_4}</td>
<td>0.599</td>
<td>0.257</td>
<td>0.234$^{(b)}$</td>
<td>0.210$^{(b)}$</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
<td>(0.089)</td>
<td>(0.121)</td>
<td>(0.113)</td>
</tr>
<tr>
<td>α_n</td>
<td>1.041</td>
<td>0.598</td>
<td>0.415</td>
<td>0.351</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.078)</td>
<td>(0.076)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>α_r</td>
<td>5.028</td>
<td>3.718</td>
<td>2.783</td>
<td>1.940$^{(a)}$</td>
</tr>
<tr>
<td></td>
<td>(0.920)</td>
<td>(0.822)</td>
<td>(0.779)</td>
<td>(0.773)</td>
</tr>
<tr>
<td>α_{y_4}</td>
<td>-</td>
<td>-</td>
<td>0.007</td>
<td>0.004$^{(a)}$</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>α_T</td>
<td>-</td>
<td>-</td>
<td>0.065$^{(c)}$</td>
<td>0.042$^{(c)}$</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>(0.045)</td>
<td>(0.042)</td>
</tr>
<tr>
<td>α_{T_1}</td>
<td>-</td>
<td>-</td>
<td>0.096$^{(a)}$</td>
<td>0.054$^{(c)}$</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>(0.041)</td>
<td>(0.040)</td>
</tr>
</tbody>
</table>

| Error Standard Dev. | 0.267 | 0.078 | 0.068 | 0.064 |
| | (0.018) | (0.006) | (0.005) | (0.005) |

Adjusted R^2 | 0.971 | 0.853 | 0.886 | 0.897 |

| T | 112 | 92 | 92 | 92 |

Note: Standard deviations are in parenthesis. In all models, all parameters (but (a): Significant at the 5% level, (b): Significant at the 10% level, and (c) not significant) are significant at the 1% level.
Table 2: Network growth

<table>
<thead>
<tr>
<th>Variable</th>
<th>Parameter</th>
<th></th>
<th>(</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_0</td>
<td>0.242</td>
<td></td>
<td>(0.063)</td>
</tr>
<tr>
<td>γ_p</td>
<td>-0.139</td>
<td></td>
<td>(0.043)</td>
</tr>
<tr>
<td>γ_{n-1}</td>
<td>0.875</td>
<td></td>
<td>(0.103)</td>
</tr>
<tr>
<td>Error Standard Dev.</td>
<td>0.050</td>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.911</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T 88

Note: Standard deviations are in parenthesis. All parameters are significant at the 1% level.
Table 3: Cost Equation

<table>
<thead>
<tr>
<th>Variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(1')</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>-2.640</td>
<td>-2.825</td>
<td>-3.329</td>
<td>-2.718</td>
<td>1.364</td>
</tr>
<tr>
<td></td>
<td>(0.468)</td>
<td>(0.417)</td>
<td>(0.422)</td>
<td>(0.437)</td>
<td>(0.360)</td>
</tr>
<tr>
<td>β_1</td>
<td>0.736</td>
<td>0.736</td>
<td>0.759</td>
<td>0.723</td>
<td>0.514</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.045)</td>
<td>(0.042)</td>
<td>(0.048)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>β_2</td>
<td>0.176</td>
<td>0.141</td>
<td>0.177</td>
<td>0.139</td>
<td>0.062<sup>(c)</sup></td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.038)</td>
<td>(0.034)</td>
<td>(0.038)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>β_3</td>
<td>1.004</td>
<td>1.028</td>
<td>1.029</td>
<td>1.022</td>
<td>0.786</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.038)</td>
<td>(0.034)</td>
<td>(0.039)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>β_4</td>
<td>-0.047</td>
<td>-0.045</td>
<td>-0.033</td>
<td>-0.042</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.006)</td>
<td>-</td>
</tr>
<tr>
<td>μ</td>
<td>-</td>
<td>-</td>
<td>2.856</td>
<td>4.738</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>(0.219)</td>
<td>(0.964)</td>
<td>-</td>
</tr>
<tr>
<td>θ Standard Dev.</td>
<td>-</td>
<td>0.366</td>
<td>0.234<sup>(b)</sup></td>
<td>0.361</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>(0.047)</td>
<td>(0.142)</td>
<td>(0.050)</td>
<td>-</td>
</tr>
<tr>
<td>Error Standard Dev.</td>
<td>0.251</td>
<td>0.123</td>
<td>0.159<sup>(a)</sup></td>
<td>0.126</td>
<td>0.349</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.029)</td>
<td>(0.070)</td>
<td>(0.032)</td>
<td>(0.023)</td>
</tr>
</tbody>
</table>

Adjusted R^2 0.971 0.943

Vuong Test

| (3) against alternative models | 3.401 | 2.708 | - | 2.679 |

T 112

Note: Standard errors are in parenthesis.
Values for the Vuong test below –2 favor the alternative model against model (3), and above 2 favor model (3) against the alternative model.
In all models, all parameters (but (a): Significant at the 5% level, (b): Significant at the 10% level, and (c) not significant) are significant at the 1% level.
Models: (1) Model with no inefficiency and no effort.
(2) Model with inefficiency but no effort.
(3) Model with inefficiency and effort. Firms exert effort after the entry of Optimus.
(4) Model with inefficiency and effort. Firms exert effort from full liberalization in 2000.
(1') Same as (1), with no trend.
Table 4: Estimated Margins

<table>
<thead>
<tr>
<th>Scenario (1)</th>
<th>P_μ</th>
<th>MC_μ</th>
<th>M_μ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.514</td>
<td>0.334</td>
<td>0.128</td>
</tr>
<tr>
<td>Scenario (3)</td>
<td>0.514</td>
<td>0.350</td>
<td>0.088</td>
</tr>
</tbody>
</table>

Table 5: Industry Growth levels and impatience

<table>
<thead>
<tr>
<th>Δ_μ</th>
<th>Δ_γ</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1786.12</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>223.27</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>210.13</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>198.46</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>188.01</td>
<td>0.95</td>
</tr>
<tr>
<td>1</td>
<td>17.86</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>2.23</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>2.10</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>1.98</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>1.88</td>
<td>0.95</td>
</tr>
<tr>
<td>1.33</td>
<td>13.43</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>1.68</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>1.58</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>1.49</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>1.41</td>
<td>0.95</td>
</tr>
<tr>
<td>1.66</td>
<td>10.76</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>1.34</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>1.27</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>1.20</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>1.13</td>
<td>0.95</td>
</tr>
<tr>
<td>2</td>
<td>8.93</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>1.12</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>1.05</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>0.99</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>0.94</td>
<td>0.95</td>
</tr>
</tbody>
</table>
Figure 1: Revenue Market Shares

Figure 2: Average Prices