CERTIFICATION AND EXCHANGE IN VERTICALLY CONCENTRATED MARKETS

Konrad Stahl (Mannheim) Roland Strausz (Berlin)

Motivation

2005: Biggest loss of Mercedes Car Group Quality problems braking systems Repair-costs: 500 Million Euro (680.000 cars) Quality problems battery control unit software 1.3 million cars Reputation cost: laughing stock in Germany Parts delivered by BOSCH quality management of supplied goods

Kein Ruhmesblatt Rückrufe in Deutschland,

Motivation

Recalls in automobile industry due to increased outsourcing
 Informational asymmetries between upstream and downstream producer
 Role for external certification

Startoete | Suche | Upersiont | Kontala | Impressum | Englis

Motivation EDAG: independent certifier of car modules and systems Strömungsprüfstände Kontakte Interview: one of seven certifiers worldwide **Prüttechnik** Thomas Schuster holds a dominant, if not exclusive, market position in a number of components > e-mail rodukte large economies of scope in certification In unseren Stiomungsprüfständen erzeugen wir definierte und reproduzierbare Strömungszustände Differenzdruck simuliert und im zweiten Schritt die Auswirkungen der Strömungen auf das Bauteil Zylinderköpfe Luftmassenmesser

Motivation

Role of certification in a bilateral monopoly?

Model

- Seller: $Pr{q_h} = \lambda$; $Pr{q_l} = 1 \lambda$ with $q_h > q_l$
- Production cost quality q_i is c_i , where $c_h > c_l = 0$
- □ Lemons problem: $c_h > q^e = \lambda q_h + (1 \lambda) q_l$
- With asymmetric information q_h-seller does not sell his good
- Certification: An external certifier can reveal the sellers quality credibly at a cost c_c
 - q_h-seller has a demand for certification
 - buyer has a demand for certification

The Game

Buyer certification

- 1. Certifier sets p_c
- 2. Nature picks q_i
- 3. Seller sets price p
- 4. Buyer decides to buy certification
- 5. Buyer decides about buying the good

Questions:

1.Which game does the certifier like better?2.Which game delivers higher social welfare?3.What are the driving differences behind the two models?

Seller certification

- 1. Certifier sets p_c
- 2. Nature picks q_i
- 3. Seller sets price p
- 4. Seller decides to buy certification
- Buyer decides about buying the good

Results/Intuition

Buyer certification

- Certification is an inspection device
- Inspection game
- Mixed equilibrium
- Both goods are certified with positive prob.
- q_I good sometimes not sold in EQ
- Inefficient

Seller certification

- Certification is a signaling device
- Signaling game
- Pure equilibrium
- Only q_h goods are certified
- All goods are sold in EQ
- Efficient

Buyer certification

Optimal pricing behavior certifier?
 Inspection device: Buyer certifies to prevent cheating
 Demand for certification high when

 Buyer's uncertainty about quality is large: μ=1/2
 Intermediate price of the good: p=(q_h+q_l)/2

 Certifier tries to induce this outcome

Buyer certification

- Buyer's strategy: certifying and buying
 - 1. **s_{nb}: no certification, always buying**
 - 2. s_{nn}: no certification, no buying
 - 3. s_{ch}: certify, buy only h quality
 - 4. Scol cortify, always buy
 - 5. Oct Cortify, buy only I quality
- Decision conditional on p_c , p, and belief μ

p∧ q_h

 $U(s_{nb}) = \mu q_{h} + (1 - \mu)q_{l} - p$

U(s_{nn})=0

 $U(s_{nb}) = \mu q_{h} + (1 - \mu)q_{l} - p$

U(s_{nn})=0

 $U(s_{nb}) = \mu q_h + (1 - \mu) q_l - p$

U(s_{nn})=0

 $U(s_{nb}) = \mu q_{h} + (1 - \mu) q_{l} - p$

U(s_{nn})=0

U(s_{ch})=µ(q_h-p)-p_c

 $U(s_{nb}) = \mu q_{h} + (1 - \mu)q_{l} - p$

U(s_{nn})=0

 $U(s_{nb}) = \mu q_{h} + (1 - \mu)q_{l} - p$

 $U(s_{nn})=0$

 $U(s_{ch})=\mu(q_{h}-p)-p_{c}$

$$\begin{split} & \underbrace{\text{Willingness to pay for certification}}_{\Delta U_1 = U(s_{ch}) - U(s_{nb}) = \mu(q_h - p) - (q^e - p)} \\ & \Delta U_2 = U(s_{ch}) - U(s_{nn}) = \mu(q_h - p) \\ & \text{Buyer's willingness to pay: min} \{ \Delta U_1, \Delta U_2 \} \\ & \max_{(p,\mu)} \min\{ \Delta U_1, \Delta U_2 \} \qquad p = (q_h + q_l)/2; \ \mu = 1/2 \end{split}$$

 $U(s_{nb}) = \mu q_{h} + (1 - \mu)q_{l} - p$

U(s_{nn})=0

Buyer certification equilibrium

 $U(s_{nb}) = \mu q_{h} + (1 - \mu)q_{l} - p$

U(s_{nn})=0

 $U(s_{ch})=\mu(q_{h}-p)-p_{c}$

Result: Given $\mu > \lambda$ and an equilibrium refinement (**q**, **0**) together with (**p**, **µ**) is the unique equilibrium outcome:

- q_h-seller always sets price p
- q_l-seller randomizes between price q_l and p
- upon seeing price p, buyer certifies at random

Details

Lemma: In any PBE $(\sigma_l^*, \sigma_h^*, \mu^*, \sigma^*)$ of the subgame $\Gamma(p_c)$ we have i) $\sigma_l^*(p) = 0$ for all $p \notin [q_l, q_h]$ ii) $\sigma_h^*(p) = 0$ for all $p < q_l$; iii) $\Pi_l^* \ge q_l$; iv) $\Pi_h^* < q_h - c_h$.

Refinement: A Perfect Bayesian Equilibrium $(\sigma_h^*, \sigma_l^*, \mu^*, \sigma^*)$ satisfies the Belief Restriction if, for any $\mu \in (0, 1]$ and any out–of–equilibrium price p, we have

 $\Pi_l(p,\mu) < \Pi_l^* \land \Pi_h(p,\mu) > \Pi_h^* \Rightarrow \mu^*(p) \ge \mu.$

Bester&Ritzberger(2001); extends Cho-Kreps: μ=1

Lemma: Any Perfect Bayesian Equilibrium $(\sigma_l^*, \sigma_h^*, \mu^*, \sigma^*)$ of the subgame $\Gamma(p_c)$ that satisfies B.R. exhibits

i)
$$\sigma_h^*(p) = 0$$
 for all $p < \tilde{p}$;
ii) $\Pi^* > \tilde{p}$

1)
$$\Pi_h^* \ge p - c_h$$

Optimal p_c buyer certification

Optimal p_c buyer certification

 $□ p_c = \Delta q/4$ □ actual randomization

Seller certification

q_h-seller certifies to prove q_h and price p=q_h.
Π_h(p_c)=q_h-c_h-p_c
Π_l(p_c)=q_l
Optimal p_c=q_h-c_h
In Eq: Π_h=0; Π_l=q_l
Π_c=λ(q_h-c_h-c_c)

Comparison

- Certifier's profit larger with seller certification.
- Welfare?
 - no certification
 - q_h good not sold / no certification costs
 - buyer certification
 - q good not always sold / probabilistic certification
 - seller certification
 - All goods always sold / probabilistic certification
 - buyer certification maximizes welfare

Conclusions

- Certification by informed party better for
 - certifier
 - welfare
 - no need for governmental intervention
- Certification by informed party:
 - signaling high quality
- Certification by uninformed party:
 - inspection game