Quality Uncertainty in Vertical Relations: Mutual Dependency Mitigates Inefficiencies

Pio Baake Vanessa von Schlippenbach

DIW Berlin

Pio Baake, Vanessa von Schlippenbach

Introduction		

Quality Uncertainty in Vertical Relations

- Increase of product recalls due to product failures involving safety or health risks for consumers
 - ► In the U.S. food and toys industry number of recalls almost doubled
 - In the German automotive industry even tripled
- Product failures can be caused at various stages of the value chain
- However, manufacturing defaults have gained in importance
 - DaimlerChrysler recalled 1.3 million cars for checking battery control unit software + voltage regulator in the alternator (2005)
 - Mattel recalled 18 million toys because of small dislodgeable magnets as well as toxic lead paint (2007)
 - Arla and Nestle recalled their products worldwide because of the Chinese melamine scandale (2008)
 - Irish Republic recalled domestically-produced meat because of dioxin contaminated feed (2008)
- Problem: Consumers tend to attribute quality defects mainly to brands or retailers.

イロト イポト イヨト イヨト

Introduction		

Main Objective & Result

Objective:

Examining the impact of quality uncertainty and potential reputation losses in the downstream market on the bargaining relation between suppliers and buyers

Result:

Efficient delivery contracts in intermediate goods markets as well as efficient quality decisions are more likely the higher the mutual dependency in vertical relations

Introduction			
Related Lite	erature		

Buyer Power

- Wide literature on sources of buyer power (i.e. Katz 1987, Inderst-Shaffer 2007, Snyder 1996)
- Some papers related to efficiency effects of buyer power:
 - Inderst-Wey (2003, 2007): increase of upstream investment incentives
 - Montez (2008): downstream merger \rightarrow higher capacity choice upstream
 - Inderst-Shaffer (2007): retail merger reduces upstream variety
 - Battigalli et al. (2007): buyer power weakens supplier's incentives to invest in quality
- Our contribution: Mutual dependency enhances efficiency of a vertical structure

Umbrella Branding

- Literature is mainly related to downstream markets (i.e. Choi 1998, Andersson 2002, Cabral 2008)
- Our contribution: Umbrella branding can enhance efficiency of vertical relations

(日) (同) (三) (三) (三)

Introduction		Conclusion

The Model

Pio Baake, Vanessa von Schlippenbach

	The Model		
Structure &	د Timing		

Structure:

- Repeated game with imperfect information
- Downstream firm D offers two goods x and y (complements)
- Upstream firm U offers good x (y is offered competitively)
- Quality of good x is stochastically determined in each period

Timing

- 1. *D* decides on target quality $\overline{\theta}$ for good *x*
- 2. D and U negotiate a menu of two-part tariff delivery contracts
- 3. U can invest in order to increase the probability of reaching $\overline{ heta}$
- 4. U observes the actual quality heta and announces a quality $\widehat{ heta}$
- 5. *D* sets the consumer prices conditional on $\hat{\theta}$ (and selects the respective delivery contract)

The Model		

Assumptions

Demand:

$$egin{array}{rcl} X(p,q, heta) & ext{with} \; X_p, X_{pp} & < & 0 < X_ heta \; ext{and} \; X_q < 0 \ Y(q,p, heta) & ext{with} \; Y_q, Y_{qq} & < & 0 < Y_ heta \; ext{and} \; Y_ heta < 0 \end{array}$$

Quality:

$$\begin{split} \theta \in \left\{ \underline{\theta}, \overline{\theta} \right\} \;\; & \text{with } \underline{\theta} < \overline{\theta} \\ \theta = \left\{ \begin{array}{c} \overline{\theta} \;\; & \text{with probability } \rho(e, \overline{\theta}) \\ \underline{\theta} \;\; & \text{with probability } 1 - \rho(e, \overline{\theta}) \end{array} \right. \end{split}$$

Probability:

$$\rho(e,\overline{\theta}):\rho_{\overline{\theta}}<0<\rho_e \text{ and }\rho_{e\overline{\theta}}<0$$

Effort costs:

c(e):c',c''>0

Pio Baake, Vanessa von Schlippenbach

Quality Uncertainty in Vertical Relations: Mutual Dependency Mitigates Inefficiencies

æ

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

The Model		

Assumptions (cont'd)

Negotiated Delivery Tariffs:

$$T(w, F, \widehat{\theta}) = \begin{cases} (\overline{w}, \overline{F}) \text{ if } \widehat{\theta} = \overline{\theta} \\ (\underline{w}, \underline{F}) \text{ if } \widehat{\theta} = \underline{\theta} \end{cases}$$

Focus on tariffs such that firm *U* will announce truthfully:

 $\widehat{\theta}(\theta, T(\cdot)) = \theta$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Pio Baake, Vanessa von Schlippenbach

The Model		

Expected Profits per Period

Upstream firm:

$$\begin{aligned} & E\pi^U &= \rho(e,\overline{\theta})\overline{\pi}^U + (1-\rho(e,\overline{\theta}))\underline{\pi}^U - c(e) \\ & \text{with} &: \overline{\pi}^U = \overline{w}\overline{X} + \overline{F} \text{ and } \overline{X} := X(p,q,\overline{\theta}) \\ & \text{with} &: \underline{\pi}^U = \underline{w}X + \underline{F} \text{ and } \underline{X} := X(p,q,\underline{\theta}). \end{aligned}$$

Downstream firm:

$$\begin{split} & \mathcal{E}\pi^{D} &= \rho(\mathbf{e},\overline{\theta})\overline{\pi}^{D} + (1-\rho(\mathbf{e},\overline{\theta}))\underline{\pi}^{D} \\ & \text{with} &: \overline{\pi}^{D} = (p-\overline{w})\overline{X} + q\overline{Y} - \overline{F} \text{ and } \overline{Y} := Y(p,q,\overline{\theta}) \\ & \text{with} &: \underline{\pi}^{D} = (p-\underline{w})\underline{X} + q\underline{Y} - \underline{F} \text{ and } \underline{Y} := Y(p,q,\underline{\theta}) \end{split}$$

Pio Baake, Vanessa von Schlippenbach

Quality Uncertainty in Vertical Relations: Mutual Dependency Mitigates Inefficiencies

Э

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

The Model		Conclusion

Solving the Model

Pio Baake, Vanessa von Schlippenbach

	Solving the Model	

Prices

Downstream firm's profit π^D :

$$\begin{aligned} \pi^{D}(\cdot) &= (p-w)X(\cdot,\theta) + qY(\cdot,\theta) - F \\ &\to (p,q) = \arg\max\pi^{D}(\cdot) \end{aligned}$$

- ▲日 > ▲ 圖 > ▲ 圖 > ▲ 圖 > ろんら

Pio Baake, Vanessa von Schlippenbach

	Solving the Model	

Announcement

Truthful announcement by firm U as long as

$$IC_{1} : \underline{\pi}^{U} + \frac{1}{\delta} \overline{E\pi^{U}} \geq \overline{w}X(\overline{p}, \overline{q}, \underline{\theta}) + \overline{F} + \frac{1}{\delta}\Gamma^{U}$$
$$IC_{2} : \overline{\pi}^{U} + \frac{1}{\delta} \overline{E\pi^{U}} \geq \underline{w}X(\underline{p}, \underline{q}, \overline{\theta}) + \underline{F} + \frac{1}{\delta}\Gamma^{U}.$$

$$\begin{split} \delta &: &= \text{Interest rate} \\ \overline{E\pi^U} &: &= \text{Firm } U's \text{ continuation profits} \\ \Gamma^U &: &= \text{Outside option of firm } U \end{split}$$

Pio Baake, Vanessa von Schlippenbach

Quality Uncertainty in Vertical Relations: Mutual Dependency Mitigates Inefficiencies

Ξ.

イロト イヨト イヨト イヨト

	Solving the Model	

Investment

Firm U's optimal effort $e^*(\cdot)$ is implicitly given by

$$\begin{split} & {\cal E}\,\pi^U &= ~\rho(e,\overline{\theta})\overline{\pi}^U + (1-\rho(e,\overline{\theta}))\underline{\pi}^U - c(e) \\ & {e^*}(\cdot) \quad : ~~\rho_e = \frac{c'(e)}{\Delta\pi^U} \text{ with } \Delta\pi^U := \overline{\pi}^U - \underline{\pi}^U. \end{split}$$

Effort increases in \overline{w} .

	Solving the Model	
Delivery Tariffs		

Bargaining over delivery tariffs: Nash-Product in each period

$$N = \left[E\pi^{D}(\cdot) - \Gamma^{D} + \frac{1}{\delta} \left(\overline{E\pi^{D}} - \Gamma^{D} \right) \right] \left[E\pi^{U}(\cdot) - \Gamma^{U} + \frac{1}{\delta} \left(\overline{E\pi^{U}} - \Gamma^{U} \right) \right]$$

$$\begin{array}{ll} E\pi^D & : & =\rho(\cdot)\overline{\pi}^D + (1-\rho(\cdot))\underline{\pi}^D \\ \Gamma^D & : & = \widetilde{q}Y(\widetilde{q},\infty,\cdot) \text{ with } \widetilde{q}:= \arg\max qY(q,\infty,\cdot) \\ \Gamma^U & : & = \text{Outside option of firm } U \end{array}$$

Note: We consider profits over all periods.

3

< ロ > (同 > (回 > (回 >)))

	Solving the Model	

Unconstrained Solution

Delivery tariffs:

$$\underline{w}^* = \overline{w}^* = 0$$

$$\overline{F}^* - \underline{F}^* = \overline{p}\overline{X} + \overline{q}\overline{Y} - (\underline{p}\underline{X} + \underline{q}\underline{Y})$$

mplying:
$$\overline{\pi}^D - \underline{\pi}^D = 0$$

▶ Thus, risk is fully borne by upstream firm such that effort decision is efficient.

I

	Solving the Model	

Unconstrained Solution (cont'd)

• Optimal target quality $\overline{\theta}^*$ implicitly given by

$$\rho\left[\overline{p}\overline{X}_{\overline{\theta}} + \overline{q}\overline{Y}_{\overline{\theta}}\right] + \rho_{\overline{\theta}}\left[\overline{p}\overline{X} + \overline{q}\overline{Y} - \left(\underline{p}\underline{X} + \underline{q}\underline{Y}\right)\right] = 0$$

Proposition

If the incentive constraints are not binding, the bargaining outcome is efficient.

- ▲日 > ▲国 > ▲国 > ▲国 > ▲目 > ○ ○ ○

Pio Baake, Vanessa von Schlippenbach

	Solving the Model	

Constrained Solution

Binding constraint

$$\begin{split} & IC_1 \quad : \quad \underline{\pi}^U + \frac{1}{\delta} \overline{E\pi^U} \geq \overline{w} X(\overline{p}, \overline{q}, \underline{\theta}) + \overline{F} + \frac{1}{\delta} \Gamma^U \\ & \text{Implying} \quad : \quad \overline{F} = \underline{\pi}^U - \overline{w} X(\overline{p}, \overline{q}, \underline{\theta}) + \frac{1}{\delta} \left(\overline{E\pi^U} - \Gamma^U \right) \end{split}$$

Fixed Fees

- Used to ensure truthful announcement and to allocate joint surplus
- Allocation of risk and thus effort decision inefficient

Wholesale Prices

- $\underline{w}^* = 0$, $\overline{w}^* > 0$
- Note: higher w implies higher effort

Target Quality

- Optimal target quality $\overline{\theta}^*$ distorted (either too high or too low)
- $\overline{\theta}^*$ is more likely to be inefficiently low (high), the lower (higher) \overline{w}

イロト イポト イヨト イヨト

	Solving the Model	

Constrained Solution (cont'd)

Corollary:

Mutual dependencies in terms of low outside options may help to mitigate high wholesale and retail prices and may lead to more efficient quality decisions.

- Γ^U = inverse measure of buyer power
- Thus, buyer power may not only cause lower wholesale and retail prices it may also lead to more efficient quality decisions.
- Low values of Γ^D can result from high complementarities or the use of umbrella-branding.
- Hence, as long as umbrella-branding increases the interdependency between the products offered by the downstream firm it can also induce lower wholesale prices.

イロト イポト イヨト イヨト

	Solving the Model	Conclusion

Example

Pio Baake, Vanessa von Schlippenbach

	Example	

Assumptions

• Dixit uitility function:

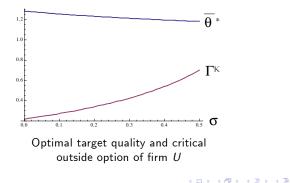
$$U(x,y, heta)=(1+rac{1}{4}\sqrt{ heta})x+y-rac{1}{2}(x^2+y^2-2\sigma xy)-px-qy,$$

Probability and effort costs:

$$egin{aligned} & o(e, heta) & = & \min\left\{rac{e}{1+ heta},1
ight\} \ & c(e) & = & rac{e^2}{2} \ & \delta & = & 0.1 \end{aligned}$$

Pio Baake, Vanessa von Schlippenbach

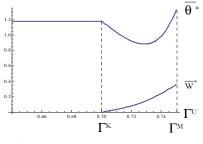
Quality Uncertainty in Vertical Relations: Mutual Dependency Mitigates Inefficiencies


Э

・ロト ・部ト ・ヨト ・ヨト

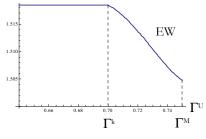
		Example	
	1.1.1.1		

Unconstrained Solution


- $\overline{\theta}^*$ decreases in σ
 - Trade off from higher $\overline{\theta}^*$: Marginal revenue from θ increases in σ , while U's effort level is decreasing in $\overline{\theta}$ if $\overline{w} = 0$.
- IC_2 is binding for all $\Gamma^U > \Gamma^K(\sigma)$
 - ▶ $\Gamma^{\kappa\prime}(\sigma) > 0$ since joint profits are increasing in σ

		Example	
	Contract of the second s		

Constrained Solution


- $\blacktriangleright\ \Gamma^U$ unambiguously increases the optimal wholesale price \overline{w}^*
- $\overline{\theta}^*$ is not monotone in Γ^U
 - First decrease of $\overline{\theta}^*$ in order to avoid inefficient low effort, then increase because of higher \overline{w}^* and thus higher effort investment with high $\overline{\theta}$.

Optimal target quality for $\sigma=$ 0.5

		Example	
Welfare			

 Both relatively low and high target qualities combined with positive w
^{*} reduce expected welfare.

Expected Welfare in Γ for $\sigma=0.5$

イロト イヨト イヨト イヨト

Pio Baake, Vanessa von Schlippenbach

	Example	Conclusion

Conclusion

Pio Baake, Vanessa von Schlippenbach

		Conclusion
Conclusion		

Analysis of a simple vertical structure:

- Good's quality is stochastically determined and private information of U
- Delivery contracts negotiated and contingent on actual quality

Results:

- Delivery conditions as well as target quality are distorted when U's incentives to deviate from truthful announcement are high enough.
- Mutual dependency increases efficiency of the vertical structure.
- Thus, buyer power leads to lower wholesale prices and more efficient quality decisions.
- Furthermore: Relation specific investments upstream as well as umbrella branding at the downstream level may enhance the efficiency of the vertical chain.
- Finally, outsourcing more attractive the more both firms depend on their interaction.

< ロト < 同ト < ヨト < ヨト