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Introduction

Partly in response to a spate of well-publicized food scares, the last decade has witnessed

increased public awareness of food-safety concerns. Particularly well-known food scares

include: the outbreak of Bovine Spongiform Encephalopathy (BSE), commonly known as

�mad-cow� disease, in the United Kingdom; the contamination of hamburgers and apple

juice with the E. coli O157:H7 bacterium; the contamination of frozen, sugared strawberries

with the hepatitis A virus in the United States; the recent �mad-cow outbreaks�in Canada

and the United States; and avian in�uenza (�bird �u�) incidents in Asia and the United

States. Each scare has had signi�cant economic e¤ects. For example, after an isolated case

of BSE was detected on a Canadian farm in May 2003, Canadian beef exports plummeted

from a monthly average of $125 million to only $14 million in August 2003. And subsequent

news of discovery of BSE in the United States virtually evaporated its $3 billion beef export

market.

Food scares follow a very common pattern. Before the scare, consumers behave as though

they are relatively indi¤erent to the hazards associated with foodborne pathogens and con-

taminants. But once a scare occurs, the typical response is a precipitous decline in demand,

followed by a slow, and often incomplete recovery. In some instances, certain segments of

the population totally shun the commodity as a result of a scare. This tendency has been

repeatedly documented. For example, nearly 60% of Japanese consumers stopped eating

beef after a case of BSE in Japan was reported in 2001 (USDA, 2002). Similarly, 8% of

consumers in a sample of French households reportedly stopped consumption of beef during

a BSE scare in Europe (Adda, 2003).

In an uncertain world, there are at least two possible explanations for such behavior.

The most commonly o¤ered is that a food scare fundamentally changes individual attitudes

towards risk. A less-explored explanation is that food scares change individual beliefs so

that the least desirable outcomes now seem much more likely than before.

Regarding the �rst, notice that in an expected-utility framework, a total avoidance of

such hazards is only explainable by arbitrarily high degrees of risk aversion. Hence, a sudden

shunning of a product only seems explicable by consumers becoming arbitrarily risk averse.
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This, in turn, suggests a fundamental change in individual attitudes towards other risks. If

true, then such a change should be associated with similar changes in other risky markets,

particularly if those markets are closely related to the market in which the scare occurs.

For example, a person who suddenly becomes in�nitely risk averse as a result of a food

scare should also now avoid other potentially hazardous food products. We are aware of no

empirical evidence that documents such behavior. Not only does this not appear to happen,

but often some of the same individuals who have shunned the scare-ridden food product

resume its purchases after the negative news has passed (Adda, 2003; FPI, 2004; Wall

Street Journal, 2004)). This leaves the latter explanation: a negative food incident changes

consumers�beliefs, at least temporarily, about the risks associated with consumption of a

food product.

This paper builds an economic model of consumer choice over food products of uncertain

quality. The goal is to construct a model that explains the stylized facts of food scares:

an immediate and sharp decline in consumption of the product followed by a slow and

frequently partial recovery of demand after the scare passes. To do this, we use a model

where individual tastes (attitudes towards risk) are not a¤ected by a food scare, but where

beliefs about the state of the world re�ect the presence of potential Knightian uncertainty and

can be in�uenced by the receipt of information about the presence of food scares. Consumer

beliefs about uncertain food quality are represented by sets of prior probability distributions,

and preferences over these sets of prior distributions are modeled using a dynamic version of

Gilboa and Schmeidler�s (1989) maximin expected utility (MEU) representation. Consumers

update their beliefs about uncertain outcomes in response to receipt of market information

using a prior-by-prior application of Bayes�Law.

Our model recognizes the potential presence of Knightian uncertainty for at least three

reasons. First, unpredictable, unanticipated, and typically unprecedented food scares are,

by de�nition, �...so entirely unique...� that it is not �...possible to tabulate enough like it

to form a basis for any inference of value about any real probability...� (Knight, p. 226).

In other words, food scares re�ect exactly the type of uncertainty with which Knight was

concerned. Second, repeated empirical validations of the Ellsberg Paradox have revealed that

individuals behave di¤erently in the presence of Knightian uncertainty than in its absence.

2



Thus, if Knightian uncertainty is present, it should be recognized and properly modeled.

And third, we have chosen a model that, under appropriate circumstances, degenerates to

expected utility if the degree of imprecision (de�ned below) is su¢ ciently small. One of

the goals of our empirical modeling e¤ort is to assess that degree of imprecision for the

�mad-cow�crisis in the United Kingdom.

In what follows, as a backdrop to our modeling e¤ort, we �rst present an overview of

events associated with a recent food scare, the �mad-cow� crisis in the United Kingdom,

and we brie�y relate that scare to other well-known food scares. Although speci�cs di¤er

across food scares, the �mad-cow�scare appropriately illustrates the typical dynamics of a

food scare. Then we develop and analyze a theoretical model that is intended to explain

these typical dynamics. The model generates short-run and long-run consumption patterns

consistent with those often observed following food incidents. We derive a number of com-

parative statics results, and then we calibrate our model with meat consumption data for the

United Kingdom. The calibrated model is used to assess the importance of various factors

a¤ecting food consumption behavior and some of the ambiguous comparative-static e¤ects

in the theoretical model. The paper then closes.

1 The Dynamics of a Food-Scare: The UK "Mad-Cow"

Crisis

BSE was identi�ed as a new disease in cattle in 1986, following the death of a cow in the

United Kingdom. Between 1986 and 1995, UK o¢ cials assured the consuming public that

UK beef was safe to eat. It was not until the new variant Creutzfeldt-Jacob disease (vCJD)

claimed its �rst human victim that the UK government con�rmed the link between it and

BSE in March of 1996. As of August 2004, there have been 142 deaths due to the vCJD

in the UK (Guardian, 2004). Because the disease has a long incubation period, its eventual

impacts remain unknown.

Figure 1 illustrates the cataclysmic decline in beef and veal usage that followed the 1996

announcement. It also illustrates the eventual, partial recovery that is characteristic of
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food scares. Prior to 1996, UK beef consumption exhibited a de�nite quarterly pattern of

�uctuation around a declining trend. However, immediately following the announcement

of the previously unknown (and o¢ cially denied) link between BSE and its human variant

vCJD, beef consumption dropped by 40% (DTZ/PIEDA, 1998).

Following the 1996 announcement, the European Union banned UK exports of beef world-

wide. The ban also a¤ected export of live calves from the UK. The combined e¤ect of the

fall in demand for UK beef from UK and overseas consumers, was a contraction in �nal

demand for UK produced beef of 36% in real terms between March 1996 and March 1997

(DTZ/PIEDA, 1998).

The decrease in beef consumption was short-lived, however, and by late 1997 per capita

consumption of beef had recovered in line with expected trends (MAFF, 2000). During

1998 and 1999 consumption of beef was in fact above expected trends (DTZ/PIEDA, 1998;

MAFF, 2000).

Shortly after its UK outbreak, the BSE scare spread to other European countries. And in

2000, another "mad-cow" scare emerged in Europe. This scare was triggered by the discovery

of an infected cow in France in November 2000, and it was most pronounced in France and

Italy. French beef consumption decreased by more than 35% (Setbon et al., 2005). In the

same month, there was a signi�cant increase in the number of BSE cases registered in France.

In reaction to these French cases, beef expenditure in Italy decreased by 32.2% while prices

decreased by 0.7% (Mazzocchi, 2004). The scare in Italy was exacerbated by the detection

of the �rst BSE case in a native-born cow in January 2001. Beef consumption following this

discovery was 49.2% lower than in January 2000 (Mazzocchi, 2004). A slow recovery started

in late Spring 2000, but was still far from complete at the end of 2001 (Mazzocchi, 2004).

The �rst case of BSE outside of Europe occurred in Japan. On September 10, 2001,

it was publicly announced that a dairy cow from Chiba Prefecture had tested positive for

BSE. Nearly 60% of Japanese consumers stopped eating beef, but by mid-2002, Japan�s beef

consumption had recovered to within 10-15 percent of its pre-BSE levels (Carter and Huie,

2004).

Each BSE scare was characterized by a sharp initial decline in consumption followed by

a gradual recovery to the pre-scare consumption levels (as adjusted for previously existing
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trends). This type of behavior is routinely manifested after a food scare. For example,

immediately following the heptachlor contamination of milk in Oahu, Hawaii in 1982, the

estimated loss of projected Class I (�uid) milk sales was 29%, but �fteen months later sales

had almost completely recovered (Smith et al., 1988). Other highly-publicized food scares

that have followed a similar pattern include: the 1959 cranberry scare in the United States;

the salmonella scare of 1988 in the United Kingdom; the alar apple scare of 1989 in the

United States; the 1996 E. coli outbreak in Lanarkshire, Scotland; the 1996 outbreaks from

the pathogen, Cyclospora, on Guatemalan raspberries exported to the United States and

Canada; the 1999 dioxin scare in Belgium; the hepatitis A outbreak in the United States in

2003, associated with consumption of green onions imported from Mexico.

A growing economic literature has documented and analyzed these post-scare consump-

tion dynamics. For example, Pigott and Marsh (2004) note that "the average demand

response to food safety concerns is small...This small average e¤ect masks periods of signif-

icantly larger responses corresponding with prominent food safety events, but these larger

impacts are short-lived with no apparent food safety lagged e¤ects on demand." Sociological

studies also recognize that food scares exhibit this speci�c pattern. Beardsworth and Keil

(1996) classify public reaction in �ve steps with the last two steps being avoidance of the

suspect food item and a gradual decrease of public concern as attention switches from the

issue, leading to the gradual recovery of consumption.

2 The Model

2.1 Timing and Overview of the Model

We consider a two-period model, t 2 f1; 2g ; with a decision-maker choosing a two-good

consumption bundle under uncertainty. The timing is as follows. In period t, the decision-

maker observes a realization of signal � 2 � = fN;Sg; where N stands for the absence of

food scare (�no scare�) and S for �food scare�: After learning the signal, the decision-maker

updates her beliefs about the set � = fb; gg which captures all possible events relevant to the

decision-maker�s ex post utility. Upon updating her beliefs, the decision-maker allocates a
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�xed amount of income, It; between goods x and y; with their respective period-t prices given

by qt and 1: The consumption of y involves no uncertainty about the consumer�s health, and

so we refer to y as �safe�. x; on the other hand, is of uncertain quality. It can be either �bad�,

denoted by b; meaning that the consumer consumes a foodborne disease or contaminant, or

it can be �good�, denoted by g; meaning that x does not contain any contaminant. The set

of states of Nature in each period, t; is, thus, given by 
 � ���:

The world is uncertain so that the odds of di¤erent states of nature 
 are not known

with precision: The decision-maker�s beliefs in each period are characterized by a set � of

probability distributions over 
. The set of probabilities over 
� 
 is given by �� �: By

assuming that the belief structure � is the same in both periods, we also assume that the

realizations of signal � and event � in period 1 are not informative about the likelihood of

their realizations in period 2: Hence, updating in response to the receipt of a signal about

food quality occurs within periods but not from period to period.

The decision-maker is assumed to have a variation of recursive MEU preferences (Epstein

and Schneider (2003)), where conditional preferences have Gilboa and Schmeidler�s (1989)

maximin expected utility (MEU) form,

min
(P1;P2)2���

"
2X
t=1

EPtut

#
:

Here ut denotes the decision-maker�s period-t ex post utility. Beliefs are updated by a prior-

by-prior application of Bayes law.

We specify the decision-maker�s preference functional in more detail after we have in-

troduced its di¤erent components. However, it is important to notice that the MEU form

implies that the decisionmaker is pessimistic in the following sense. When evaluating sto-

chastic outcomes, he or she always uses probabilities that yield the lowest possible expected

utility over P:
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2.2 Beliefs

The prior (in the beginning of each period t 2 f1; 2g) information structure is represented

by a convex set � with its elements being 2� 2 probability matrices

� =

8<:
24 pNb pSb + "

pNg pSg � "

35 : " 2 [0; "]
9=; : (1)

Here p�� (� 2 �; � 2 �) and " are constants that satisfy 0 < pNb ; pNg < 1; minfpSg ; 1� pSb g >

" � 0; and
P

�2�
P

�2� p
�
� = 1:

These conditions ensure that each element P of � is a proper probability distribution: No-

tice that in our speci�cation, the decision-maker�s beliefs about the simultaneous occurrence

of signal N and event � 2 � are given by a unique probability pN� ; which is a �xed number.

In contrast, when " > 0; the decision-maker�s beliefs about the simultaneous occurrence of

signal S and event b (event g) are given by the interval
�
pSb ; p

S
b + "

� ��
pSg � "; pSg

��
: Hence,

the decisionmaker�s beliefs about the presence of foodborne pathogens are �imprecise�in the

sense of Walley (1991).

The probabilities in � can be thought of as representing at least two factors: the decision-

maker�s information on the possible probability distributions and his or her degree of con�-

dence in the existing theories surrounding these probability distributions. This interpretation

of beliefs can be traced back to Ellsberg (1961). So, for example, if there are several com-

peting hypotheses about the stochastic structure that characterizes the food-borne hazard,

but the decisionmaker is convinced that only one is truly valid, then � would be a singleton.

Conversely, if the decisionmaker had no con�dence in any of the theories the set � could be

quite large. Parameter "; which measures the length of the interval which the decisionmaker

will entertain as possible probabilities of the presence of foodborne contamination, will be

referred to as measuring the decision-maker�s degree of imprecision in what follows.

Notice that the prior probability of signal realization � is
P

�2� p
�
� ; which is independent

of ": Hence, our model assumes that there is no prior uncertainty about the signal-generating

process. The decision-maker, however, does have uncertain prior beliefs about the possible

presence of foodborne hazards (i.e., events in �); which in both periods are given by the
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convex set 8<:
24 pNb + pSb + "
pNg + p

S
g � "

35 : " 2 [0; "]
9=; :

In each period, the realization of signal � is used by the decision-maker to update her

beliefs. In a risky decision environment, Bayes law is almost always used to update beliefs.

For uncertain decision environments, however, there is less unanimity about updating, and

a number of alternative rules have been considered. We adopt a prior-by-prior Bayesian

updating rule, where each prior in � is updated using Bayes law. Our choice of updating

rule is motivated by recent axiomatizations of intertemporal MEUmodels with prior-by-prior

Bayesian updating (Epstein and Schneider (2003), Pires (2002), Siniscalchi (2001), Wakai

(2003) and Wang (2003)).1

The posterior probability of event � conditional on signal � for probability matrix P is

p��
p�b + p

�
g

:

For � in (1); the sets of posterior probability distributions over � conditional on the real-

ization of signals N and S are given by24 pNb
pNb +p

N
g

pNg
pNb +p

N
g

35 and

8<:
24 pSb +"

pSb +p
S
g

pSg�"
pSb +p

S
g

35 : " 2 [0; "]
9=; ;

respectively. Thus, following receipt of signal N; the set of posterior probability distributions

over � is a singleton, so that receiving signal N resolves all uncertainty (but not the risk)

in the period it is received. In contrast, uncertainty remains if a food scare occurs.

2.3 Ex post Utility and Habit Formation

Ex post utility in period t = 1; 2 depends on the consumption of good x in the current and

the previous periods, the consumption of good y in the current period and on the realization

1Epstein and Schneider (2003) demonstrate that, when conditional preferences satisfy axioms of the

(static) MEU model, dynamic consistency in the sense of Machina (1989) is equivalent to the rectangularity

of the set of priors and prior-by-prior Bayesian updating. It is straightforward to verify that belief structure

� is rectangular in the sense of Epstein and Schneider.
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of uncertainty � 2 �: Period-1 and period-2 ex post utility of the decisionmaker take the

following forms:

u1 = y1 � exp [� (r�x1 � �x0)] (2)

and

u2 = y2 � exp
�
�
�
r�x2 � �x1 � �2x0

��
; (3)

where x0 denotes the initial consumption stock of good x, xi (yi) denotes consumption of

good x (y) in period i = 1; 2, � is a constant in the interval (0; 1); and r �(rb; rg) is a

random variable with rb = 0 and rg = 1: Preferences exhibit constant absolute risk aversion

in the current period consumption of the uncertain good with  equalling the (constant)

Arrow-Pratt degree of absolute risk aversion.

Preferences depend on the consumption of good x in the current and the previous periods

because consumers exhibit habit formation in the unsafe good x. Hence, current period

utility depends not only on the current consumption of good x but also on the discounted

consumption in the previous periods. It is easy to verify that @2(� exp[�(rgx1��x0)])
@x1@x0

> 0;
@2(� exp[�(rgx2��x1��2x0)])

@x2@x0
> 0; and

@2(� exp[�(rgx2��x1��2x0)])
@x2@x1

> 0; that is, increases in the

past consumption of x increase the marginal utility of the current consumption of x in the

event � = g. We also have that @
2(� exp[�(rbx1��x0)])

@x1@x0
= 0;

@2(� exp[�(rbx2��x1��2x0)])
@x2@x0

= 0; and
@2(� exp[�(rbx2��x1��2x0)])

@x2@x1
= 0:

2.4 The Decision-maker�s Conditional Preference Functional

After observing realization � 2 fN;Sg of the signal in period 1, the decision-maker updates

her beliefs about the likelihood of events in� = fb; gg and subsequently chooses consumption

levels of goods x and y, denoted by x�1 and y
�
1 ; respectively. (Here, subscripts always refer

to time periods, and superscripts always refer to the signal received.) The consumption

decision in period 2 depends, among other things, recursively on the consumption of good x

in period 1, which, in turn, depends on the realization of the signal in period 1. In period

2, the decision-maker observes realization �0 2 fN;Sg of the signal, then updates her beliefs

about the likelihood of events in � = fb; gg and subsequently chooses consumption levels of

goods x and y, denoted by x�
0j�
2 and y�

0j�
2 ; respectively, where � stands for the signal received
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in period 1 and �0 for the signal received in period 2.

In Appendix A it is shown that the decision-maker�s preference functional V S conditional

on receiving signal S in the beginning of period 1 can be written as

V S(xS1 ; x
N jS
2 ; x

SjS
2 ) � �exp(�x0)

pSb + p
S
g

��
pSb + "

�
+
�
pSg � "

�
exp

�
�xS1

�	
+ I1 � q1xS1 (4)

+�

8>>><>>>:
� exp

�

�
�xS1 + �

2x0
��0@ pNb + (1� pSb � pSg � pNb ) exp

�
�xN jS2

�
+
�
pSb + "

�
+
�
pSg � "

�
exp

�
�xSjS2

�
1A

+I2 � q2
�
x
N jS
2 +

�
pSb + p

S
g

�
(x
SjS
2 � xN jS2 )

�
9>>>=>>>; ;

where � 2 (0; 1) is the discount factor. The objective function conditional on receiving

signal N in period 1 has a similar form and is presented in Appendix A. Expression (4)

demonstrates an especially important characteristic of our model. By (4) ; it is apparent

that consumers only use the �most pessimistic�probability of the food product being safe

in evaluating its consumption. This fact greatly facilitates the analysis that follows.

3 Preliminary Theoretical Analysis

We �rst analyze the e¤ect of changes in the model parameters on the optimal consumption

of the unsafe good conditional on receiving signal � 2 fN;Sg in the �rst period. We have:

Proposition 1 The unique optimal consumption pattern (x�1 ; x
N j�
2 ; x

Sj�
2 ) conditional on ei-

ther realization of the signal (8� 2 fN;Sg) satis�es:

1. Period-1 consumption x�1 conditional on signal � is strictly decreasing in period-1 price

(q1) and the discount factor (�): It is increasing in the initial consumption stock (x0); and

x�1 does not vary with period-2 price (q2);

Period-1 consumption xS1 conditional on signal S is strictly decreasing in the degree of im-

precision "; period-1 consumption xN1 conditional on signal N does not vary with ";

2i. Period-2 consumption xN j�2 conditional on receiving signal � 2 fN;Sg in period 1 and

signal N in period 2 is strictly decreasing in period-2 price (q2) and the negative of the initial

consumption stock (�x0); xN j�2 does not vary with the degree of imprecision "; period-1 price

(q1) and discount factor (�);
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2ii. Period-2 consumption xSj�2 conditional on receiving signal � 2 fN;Sg in period 1 and

signal S in period 2 is strictly decreasing in the degree of imprecision "; period-2 price (q2)

and the negative of the initial consumption stock (�x0); x�1 does not vary with period-1 price

(q1) and discount factor (�):

Proof. (See Appendix B)

Price changes in a given period only directly a¤ect consumption in that period. They have

no direct e¤ect on consumption in other periods, although the presence of habit formation

ensures that indirect e¤ects exist. The presence of habit formation also leads individuals

with a relatively large initial consumption of the uncertain food product, x0; to consume

relatively large amounts of that product in future periods.

Increases in �"; which re�ect an increase in imprecision in beliefs about the presence of

foodborne pathogens, lead to an immediate drop in consumption of x in the presence of a

food scare (receipt of signal S): An increase in imprecision, when coupled with the consumer�s

assumed pessimism always leads him or her to attach an e¤ectively lower probability to the

absence of food-borne pathogens. Comparative statics for the other parameters remains

ambiguous. In a later section, we use a calibrated version of the model to remove some of

this ambiguity.

Our main objective is a model that explains the stylized facts of a food scare. A robust

empirical observation is that food scares (here receipt of signal S) decrease consumption of

x. If consumer beliefs are �su¢ ciently imprecise�, our model predicts just such a decrease.

The following proposition makes precise the intuitive statement �su¢ ciently imprecise�:

Proposition 2 If  
pNg

pNb + p
N
g

>
pSg � "
pSb + p

S
g

!
;

consumption following a food scare in period 1 is strictly lower than in the absence of a food

scare (xN1 > x
S
1 ; x

N jN
2 > x

N jS
2 ; x

SjN
2 > x

SjS
2 ):

Proof. (see Appendix C)

The condition in Proposition 2 requires that the posterior probability of the food product

being uncontaminated in the absence of a food scare be greater than the most �pessimistic�
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posterior probability of it being uncontaminated in the presence of a scare. Because our

decisionmaker evaluates �post-scare�consumption of the food product in terms of this most

pessimistic probability, the condition requires that the decisionmaker e¤ectively believes that

food contamination is more likely in the presence of a scare than in its absence. Intuitively,

receiving a �scare�signal process must be truly informative about the possible presence of

foodborne contamination if consumers are to react to it by decreasing consumption of the

hazardous food product.

It is of particular interest to note that even if there is no food scare in period 2, period-

2 consumption conditional on the occurrence of food scare in period 1 is strictly smaller

than period-2 consumption conditional on the absence of food scare in the previous period

(xN jN2 > x
N jS
2 ). Even though updating occurs only within time periods, food consumption

is persistently a¤ected by the occurrence of a food scare in period 1. The consumption

process has memory because of the assumed presence of habit formation in food consumption.

Moreover, a sequence of two food scares results in a larger decline in consumption compared

to a single food scare (xSjN2 > x
SjS
2 ). Thus, the model predicts that if a scare signal is

followed by receipt of a �no-scare�signal the process of recovering from the scare, which is

manifested in real-world experience, commences.

Another stylized fact of food scares is that following a scare, some segments of the pop-

ulation completely shun the potentially hazardous food product. Proposition 1, where it

was shown that xS1 and x
Sj�
2 are strictly decreasing in "; suggests (but does not imply) that

refusal to consume the food product may occur if there is su¢ cient imprecision: In fact, it

can be shown that when an individual�s beliefs are extremely imprecise (as seems natural for

most unprecedented food scares), he or she will not consume the hazardous food following a

food incident. In Appendix D, we show that there exists a threshold level of �"; "t < pSg ; such

that for all " 2 ["t; pSg ], xS1 = 0; x
SjS
2 = 0; and

x
N jS
2 =

1


ln

"
(1� pSb � pSg � pNb )
q2
�
1� pSb � pSg

� #
+ �2x0:

Intuitively, extreme imprecision is associated with the case where the receipt of a scare

signal convinces the decisionmaker that the posterior probability of eating contaminated

food approaches zero. Or put another way, the decisionmaker e¤ectively treats receipt of a
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scare signal as con�rming the presence of foodborne contamination.

The prior probability of receiving signal S (the prior probability of a food scare) also

plays an important role in determining whether an individual will completely shun the food

product of uncertain quality following a food scare. In particular, in our model, consumers

are more likely to shun the product if a food scare is a low probability event. We have:

Proposition 3 When the probability of food scare is su¢ ciently small, the decision-maker

does not consume the hazardous food following a food scare. Speci�cally, there exists a

threshold level �t 2 ["; 1] of the probability of signal S such that xS1 = 0 and xSjS2 = 0

for all
�
pSb + p

S
g

�
2 ["; �t]:

Proof. (see Appendix E)

Appendix E shows that low-probability food scares result in almost complete posterior

uncertainty so that following a food scare the range of posterior probabilities of a bad food

outcome covers almost the whole probability interval [0; 1]: The pessimistic MEU maximizer

acts as though the bad health outcome were almost certain. As a consequence, he or she

refuses to consume the food product of uncertain quality. Thus, scares are more likely to

have drastic consequences for consumption of the hazardous food product if prior to the

receipt of the signal the decisionmaker was e¤ectively anticipating receiving a signal that

the food product would be �t for human consumption. Scares have bigger consequences

for consumption patterns when they are unanticipated probabilistically than when they are

perceived as relatively frequent occurrences.

4 Quantitative Analysis

In this section, we calibrate our model using data on beef and veal consumption in the United

Kingdom that covers the "Mad-Cow" crisis of the 1990s, and use the calibrated model to

investigate quantitatively the degree of imprecision that is consistent with the calibrated

model, and how that measured degree of imprecision responds to di¤erent assumptions on

model parameters.

The period in the model is half a year. Period 1 is the �rst half of 1996 while period 2

is its second half. The discount factor for half a year is set to � = 0:99; which is in line with
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the estimates for the United Kingdom during the time period considered in our simulation

(Evans and Sezer, 2002). Consumption is measured by the total UK usage of beef and

veal (DEFRA, 2006). Prices are measured by the average retail price index for the United

Kingdom (Lloyd et al., 2001).2 Initially, we parametrize the information structure as:

� =

8<:
24 0:001 0:007 + "

0:989 0:003� "

35 : " 2 [0; "]
9=; ;

so that our quantitative analysis takes the prior probability of a �scare�signal emerging as

.01, and the prior probability of no-scare as :99: Given that many, if not most consumers,

were likely unaware of the potential link between BSE and vCJD prior to its report and the

relatively advanced stage of meat processing technology in the United Kingdom, we actually

believe that this prior probability of a scare is, in fact, quite high. One of the goals of the

quantitative analysis is to determine how altering the prior probability of a scare a¤ects our

quantitative results. Notice, in particular, that we have explicitly assumed that posterior

probability of the food item being dangerous to health given the presence of a food scare,
0:007+"
:01

is greater than the posterior probability of it not being hazardous. In this sense, we

are assuming that the scare signal in question is informative.

The values of the remaining parameter values are summarized in Table 1. Apart from

the discount factor, the degree of habit persistence, and the degree of absolute risk aversion,

these values re�ect the situation in the UK immediately prior and immediately after the

revelation of the BSE-vCJD link.
2We would like to thank the authors for giving access to their paper.
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Table 1: Parameter Values

Price in period 1 (q1) 250:9

Price in period 2 (q2) 251:2

Initial consumption stock (x0) 220:1

Consumption in period 1 following scare in period 1 (xS1 ) 158:3

Consumption in period 2 following scare in period 1

and no scare in period 2 (xN jS2 )
190:0

Discount factor (�) 0:99

Degree of habit persistence (�) � 2 [0:05; 0:15]

Degree of absolute risk aversion ()  2 [0:015; 0:035]
As we said, a primary goal of this exercise is to determine a quantitative magnitude for

the prior and the posterior degree of imprecision given the presence of a scare signal. In what

follows, for the sake of economy, we shall only focus on the degree of posterior imprecision

for two reasons. The prior degree of imprecision, �", can be obtained from the measured

posterior degree of imprecision by simply multiplying the posterior by the prior probability

of the scare signal. We also seek to determine how that degree of imprecision responds

to di¤ering assumptions on parameters of our model whose magnitudes are not set by the

situation in the UK beef and veal market at the time that the link was revealed.

Our baseline model sets the degree of habit persistence, � = 0:1; and the coe¢ cient of

absolute risk aversion,  = 0:02: To interpret this coe¢ cient of absolute risk aversion, notice

that decision-maker with constant absolute risk aversion and  = 0:02 is indi¤erent between

a sure income of 100 and a lottery that pays 0 with probability 0.125 and 250 with probability

0.875. For a realized consumption level, r�x1� �x0; of 220.1, which is equal to the observed

initial consumption stock, a coe¢ cient of absolute risk aversion of .02 implies a coe¢ cient

of relative risk aversion of roughly 4.4 while  = :035 works out to a coe¢ cient of relative

risk aversion of roughly 7.7, and .015 yields a coe¢ cient of relative risk aversion of about

3.3. On the basis of existing empirical work, it is generally felt that the coe¢ cient of relative

risk aversion is not much greater than 4: For example, Gollier (2001, p.69) refers to the

acceptable range of relative risk aversion as being between [1,4]. Thus, we are intentionally

allowing for moderate to very high degrees of risk aversion on the part of consumers because
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a high degree of risk aversion has been frequently o¤ered as the primary explanation for

consumption responses in the aftermath of a food scare.

Given our parameters, the models solves for the factor w by which we normalize prices,

the prior and posterior degrees of imprecision �" and consumption in period 2 following scares

in periods 1 and 2 (xSjS2 ). We take xSjS2 to be counterfactual to our data

In Figure 2 we depict the posterior degree of imprecision given by

max
"2[0;"]

pS� + "

pSb + p
S
g

� min
"2[0;"]

pS� + "

pSb + p
S
g

=
"

pSb + p
S
g

;

and how that measured degree of imprecision responds to changes in the degree of absolute

risk aversion. The �rst thing that we note is that the posterior degree of imprecision is quite

large, and that it tends to grow as the postulated level of risk aversion increases in what

can be thought of as plausible ranges for risk aversion, but that once assumed risk aversion

reaches implausibly high levels of risk aversion the degree of imprecision starts to decline.

This pattern of behavior is explained as follows. It is quite well known that it is generally

impossible to disentangle uncertainty aversion (here referred to in terms of imprecision)

from risk aversion without very speci�c assumptions on models. More generally, the same

model can be interpreted as either perfectly uncertainty averse or perfectly risk averse.

When consumers become very excessively risk averse, their behavior becomes extremely

conservative and manifests a "safety-�rst" type of decision process. They will not expose

themselves to any perceived risk even if the prior probability of that risk is arbitrarily low.

Hence, one expects that e¤ects that might otherwise be attributed to imprecision would in

the limit be captured by the extreme risk aversion, and measured precision would decline

as we observe here. We emphasize, however, that our quantitative results suggests that this

only occurs at levels of risk aversion that are well above commonly accepted values.

We have also solved for xSjS2 in our model which corresponds to what optimal consump-

tion would be if two scare signals were received in a row. We have taken this as being

counterfactual to what the market actually experienced. Our analysis suggests that, holding

the degree of habit persistence at the baseline number of .1, consumption would be signi�-

cantly below what it was in the period immediately following the scare (about 158) and is

relatively invariant to changes in the degree of risk aversion so long as the degree of risk

16



aversion remains in what are perceived as relatively usual levels (Figure 3).

We have also investigated the impact on the posterior degree of imprecision and xSjS2 as

the probability of the food scare tends to zero. The limiting behavior of the posterior degree

of imprecision as a function of the probability of food scare when the latter tends to zero

was identi�ed in Proposition 3 (see Appendix E for the formal analysis). The quantitative

results suggests that similar behavior is exhibited even in nonlimiting cases. Table 2 reports

the results for the posterior degree of imprecision and xSjS2 of allowing the prior probability

of a food scare to decline from 1% (baseline case) to 0.001%, where we have varied pSb and

pSg keeping p
N
b and other parameters �xed at their baseline values. These results show that

the posterior degree of imprecision uniformly increases and xSjS2 uniformly decreases as the

prior probability of a food scare declines.

Table 2: Varying Parameters of the Probability Matrix

Posterior degree of imprecision x
SjS
2

pSb = 0:007

pSg = 0:003
(baseline) 0:14321 97:693

pSb = 0:0007

pSg = 0:0003
0:15871 92:204

pSb = 0:00007

pSg = 0:00003
0:16038 91:608

pSb = 0:000007

pSb = 0:000007
0:16055 91:548

Although we have no �rm evidence upon which to base it, our strong conjecture is that

a priori most food scares are extremely low probability events. We base this conjecture

on the fact that the risks involved in many of the most famous food scares were simply

not anticipated by the consuming population before the food-scares occured. Therefore, if

individuals would have been asked to attach a prior probability to such an event occuring,

it seems plausible that that probability would have been extremely low. Table 2 shows that

when the prior probability of a scare is quite low, our data suggests that consumers exhibit

a high degree of imprecision a posteriori. Because a high degree of posterior imprecision

implies very conservative behavior on the part of consumers in response to the food scare,

17



their natural reaction to a food scare is to avoid the commodity in question, just as happened

in the UK beef and veal markets as well as in other markets where there have been serious

food scares.

5 Concluding Remarks

We have built an economic model of consumer choice over food products of uncertain quality.

Our model uses a multiple-priors framework to accommodate the presence of Knightian

uncertainty as opposed to Knightian risk. The constructed model generates a number of

testable prediction and explains the stylized facts of food scares: an immediate and sharp

decline in consumption of the product followed by a slow and frequently partial recovery of

demand after the scare passes. The calibration of our model with the data on the �mad-

cow� crisis in the United Kingdom also o¤ers some insights into factors that account for

consumer behavior in response to that scare. The quantitative results from the calibrated

model suggest that observed behavior is consistent with sharp changes in beliefs and the

presence of Knightian uncertainty, as measured by the degree of imprecision in our model.

Speci�cally, our results suggest that consumers perceive a substantial degree of post-scare

uncertainty (posterior degree of imprecision exceeding 14% in the baseline case), and that

that degree of imprecision uniformly increases as the prior probability of a food scare declines.

Because we conjecture that the prior probability of a food scare was likely quite low, we also

conjecture that our results may understate the true degree of posterior imprecision that

consumers faced.
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6 Appendix A

Conditional Preference Functionals:

Let the posterior probability of event � conditional on the observation of signal � for

probability matrix P be denoted by ��j�:Denote the sets of posterior probability distributions

over � conditional on the realization of signals N and S by

�N �

24 �bjN
�gjN

35 =
24 pNb

pNb +p
N
g

pNg
pNb +p

N
g

35 and

�S �

8<:
24 �bjS
�gjS

35 :
24 �bjS
�gjS

35 =
24 pSb +"

pSb +p
S
g

pSg�"
pSb +p

S
g

35 for some " 2 [0; "]

9=; ;
respectively.

The decision-maker�s preference functional conditional on receiving signal � in the be-

ginning of period 1 can be written as

V �(x�1 ; y
�
1 ; x

N j�
2 ; y

N j�
2 ; x

Sj�
2 ; y

Sj�
2 ;x0)

� min�e�bj�; 1� e�bj�� 2 ���
�bjN ; 1� �bjN

�
2 �N�

�bjS; 1� �bjS
�
2 �S

26666666666666664

�
�e�bj� exp [�x0]� �1� e�bj�� exp �� �x�1 � �x0��+ y�1�

+�

0BBBBBBBBBBBB@

�N

26664
��bjN exp

�

�
�x�1 + �

2x0
��

�
�
1� �bjN

�
exp

h
�
�
x
N j�
2 � �x�1 � �2x0

�i
+y

N j�
2

37775

+
�
1� �N

�
26664

��bjS exp
�

�
�x�1 + �

2x0
��

�
�
1� �bjS

�
exp

h
�
�
x
Sj�
2 � �x�1 � �2x0

�i
+y

Sj�
2

37775

1CCCCCCCCCCCCA

37777777777777775
where � 2 (0; 1) denotes the discount factor.

Using (1), (2), (3) and condition
P

�2�
P

�2� p
�
� = 1, the objective function conditional

on receiving signal S in period 1 can be written as (4). Similarly, the objective function

conditional on receiving signal N in period 1 can be written as
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V N(xN1 ; x
N jN
2 ; x

SjN
2 ) = �exp(�x0)

pNb + p
N
g

�
pNb + p

N
g exp

�
�xN1

�	
+ I1 � q1xN1

+�

8>>><>>>:
� exp

�

�
�xS1 + �

2x0
��0@ pNb + (1� pSb � pSg � pNb ) exp

�
�xN jN2

�
+
�
pSb + "

�
+
�
pSg � "

�
exp

�
�xSjN2

�
1A

+I2 � q2
�
x
N jN
2 +

�
pSb + p

S
g

�
(x
SjN
2 � xN jN2 )

�
9>>>=>>>; :

7 Appendix B

Proof of Proposition 1: The proof relies on the curvature properties of the conditional

preference functional which are stated and proved in the following two lemmas:

Lemma 4 V � is strictly concave in (x�1 ; x
N j�
2 ; x

Sj�
2 ) for all � 2 fN;Sg:

Proof. The �rst-order derivatives of V S with respect to the choice variables are given

by

dV S

dxS1
=


�
pSg � "

�
exp(�(xS1 � �x0))
pSb + p

S
g

� q1 (5)

��� exp
�

�
�xS1 + �

2x0
��0@ �

pNb + p
S
b + "

�
+ (1� pSb � pSg � pNb ) exp

�
�xN jS2

�
+
�
pSg � "

�
exp

�
�xSjS2

�
1A ;

dV S

dx
N jS
2

= �
n
(1� pSb � pSg � pNb ) exp

h
�
�
x
N jS
2 � �xS1 � �2x0

�i
� q2

�
1� pSb � pSg

�o
; (6)

dV S

dx
SjS
2

= �
n

�
pSg � "

�
exp

h
�
�
x
SjS
2 � �xS1 � �2x0

�i
� q2

�
pSb + p

S
g

�o
: (7)

The second-order derivatives of V S with respect to the choice variables are given by:

@2V S

@ (xS1 )
2 = �

2
�
pSg � "

�
exp(�(xS1 � �x0))
pSb + p

S
g

(8)

�� (�)2 exp
�

�
�xS1 + �

2x0
��0@ pNb + p

S
b + "+ (1� pSb � pSg � pNb ) exp

�
�xN jS2

�
+
�
pSg � "

�
exp

�
�xSjS2

�
1A < 0;

@2V S

@
�
x
N jS
2

�2 = ��2(1� pSb � pSg � pNb ) exp h� �xN jS2 � �xS1 � �2x0
�i
< 0; (9)
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@2V S

@
�
x
SjS
2

�2 = ��2 �pSg � "� exp h� �xSjS2 � �xS1 � �2x0
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@2V S
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�
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@2V S

@x
SjS
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= 0; (13)

The Hessian matrix is given by H �

2666664
@2V S

@(xS1 )
2

@2V S

@xS1 @x
NjS
2

@2V S

@xS1 @x
SjS
2

@2V S

@xS1 @x
NjS
2

@2V S

@
�
x
NjS
2

�2 @2V S

@x
NjS
2 @x

SjS
2

@2V S

@xS1 @x
SjS
2

@2V S

@x
NjS
2 @x

SjS
2

@2V S

@
�
x
SjS
2

�2

3777775 : One can verify
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(8), (9), (10), (14) and (15) imply that V S is strictly concave in (xS1 ; x
N jS
2 ; x

SjS
2 ): Thus, when

pSg > "; V
S is strictly concave in (xS1 ; x

N jS
2 ; x

SjS
2 ): Finally, we have omitted the proof of strict

concavity of V N since the derivations are almost identical.

Lemma 5 For all � 2 fN;Sg; V � is supermodular in (x�1 ; x
N j�
2 ; x

Sj�
2 ;�";�q1;�q2):

Proof. Di¤erentiating (5), (6) and (7) with respect to " we obtain
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@2V S
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Di¤erentiating (5), (6) and (7) with respect to q1 and q2 we obtain
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From (11), (12), (13), (16), (17), (18), (19) and (20) it follows that V S is supermodular in

(xS1 ; x
N jS
2 ; x

SjS
2 ;�";�q1;�q2):

From Theorem 2.8.4 in Topkis (1998) and Lemma (5) it follows immediately that the

unique optimum (x�1 ; x
N j�
2 ; x

Sj�
2 ) is strictly decreasing in "; q1 and q2: To prove monotonicity

of the conditional preference functional with respect to parameters x0 and �, we will invoke

the Implicit Function Theorem. Di¤erentiating (5), (6) and (7) with respect to x0 and

evaluating the derivative at the optimal (xS1 ; x
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2 ; x
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2 ) we obtain
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Di¤erentiating (5), (6) and (7) with respect to � and evaluating the derivative at the

optimal (xS1 ; x
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From the implicit function theorem we have
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where detH is given by (14), the second-order derivatives with respect to choice variables

are given by (8), (9), (10), (11), (12), and (13), and @2V S
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2 @x0
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and @2V S
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8 Appendix C

Proof of Proposition 2: Evaluating (5), (6) and (7) at the optimal (xN1 ; x
N jN
2 ; x
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2 ); i.e.

at the solution to dV N
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Strict concavity of V S and V N combined with (26) and (27) imply (xN1 ; x
N jN
2 ; x

SjN
2 ) >

(xS1 ; x
N jS
2 ; x

SjS
2 ):�

9 Appendix D

Proof for a threshold level of �": Using " = pSg ; (5), (6) and (7) can be re-written as
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N jS
2

= �
n
(1� pSb � pSg � pNb ) exp

h
�
�
x
N jS
2 � �xS1 � �2x0

�i
� q2

�
1� pSb � pSg

�o
;

(29)

dV S

dx
SjS
2

= ��q2
�
pSb + p

S
g

�
< 0: (30)

Continuity of V S in " and (28) and (30) imply existence of a threshold level such that,

for all values of " exceeding the threshold, xS1 = 0 and x
SjS
2 = 0: The expression for xN jS2 in

the text is obtained by equalizing (29) to zero and solving for xN jS2 .�

10 Appendix E

Proof of Proposition 3: Consider the di¤erence between the largest and the smallest

probability of event � 2 fb; gg conditional on S

max
"2[0;"]

pS� + "

pSb + p
S
g

� min
"2[0;"]

pS� + "

pSb + p
S
g

=
"

pSb + p
S
g

;

where the maximum and the minimum are taken with respect to the set of posterior

probabilities. According to Dow and Werlang (1992), this expression de�nes the (pos-

terior) degree of uncertainty associated with event �.

Note that " is the smallest permissible (by conditions imposed on�) value of probability
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of signal S: We have that lim
(pSb +pSg )#"

"
pSb +p

S
g
= 1: That is, as probability of S gets arbi-

trarily close from above to "; the posterior degree of uncertainty associated with both

b and g tends to 1: Since the degree of uncertainty is equal to the di¤erence between

the upper and the lower probabilities, following a food scare with a su¢ ciently small

probability the range of probabilities of an adverse outcome covers almost the whole

probability segment [0; 1]: Since the decision-maker�s preference functional is contin-

uous in the conditional probabilities, he/she will shun consumption of the hazardous

food.�
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Figure 1: UK Total Domestic Usage of Beef and 
Veal (01/1990 - 12/1989)
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