
Mixed Markets in the Food Processing Industry 

Abstract 
The food processing industry in Western countries operates in markets that usually are 

highly concentrated and that often consist of a few cooperatives and investor-owned 

firms in intense competition. The literature is divided in the view of whether this mixed 

market structure is a stable equilibrium or not. Some suggest that the cooperatives 

eventually will crowd out all investor-owned firms. To analyze this divergence in 

predictions, we develope a model generalizing the family of models of mixed markets. 

It is shown that a mixed market equilibrium may occur under quite general conditions. 

Also, it is shown that an investor-owned firm may serve as a yardstick of production to 

a cooperative, contributing to increased payoff for farmers relative to a market with a 

single operating cooperative.  
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Introduction 

The agricultural food processing industry is highly concentrated in most western 

countries. Structural oligopsonies and/or oligopolies have been, and still are the industry 

norm (Rogers and Sexton). Some of the processing agents are organized as regular 

investor-owned firms while others are organized as various types of cooperatives. 

Frequently the two types of firms coexist in so-called mixed markets (Cotterill; Fulton; 

Sexton; Bergman). Unfortunately, the extensive literature on this subject does not 

provide us with unambiguous predictions about the market outcome. While some 

studies suggest that the cooperatives eventually will crowd out the investor-owned firms 

(Rhodes; Albæk and Schultz); others argue that a mixed market equilibrium exists 

(Sexton; Tennbakk; Karantininis and Zago; Hendrikse). One reason for the diverging 

predictions may be explained by the highly specific assumptions the authors lay down 

for the cooperatives regarding both their objectives and bylaws and the competitive 

environment they face. This diversity limits the applicability of the predictions put 

forward.  

The main purpose of this article is to generalize the family of models of mixed 

markets and to use the generalized model to demonstrate that the mixed market 

structure we observe is indeed a market equilibrium. The general conditions for this 

equilibrium to evolve are identified.  The analysis shows that in the case of an open 

membership coop, the iof may serve as a “yardstick of production” for the coop. It helps 

the member farmers to achieve an increased payoff relative to a situation with a single 

coop by offering an outside option. In the case of diseconomies of scale it will help 

reduce the problem of excess production. 

The results are important for proper understanding of the role cooperatives play 

in the food processing industry. They are especially relevant for the anti-trust authorities 

and for our understanding of the impact of e.g. the Capper-Volstead Act.  



The article is structured as follows: first a general model is developed. The 

alternative objectives for the cooperative are then discussed and the maximization 

problems solved. The payoff functions for the investor-owned firm and the open 

membership cooperative are derived, and the equilibrium market structure is derived 

and analyzed. The results are then discussed before some concluding remarks are 

presented in the final section. 

The Model 

Consider a market where  identical farmers are producing a homogenous raw product 

(intermediary input) that has to be further processed before being sold to consumers. 

The commodity is assumed to be bulky and/or perishable causing economies of scope 

and scale in transport and processing. Hence, there are only a few processors available 

for the individual farmer, a so-called spatial oligopsony (Rogers and Sexton). In the 

subsequent analysis, the number of processors is restricted to two. One is a marketing 

cooperative (coop) and the other a conventional investor-owned firm (iof).  

N

The farmers are assumed to be rational. Each farmer can sell his output to the iof 

at a uniform commodity price, or join and supply the coop being paid according to the 

coop’s payment scheme. Hence, of the  farmers, a subset N [ ]0,cn N∈  chooses 

membership in the coop, whereas the other subset, [ ]0,fn N∈ , chooses to supply the 

iof. All farmers are assumed to be active, so that cN n nf= + .1   

The set up constitutes a two-stage game. In stage one, each farmer chooses the 

processor to supply: in stage two, each processor pursues his objective given the 

number of suppliers he attracts in stage one of the game. The output is then determined 

and the payoff offered to each supplier is derived. The two-stage game is solved the 

standard way by backward induction.  

Costs 

The total production cost for a farmer  who supplies a quantity  of the raw 

commodity is defined as 

i iq
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( 1) ( ) ( ) ( ) ( ) ( ), 0 0 , 0 , 0 , 0 , 1, ...,i i i i iTC g q g g q g q g q i′ ′′ ′′′= = > ≥ ≥ = N  

This is an ordinary increasing and convex cost function.2 The fixed costs in the primary 

production are assumed to be zero (sunk costs). This is a strict simplification, but does 

not qualitatively alter the analysis.  

Both processor’s are assumed to have an identical cost structures consisting of a 

production scale-independent part , and a scale-dependent part jb ( )jc i . Subscript 

 denotes the type of processor where  indicates the coop, and ,j c f= c f  the iof. 

Without loss of generality, the processors are assumed not to use any other input than 

the fixed capital equipment and the intermediary input supplied by the farmers. The 

units are normalized so that one unit of input is transformed into one unit of the final 

commodity. Firm  total processing costs can then be expressed as 'sj

( 2) ( ) ( ) ( ) ( ), 0 0 , 0 , 0 , ,j j j j j j j j jTPC b c Q c c Q c Q j c f′ ′′= + = > ≥ =  

The marginal cost is assumed positive and increasing in quantity due to limited 

processing capacity in each period.  

The scale elasticity, denoted by jε , plays a crucial role in the subsequent 

analysis. As long as the use of input is efficient, it is defined by the long-run average 

cost divided by the long-run marginal cost, /j j jAC MCε ≡ . There is economies of 

scale if 1jε > , and diseconomies of scale if 1jε < . To simplify the analysis, it is 

convenient to use a special parameter jα  as an indicator for the degree of (dis-

)economies of scale in processing. It is defined by 

( 3) ( ) ( ) ( )1 ,j j j
j j j j j j j

j

b c Q
c Q MC AC MC j c f

Q
α ε

⎛ ⎞+
′⎜ ⎟≡ − = − = − =

⎜ ⎟
⎝ ⎠

,  

It follows that jα  will be negative in situations where there are economies of scale in 

processing, positive under diseconomies of scale, and zero under constant returns to 

scale.  
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The processed good is assumed to be less perishable and easier to handle and to 

transport than the raw commodity. This is reflected in the model by assuming perfect 

competition in the market for the final good. The demand is completely elastic and 

represented by the exogenous output price, . This strict assumption ensures that the 

analysis focuses on the processors’ competition for input.

P
3 It requires that each 

processor’s output is small relative to the total output of the processed commodity. This 

is most likely to occur for (homogenous) bulk commodities. If the processors 

differentiate their products, imperfect competition will occur. This option is addressed 

in the Discussion section. 

Stage Two: The Output Decision 

In the second stage of the game, the quantity produced is determined and the payoff to 

farmers derived based on the distribution of farmers between the two processors 

determined in Stage one. The behavior of the players in this stage of the game is 

modeled below. 

The Investor-owned Firm:  

The iof is assumed to maximize profit by choosing the quantity fQ  of the intermediary 

input to process and market.  

The fn  atomistic farmers who decided to supply the iof in stage one act as price 

takers and are offered a price fω  per unit. Each farmer  maximizes profit by choosing 

his output  so as to solve the following problem. 

i

iq

( 4) ( ){ }max , 1, ,
i

f i i fq
q g q i nω − = …  

The first-order condition for maximum defines the inverse supply function  

( 5) ( ) (, , , where 0 as long as 0f i f i fg q i n q gω ω )′ ′= >… >  

For any number of suppliers determined in stage one, fn , the iof chooses the total 

quantity to process and market, fQ , so as to maximize profits ( );f f fQ nΠ . This is 

done under the restriction that it at least must break even, ( ); 0f f fQ nΠ ≥ . It is assumed 
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to close down if it earns negative profit. Since all the fn  producers are assumed to be 
identical, they deliver identical quantities fq  to the io  equilibrium and total quantity
supplied is defined as 

f in  

f f fQ n q≡ . Inserting this definition and equation ( 5) into the 

iof’s objective function gives the following problem to solve 

( ) ( )max s.t.  ; 0
f

f
f f fb c− −( 6) f f f f fQ

f

Q
PQ Q g Q Q n

n

⎧ ⎫⎛ ⎞⎪ ⎪′− Π ≥⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

The first order condition for the unrestricted problem reads 

( 7) 

 

( ) f f
f f

f f

Q Q
P c Q g g

n n
⎛ ⎞ ⎛ ⎞

′ ′ ′′− − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 f

f

Q
n

The right hand side of equation ( 7) is positive per definition. It follows that the output 

price is higher than total marginal costs in optimum, ( fP TMC> ), and consequently 

that production and processing will be lower than what is socially optimal. We have t

classical underproduction problem caused by a firm exercising market power. 

Implicit derivation of 

he 

fω  with respect to fn  in the inverse supply function 

( )f f fQ n′  holding gω = fQ  nstant, yields co ( ) 2 0f f f f fgn Q n Q nω ′′f − <∂ ∂ = . 

rice paid t he suppliers, Hence, the unit p o t fω , decreases with the number of suppliers 

fn . It follows that the fewer the farmers supplying the iof (which is exogenous to the io

tage two of the game), the lower is the firm’s margin. A minimum number of 

suppliers 

f 

in s

fn  is required for the iof to obtain non-negative profit and stay in busine

is defined by the break-even condition evaluated in optimum, 

ss. It 

( ); 0f f fQ nΠ = .  

The payoff that the iof 's offer the suppliers in stage one  a  of the game is

functio

b  the total number of producers, 

n with properties presented in Lemma 1. 

Lemma 1 (Properties of the iof payoff): Denote y N

and let fn  denote the minimum number of suppliers ecessary for the iof to break eve

defined 

 n n, 

by ( ); 0f f fQ nΠ = .  
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a) The payoff ( )*
f fnπ  is a function of the number iof suppliers, fn . It is zero for all 

)0,f fn n⎡∈ ⎣  and positive and strictly decreasing for all ,f fn n N⎡ ⎤∈ ⎣ ⎦ .  

( )
) ( )*

*
0 0,

0 ,
0 ,

f f f f
f f f f

ff f

n n n
n and n n N

nn n N

π
π

⎧ ⎡= ∀ ∈ ∂⎪ ⎣ ⎡ ⎤< ∀ ∈⎨ ⎣ ⎦∂⎡ ⎤> ∀ ∈⎪ ⎣ ⎦⎩
 

b) An additional supplier will cause the individual output to decrease for all 

existing suppliers while the aggregate output will increase. 

0 , 0 ,f f
f f f f

f f

q Q
n n N and n n N

n n
∂ ∂

⎡ ⎤ ⎡ ⎤> ∀ ∈ > ∀ ∈⎣ ⎦ ⎣ ⎦∂ ∂
 

■ Proof: See Appendix 1 

It follows from Lemma 1 that the more suppliers the iof attracts in stage one, the 

stronger is its market power towards the suppliers. As a result, the payoff the iof offers 

decreases with the number of suppliers as shown by the curve marked a in Figure 1. 

Even if the individual output of the iof’s suppliers decreases with an additional supplier, 

the aggregate output increases. 

fn
fn

N

( )*
f Nπ

0

( )*
f cN nπ −

( )*
f fnπ

( )*
f fnπ

Figure 1: Payoff function for the investor-owned firm. 
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The Open Membership Cooperative:  

The coop is owned and operated by the members who produce and supply the 

intermediary input. It is assumed to practice an open membership policy, letting farmers 

join or resign from the organization without costs.4 To be considered a cooperative it is 

assumed that at least three farmers must be associated, . 3cn ≥

The maximization of joint profit (JPM) and of net average revenue product 

(NARP) are the two most frequently objectives employed in analyses of marketing 

cooperatives. Both are examined below. 

Joint Profit Maximization: The objective of a JPM coop is to maximize the joint profit 

( );c c cQ nΠ  from the primary production of all farmers and from the processing activity 

(Enke; Taylor). Hence, the coop coordinates each member’s production quantity. The 

coop will close down if it cannot secure the members a non-negative profit. The 

maximization problem then reads 

( 8) ( ) ( )max s.t.  ; 0
c

c
c c c c c c c cQ

c

QPQ b c Q n g Q n
n

⎧ ⎫⎛ ⎞⎪ ⎪− − − Π ≥⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

The assumption that all coop farmers are identical and provides identical output in 

equilibrium, c cq Q n= c , results in a first order condition for the unrestricted problem 

stating that price equals total marginal costs in optimum. 

( 9) ( ) 0c
c c

c

QP c Q g
n

⎛ ⎞
′ ′− − ⎜ ⎟

⎝ ⎠
=

n̂

  

It follows that the solution is socially optimal. The second order condition is assumed to 

be satisfied for all defined quantities.  

Lemma 2 (Properties of the JPM coop): Denote by  the total number of suppliers. 

Further, let  denote the minimum numbers of members necessary for the coop to 

break even, defined by 

N

c

( )ˆ ˆ 0c c c c c cP b c n q n q− + =⎡ ⎤⎣ ⎦ . Then, [ ]ˆmax 3,cn cn≡  denotes the 

minimum number of members necessary for the coop to stay in business. 

 7



( ) ( )c c c c c c c c c cc n q b c n q n qα ′≡ − +⎡ ⎤⎣ ⎦  is a parameter capturing the degree of economies 

of scale in processing. 

The cooperative maximizing the joint profit (JPM), offers a payoff to the members, 

, that is zero for ( )*
c cnπ [ ][ )c0,cn n∈  and positive for all ,c cn n N∈  and that holds the 

following properties:. 

a)  The payoff is i) strictly increasing in  under economies of scale in processing cn

0cα < 0, ii) strictly decreasing under diseconomies of scale in processing, cα >

0

, and 

iii) constant under constant returns to scale in processing, c . α =

( ) [ )
[ ]

( ) [ ]
*

*

0 0
0 , 0,

0 0
0 , ,

0 0

c
c c c c

c c c c c
c c c

c

if
n n n

n and if n n N
n n N n

if

α
π

π α
α

> <⎧
= ∈⎧ ∂ ⎪= = ∀ ∈⎨ ⎨> ∈ ∂⎩ ⎪< >⎩

,  

b) An additional member will cause the individual output to decrease while the 

aggregate output increases. 

[ ]0 0c c
c c

c c

q Qand n n N
n n
∂ ∂

< > ∀ ∈
∂ ∂

,  

 Proof: See Appendix 2 

A production (or processing) function exhibiting increasing returns to scale for low 

output levels and decreasing returns to scale as output increases is referred to by Frisch 

(1965) as the ultra-passum law of production. Above it is established that the aggregate 

output  increases with the number of members. Hence, in a situation with ultra-

passum law in processing, the scale parameter 

cQ

cα  will increase with increasing number 

of members, 0c cnα∂ ∂ > . It will start out being negative and eventually take on 
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positive values. The payoff function associated with this type of processing technology 

is shown in figure 2. In the same figure, the payoff for overall increasing and overall 

decreasing returns to scale are demonstrated. 

cn
cn

N

( ) ,* a c
c Nπ

0

b

( )*
c cnπ

a

c

( )* b
c Nπ

Figure 2: Payoff function for the cooperative. Curve a describes the payoff under ultra-passum 
production technology in processing. Curve b describes the payoff under overall economies of 
scale, and c under overall diseconomies of scale. 

 It is shown that a new member causes an increase in the total output even if the 

individual output of each farmer is reduced. It follows that the new member produces 

more than the aggregate reduction in production of all existing farmers. This property is 

independent of the scale properties in production. 

NARP Maximization: The NARP coop (Helmberger and Hoos) is assumed to be 

obliged to process and market all input the members choose to supply. Consequently it 

has no control over the production of intermediary input and the quantity it has to 

process. It lacks the ablility of coordination found in the JPM-coop. The average net 

return per unit of input, also called net average revenue product (NARP) is in the 

present set-up defined by5

( 10) ( ) ( )c c c
c

c

b c Q
P N

Q
ω

+
= − ≡ ARP   
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In this static model with only one single output sold in a competitive market, the coop 

has no direct influence on the , but acts as a mere price clearing central for  the 

members.  

NARP

The maximization approach of Albæk and Schultz is employed where each 

member i  chooses his quantity  so as to maximize his own profit. The member takes 

as given both the number of other coop members, 

iq

1cn − , and the production level they 

choose, . The individual member then seeks to maximize  
1

,cn
c i jk

Q q k− =
= ∑ i≠

( 11) ( ) ( ) ( )s.t. ; 0, 1, ,max
i

c c i c i
i i c i c c i

q i c i

b c q Q
P q g q q n Q i

q Q
π−

−
−

⎧ ⎫+ +⎛ ⎞⎪ ⎪− − ≥⎨ ⎬⎜ ⎟+⎪ ⎪⎝ ⎠⎩ ⎭
… cn=

q c

 

Each farmer is assumed to require a non-negative profit and internalizes only the effect 

that his output decision has on his own profit. The effect imposed on the other members 

is ignored.  

Assume that all  suppliers in the coop are identical and produce the same 

output  in equilibrium. The first order condition for maximum in the unrestricted 

problem when using  and 

cn

cq

( )1c i c cQ n− = − iq q=  in equilibrium, is then given by 

( 12) ( ) ( ) ( ) ( )1c cc
c c c c

c c c

c

n b cQP c Q g c Q
n n Q

α

− +⎛ ⎞⎛ ⎞
′ ′ ′− − = − −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
c cQ

 

The solution will only be socially optimal (price equal to marginal costs) when there are 

constant returns to scale in processing ( 0cα = ). Economies of scale ( 0cα < ) give 

underproduction since the price exceeds marginal costs in equilibrium and 

overproduction occurs under diseconomies of scale ( 0cα > ).  

Lemma 3 (Properties of the NARP coop payoff): Denote by  the total number of 

suppliers. Further, let  denote the minimum numbers of members necessary for the 

coop to break even, defined by 

N

n̂c

( )ˆ ˆ 0c c c c c cP b c n q n q− + =⎡ ⎤⎣ ⎦ . Then, [ ]ˆmax 3,c cn n≡  

denotes the minimum number of members necessary for the coop to stay in business. 

The parameter capturing the degree of economies of scale in processing is denoted 
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( ) ( )c c c c c c c c c cc n q b c n q n qα ′≡ − +⎡ ⎤⎣ ⎦ . Since cα  is increasing in , it follows that it 

also is increasing in . Let 

cQ

cn ( ) ( )(
1

c c
c c c c

c

n q c n q g q
n

δ
⎛ ⎞

′′ ′′≡ +⎜ ⎟−⎝ ⎠
)  denote an “upper 

threshold” for the economies of scale such that cα δ> −  and 

let ( ) 0
2

c
c c c

c

n q c n q
n

β
⎛ ⎞

′′≡ >⎜ ⎟−⎝ ⎠
. Assume that ( ) ( ) ( )2 0c c c c cn g q c n qγ ′′ ′′≡ − − >

( )*

.  

a) The cooperative maximizing net average revenue product (NARP) offers a 

positive payoff, , to all members if c cnπ [ ],c cn n N∈  and zero payoff for all 

[ )c

n

0,cn n∈ . This implies that i) the payoff will be strictly increasing in the 

number of members, , for situations with economies of scale in processing, c

0c , where a limit δ  is set to the economies of scale so that cα < δ α<

0

, ii)  The 

payoff will be strictly decreasing under diseconomies of scale, cα > , and iii) 

the payoff will be constant under constant returns to scale, 0cα = .  

( ) [ )
[ ]

( )
( )

( )
[ ]

*
*

0 ,0
0 , 0,

0 0
0 , ,

0 0,

c
c c c c

c c c c
c c c

c

if
n n n

n and if n n N
n n N n

if

α δ
π

π α
α

> ∈ −⎧
= ∈⎧ ∂ ⎪= = ∀ ∈⎨ ⎨> ∈ ∂⎩ ⎪< ∈ ∞⎩

,c

0

 

b) The production from an additional member will make the aggregated quantity 

increase in the number of members as long as [ ], N and γ ≥ c cn n∈ . The 

members’ individual output will i) increase for all existing members under 

economies of scale, ( ),0cα δ∈ − , ii) decrease for all existing members under 

diseconomies of scale, ( )0,cα ∈ ∞ , and iii) remain constant for all existing 

members under constant returns to scale, 0c .  α =
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[ ]
( )

( )

( )

, ,

0 ,
and 0 , 0

0
0 ,

c c

c c
cc

cc
c

c

For n n N

if Q ifq nif
n

if

α δ β
α δ γ

α β
α β

∈

> ∈ − −⎧ ∂
> ∀ ∈ − ∞ ≥∂ ⎪ ∂= = −⎨∂ ⎪< ∈ − ∞⎩

 

 Proof: See Appendix  

The properties of the payoff functions in the two different types of cooperatives 

are shown to be analogous. Figure 2 will hence apply also to the NARP coop. However, 

comparison of the two first order conditions given in equations ( 9) and ( 12) shows that 

only the JPM coop entails a Pareto optimal solution. The reason is that the individual 

farmer in the NARP coop does not take into account the impact his action has on the 

outcome of all other farmers; it leads to too low production in a situation with 

economies of scale in processing, and too high production in a situation with 

diseconomies of scale. It follows that the payoff in the NARP coop always will be lower 

than the one of the JPM coop for any given number of suppliers, except for constant 

returns to scale, 0cα =  where they are equal. This is due to lack of coordination in the 

NARP coop. It follows that under an ultra-passum technology in processing, maximum 

payoff will occur for a lower number of members in a JPM coop than in a NARP coop, 

all other things equal. If the farmers could freely decide the objective of the coop they 

should obviously choose the JPM-objective. However, the objective of the NARP coop 

may be seen as the outcome of a former constitution game in the organization, and as 

such, difficult to change. It is often a result of restrictions made by the Government 

and/or the Anti-trust authorities.  

Lemmas 2 and 3 cover a wide range of firms and situations since they are based 

on quite general functional forms.  
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Stage 1: Farmers’ Choice of Processor – Market Game 

The farmers are assumed to be rational and will hence seek to maximize utility. In this 

analysis, utility conveniently is assumed to be identical to profit.  

In the two preceding sections we have derived the payoff functions for the coop, 

, and for the iof, ( )*
c cnπ ( )*

f fnπ .  These two functions represent the maximum payoff 

obtainable for the individual supplier of the coop and the iof respectively, given the 

number of members/suppliers of each firm. Whenever there is a higher economic return 

through the coop, producers will switch from the iof to the coop and vice versa.6 Farmer 

 will hence always choose the processor that offers him the highest profit.  i

( 13) ( ) ( )* *,c c f fmax n nπ π⎡ ⎤⎣ ⎦  

To simplify the analysis it is assumed that ( ) 0c Nπ >  and ( ) 0f Nπ > . In other words, 

the payoff will be positive so that all the  farmers will produce under all possible 

market structures. The producers will keep on switching between the two processors 

until an equilibrium distribution of producers 

N

( )* *,c fn n  is obtained where all receive an 

identical payoff ( )* * *,c fn nπ .7 If no producer has the incentive to alter his own choice 

when the choices of all the other producers are revealed to him, this distribution 

constitutes a sub game perfect Nash equilibrium.  

Possible outcomes of the market game are a single coop with the payoff 

, a single iof with payoff ( ) (* *,0 cNπ π≡ )N ( ) ( )* *0, fNπ π≡ N , or a mixed market 

equilibrium where both firms coexist, offering the farmers identical profit: 

.  ( ) ( ) ( )* * * * * * *, s.t.c f c c f f c fn n n n n n Nπ π π≡ ≡ + =

Based on the characteristics of the payoff functions of the iof and the coop described in 

Lemmas 1, 2 and 3 respectively, the Nash-equilibria for the input market can be found. 

By using the definition f cn N n≡ −  in the iof’s payoff function, the payoff functions of 

both processors can conveniently be inserted into a common diagram and the 

equilibrium can be demonstrated and discussed graphically. The number of members in 

the coop is measured on the x-axis from the left to the right. The total number of 
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farmers  is the maximum. Evidently, the number of suppliers of the iof will be 

displayed from right to left. The characteristics of the equilibria are presented in 

Proposition 1–3 below. They refer to the crossing or non-crossing of the two firms’ 

payoff-functions in the common diagram  

N

PROPOSITION 1 (No Crossing of Payoff Functions): The payoff functions of both the 

coop and the iof are shown to be continuous over their range. It follows that there exists 

a market structure with a single firm if no crossing of the two payoffs take place. 

Depending on the costs, the market will consist of a: 

a) Single coop defined by, ( ) ( )* *,c fn n N= , 0  with the payoff ( ) ( )* * * *,c f cn n Nπ π=  if 

( ) ( ) ( ),c c f c c c fn N n n n N nπ π* * ⎡ ⎤> − ∀ ∈ −⎣ ⎦  

b) Single iof defined by ( ) ( )* *, 0,c fn n N=  with the payoff ( ) ( )* * * *,c f fn n Nπ π=  if 

( ) ( ) ( ),c c f c c c fn N n n n N nπ π* * ⎡ ⎤< − ∀ ∈ −⎣ ⎦  

 Proofs follow directly from Lemmas 1, 2 and 3. 

The two equilibrium solutions from Proposition 1 are described in figures 3 

panel a and b respectively. These market outcomes are likely to occur if one of the firms 

has very low processing costs relative to the other. 

 

( )*
f fnπ

fn
cn

N

( )*
c Nπ

0

( )*
f fnπ

( )*
f Nπ

( )*
c cnπ

fn
cn

Figure3 a: No crossing of payoffs where the coop payoff surpasses the iof payoff for all 
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PROPOSITION 2 (Single Crossing of Payoff Functions): The payoff functions of both 

the coop and the iof are shown to be continuous over their range. The payoffs will cross 

once and only once in a point where the distribution of producers is denoted ( ),c fn nk k  

under the following conditions: 

a) Assume that ( ) ( ) ( ) ( )* * * *
c c f c c f f fn N n and N n nπ π π π< − − > . From Lemma 1-3 

we have that ( )* > 0c c cn nπ∂ ∂  and ( )* 0f c cN n nπ∂ − ∂ > , evaluated for the 

distribution of producers, ( ),c fn nk k . 

i) If ( ) ( )* *k
c c cnπ π> N

( ) ( )* * k k

, we will have a mixed market equilibrium defined by 

 where , ,c f c fn n n n= ( )k
c c fn n N n≤ ≤ −  and ( )k

f f cn n N n≤ ≤ − . The 

equilibrium payoff will be ( ) ( ) ( ),c f c c f fn n n nπ π π= =* * * * * * * . (See figure 4, 

panel a) 
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ii) If ( ) ( )* *k
c c cnπ π≤ N , we will have a single coop in equilibrium defined by 

( ) (,c fn n N= )* * ,0 . The equilibrium payoff will be ( ) ( ),c f cn n Nπ π=* * * * . (See 

figure 4, panel b) 

iii) Let ( ) ( ) ( ) ( )* * * *
c c f c c f f fn N n and N n nπ π π π> − − < . Here 

( )* < 0c c cn nπ∂ ∂  and ( )* 0f c cN n nπ∂ − ∂ >  evaluated in ( ),c fn nk k

)* * k k

. These 

conditions yield a stable mixed market equilibrium defined by 

, where ( ) (, ,c f c fn n n n= ( )c c fn n N n≤ ≤ −k  and ( )k
f f cn n N n≤ ≤ − . The 

resulting payoff will be ( ) ( ) ( )* * * * *k k,c f c c f fn n n nπ π π= = . (See figure 4 panel c) 

 Proof follows directly from Lemmas 1, 2 and 3. 

If the coop has overall economies of scale it will crowd out the iof under “single 

crossing” of payoffs. This situation is described in Figure 4a. However, if it has an 

ultra-passum technology in processing and single crossing, the equilibrium solution will 

depend on whether the single firm payoff is higher or lower than the mixed market. A 

situation where a mixed market is the equilibrium is described in Figure 4b. 

If the coop has overall diseconomies of scale and there exists a single crossing 

of payoffs, a mixed market will emerge. This situation is described in figure 4 panel c. 
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Figure 4 a: Single crossing of payoffs where the coop payoff is increasing at the crossing point. 
The mixed equilibrium will be Pareto-dominated by the single cooperative equilibrium (corner 
solution). 
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The single cooperative equilibrium (corner solution) will be Pareto-dominated by the mixed 
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Figure 4 c: Single crossing of payoffs where the coop payoff is decreasing at the crossing point. 
A mixed market will be the equilibrium solution. 

 

PROPOSITION 3 (Double Crossing of Payoff Functions): The payoff functions of both 

the coop and the iof are shown to be continuous over their range. Assume that 

( ) ( )* *
c c f cn Nπ π≤ − n  and ( ) ( )*

c f fN n nπ π− ≤ *
f . It follows then from Lemmas 1–3 that 

the payoff functions will cross twice. Let ( ),k k
c fn n  and ( ),l l

c fn n  denote the distribution 

of producers in the two crossings of the payoff functions and let k l
c cn n< .  

 17



We have that ( ) ( )* 0 ,f c c c c fN n n n n N nπ ⎡ ⎤∂ − ∂ > ∀ ∈ −⎣ ⎦ . It follows that 

( ) ( )* *k k l l, ,c f c fn n n nπ π<  and we will have a mixed market equilibrium defined by 

( ) ( )* * l l, ,c f c fn n n n=  with the equilibrium payoff ( ) ( ) (,c f c c c fn n n nπ π π= = )* * * * *l l . 

 Proof follows directly from Lemmas 1, 2 and 3. 

The mixed market described in Proposition 3 is illustrated in figure 5. In this setting the 

coop is assumed to have an ultra passum processing technology. 
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c cnπ

fn
cn

*aπ

*an
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b

*aπ

*bπ *bπ

*bn

Figure 5:  Double-crossing of payoffs where the mixed market equilibrium a will be Pareto-
dominated by equilibrium b. 

 

A two-tier market has been analyzed where only two potential processors, an 

open membership coop and a regular iof, operate in the input market. They are price 

takers in the final market. It is proved that all types of market structures, including a 

mixed market, are possible equilibria in the market game. Depending on the cost 

structure and cost level of the processors, we may expect a single cooperative, a single 

investor-owned firm or a mixed market consisting of both processors to emerge. 
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Discussion  

Since a coop has maximum profit or maximum price to the member producers as 

objective, one may think that it will benefit the producers if the coop is the only 

processor in the market. However, according to the analysis performed, this is not 

always the case. Situations will exist where a mixed market is superior to a single coop 

for all producers. The reason is diseconomies of scale in the coop’s processing activity. 

It results in decreasing payoff when the number of members increases because each new 

member causes the total output to increase. The problem is impossible to avoid as long 

as the coop practices an open membership policy. It is proved that the payoff for a coop 

pursuing the NARP objective always will be lower than the one offered by a JPM coop, 

except for a situation with constant returns to scale in processing. This is due to the 

problem of non-optimal quantity produced by the NARP coop members under both 

economies and diseconomies of scale in processing. The individual producer does not 

take into account the loss his marginal increase in production inflicts upon all the other 

members. As a result, the likelihood of a mixed market will be highest if the coop 

maximizes NARP. A JPM coop is more efficient and hence more likely to crowd out the 

iof. 

The output market is assumed to be perfectly competitive. It follows that the 

payoff to the coop members will be decreasing in the number of members only under 

diseconomies of scale in processing. Diseconomies of scale are claimed to be rare in the 

food processing industry. However, we may experience diseconomies of scale when a 

cooperative grows into a “large” organization with a “loose” management. A reduction 

in efficiency may also be caused by increasingly diverging objectives of the members as 

the organization grows. It can also be shown that the payoff will decline if the 

cooperative offers its output in a market with a downward-sloping demand curve. 

Hence, imperfect competition in the output market may cause decreasing payoff in the 
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coop for an additional supplier even if no diseconomies of scale in processing exist. 

This makes a mixed market more likely to evolve and become an equilibrium solution.  

This brings us back to the article of Albæk and Schultz. They analyze a duopoly 

in the output market and suggest that the coop will always be superior to the iof with 

regard to the payoff, eventually driving the iof out of the market. The result is based on 

the two firms producing identical output and competing in a Cournot manner in the 

output market. Hence, the price of output is linking the two firms’ strategies together in 

the second stage of the game. The cooperative is shown to always produce more than 

the iof, forcing the price of output down for both firms. Eventually, the iof will be 

driven out of the market. Differentiating the output can help moderate this extreme 

situation since it will bring a higher degree of independence between the players at the 

second stage of the game. The iof will be less sensitive to the coop’s strategy and may 

earn enough profit to remain in the market.  

The introduction of heterogeneous farmers, as in the contribution of Sexton, will 

also reduce the dependency in the input market. This may advance a mixed market 

equilibrium. 

The model of Karantininis and Zago turns out to be a special case of the general 

model developed in this article. They model a situation where the coop is of the NARP 

type and exhibits diseconomies of scale for all quantities processed. There are no fixed 

costs so the iof  has no binding break-even restriction. It follows that they always will 

find a mixed market equilibrium. 

Sexton formalizes the notion of the salutary effect the coop has on its rivals’ 

behavior as a “yardstick of competition” for the possible exercise of oligopsony power 

in a structural oligopsony. The present article shows that in the case of an open 

membership coop, the iof may serve as a “yardstick of production” for the coop. It helps 

the member farmers to achieve an increased payoff relative to a situation with a single 

coop by offering an outside option. In the case of diseconomies of scale it will help 
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reduce the problem of excess production. Competition with another cooperative would 

have ensured the same or even a better outcome. However, because of the common 

ownership of capital in cooperatives it can be a slow process to set up a new one. 

Probably, the formation of an investor-owned firm will be faster and an iof will be more 

likely to enter the market first. One thing to notice is that even competition from an iof 

may enhance the situation for members of a single coop with open membership. 

Concluding Remarks 

It has been argued that mixed markets consisting of investor-owned processors and 

open membership cooperatives cannot be a long term stable equilibrium. Further, it is 

suggested that the cooperative eventually will crowd out the investor-owned firm 

leading to a single cooperative in the market. However, we observe many mixed 

markets in the agricultural sector. 

This article has proven that a mixed market may exist as a stable equilibrium 

under quite general conditions. Diseconomies of scale in processing cause the payoff to 

producers to decrease with an additional coop member (crowding). In such a situation a 

single coop will experience excessive supply, causing too low returns for the producers. 

The problem originates in the open membership policy. The inability to restrict 

production in the NARP coop (lack of coordination) aggravates the problem. In this 

situation the entry of an iof into the market will serve as a “yardstick of production”; it 

offers an outside option to the farmers that eventually may result in higher profits for all 

farmers, independent of which one of the processors they choose to supply. 

A task for further research is to explore the possible effect of differentiating the 

output in an imperfect output market. Also, empirical work regarding the predictions 

made in this article would be useful. More insight is needed regarding different market 

types and their dependence on economies of scale in processing. 
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Appendix 

Proof of Lemma 1 

The envelope theorem is used on the first order condition for maximum in equation ( 7) 

to first find the effect of an additional supplier on total output.   

( 14)

( )

2
0 0,

2

f f f

f f ff f
f f f

f ff f f
ff f

f f f

QQ Q
g g

n n nQ Q
Q n n

n nQQ Q
n c Q g g

n n n

⎡ ⎤⎛ ⎞ ⎛ ⎞
′′ ′′′+⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠= > ∀⎢ ⎥∂ ⎛ ⎞ ⎛ ⎞⎢ ⎥′′ ′′ ′′′+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

N> ≤ ≤  

Due to the assumption that , total output is strictly increasing in the number 

of suppliers, 

( ) 0fg q′′′ ≥

fn . 

The effect on the individual supplier’s quantity of an additional supplier is found 

by substituting the equilibrium condition f f fQ n q=  into the first order condition ( 7) 

and then using the envelope theorem 

( 15) 
( )

( ) ( ) ( ) 0
2

f f f ff
f f

f f f f f f f f

c n q qq
n n N

n n c n q g q g q q

′′−∂
= <

∂ ′′ ′′ ′′′+ +
∀ ≤ ≤  

The net payoff offered, is obtained by inserting the optimal quantity from 

equation ( 7) into the iof supplier’s profit function, equation( 4). It is a function of the 

number of suppliers from stage one of the game. 

( 16) ( ) ( ) ( ) ( ) ( ) (* where )f f f f f f f f f fn q n g q g q q g q q q nπ ω ′= − = − = f  

From equation ( 16) and ( 15) it follows that  

( 17) 
( ) ( )

*

0f f f
f

f f

n q
g q qfn n

π∂ ∂
′′= <

∂ ∂
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Proof of Lemma 2 
From equation ( 9) we have  

( 18) ( )
( ) ( )

0 , 0c c c cc
c

c c c c c c

c n q qq q
n c n q n g q

′′∂
= − < ∀ >

′′ ′′∂ +
 

The joint profit is distributed symmetrically so the individual farmer’s profit 

(payoff) takes the form of ( )* *
c c c cnπ = Π n . By using the envelope theorem we find that  

( 19) ( )*

2
c c c

c
c c

n Q
n n

π
α

∂
= −

∂
 

Inserting  into the first order condition ( 9) yields n cQ n q= c

( 20) ( )
( )

1 1 1 0 ,c cc c
c c

c c cc c

g Q nQ Q n n N
c Q nn n

⎡ ⎤⎛ ⎞′′∂
= − + > ∀ ≤ ≤⎢ ⎥⎜ ⎟′′∂ ⎢ ⎥⎝ ⎠⎣ ⎦

 

Proof of Lemma 3 

The profit for the individual member in equation ( 11), is a sum of concave and strictly 

concave functions in . It follows that it must be strictly concave and that the second 

order condition for maximum will be satisfied for all positive quantities , that is 

cq

cq

( 21)
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( ) ( ) ( ) ( )
2 *

2

12 1 0c c c cc c
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By using the envelope theorem on the first order condition from equation ( 12) where 

, we find that  c cQ n q≡ c

( 22) ( ) ( )
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This expression is negative under diseconomies of scale in processing, 0cα > , when 

. For 2cn > 0cα < , the expression will depend upon the sign of the nominator relative 

to the denominator. In the subsequent analysis it is assumed that 

( ) ( )
1

c c
c c c c c

c

n q c n q g q
n

α δ′′ ′′> − + ≡ −⎡⎣−
⎤⎦

c

 to assure that the denominator in equation ( 22) 

remains positive. The interpretation of this assumption is that an upper limit is set for 

economies of scale in processing. By using the envelope theorem on the first order 

condition and that  we find how the total quantity changes when the number of 

members increases. 

c cQ n q=

( 23) ( )
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Again, for 0cα >  (diseconomies of scale), total quantity increases with the number of 

members. Rearranging the denominator that is assumed to be positive entails the 

following condition 

( 24) ( ) ( ) ( ) ( )( )2
1

c
c c c c c c c

c

QQ g q c Q n g q
n

α ′′ ′′ ′′> − − − −
−

 

It follows that the nominator will be non-negative for 0cα <  if 

, which is assumed in the subsequent analysis.( ) ( ) (2c c c c cc n q n g q′′ ′′≤ − ) 8 The 

interpretation of this condition is that the marginal cost of processing the optimal 

quantity for any number of members, is increasing less than ( )2cn − times the marginal 

cost of production of the member farmers. It follows that the total quantity always will 

increase with an increasing number of members under the given conditions. 

 Next the derivate of the payoff ( )*
c cnπ  with respect to the number of members 

and insert the result from equation ( 22) 
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( 25) ( ) ( ) ( )
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The numerator in the large brackets is the expression from the second order condition in 

equation ( 21) and thus negative for all cα . The sign of the denominator is already 

assumed to be positive. Hence, the sign of the expression will be equal to the sign of 

cα . Payoff will thus increase for an increasing number of members as long as there are 

economies of scale in processing. When production reaches a level where an extra 

member causes diseconomies of scale, the payoff will decrease with an increase in 

members. For constant returns to scale, the payoff will be insensitive to the number of 

members. 

The NARP includes the coop’s fixed cost, . A certain number of members is 

hence required to generate a sufficient volume of production to cover this fixed cost. 

This reflects the existence of economies of scale in the market. By inserting the optimal 

quantity from the first order condition in equation ( 12) into equation ( 10), the optimal 

NARP is found. The minimum number of members required for the coop to break even, 

cb

cn , is defined by ( ) 0c c c c c cP b c n q n q− + =⎡ ⎤⎣ ⎦   

  

 
Footnotes 
 

cn N1 Notice that the set-up includes both a single coop, =  and a single iof, n N . f =

( ) 0fg q′′′ ≥

2 To ensures that the second order condition for maximum profit is satisfied, it is 
assumed that  (sufficient condition). The assumption signifies an increasing rate of 
change in the convex curvature of the inverse supply function. A rationale for the assumption is 
a limited production capacity for each producer. It holds true for all power and exponential 
functions. 

3 This set-up is similar to that used by Helmberger in his seminal article on 
cooperatives. It deviates however from that of Albæk and Schultz where the two firms compete 
in the output market, and not for input. Hence, it is not straightforward to compare the results.  

4 Normally, the coop requires new members to subscribe a small premium for the entry 
of new members. This premium (investment) often pays no or low dividend or interest. For the 
purpose of the present analysis the premium may be ignored without loss of generality. 
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c

5 This is a simplified version of the NARP since units are chosen so that one unit of 
input yields one unit of output. The quantities of both are hence conveniently denoted by Q . 

6 This is in accordance with Helmberger who states: “The cooperative will be seeking 
new members so long as net returns are less than the maximum amount obtainable […]. If the 
profit seeking firms fail to match the cooperative’s price, their suppliers will seek, presumably 
with success, cooperative membership.”  

7 This has parallels to the Theory of Clubs and the “voting with the feet equilibrium” 
(Buchanan; Tiebout). 

8 This is a sufficient, but not a necessary condition. 

 

 27


	Mixed Markets in the Food Processing Industry

