LOCATION-THEN-PRICE GAMES WITH OUTSIDE GOODS

Gordon Rausser & Leo Simon

June, 2004

Location-then-Price Games

- **Classic problem dating back to Hotelling (1929):**
 - Two firms first choose locations, then prices
 - ★ This is a two-stage, continuum action game
 - Huge, rich literature on this subject; what's left to be done?
 - * big contributions to the literature primarily analytical
 - computers used only as an "unfortunate" adjunct
 - * bias against computational methods is unfortunate
 - two stage, continuum action games are complicated
 - $\circ\,$ quickly hit a wall in terms of what you can do
 - much of the interesting stuff requires computers
 - * Hope to show computers and insight aren't incompatible

Extensions to the literature

We'll explore three, intricately related extensions.

- With some exceptions, lit assumes compulsory purchase
 ★ We'll add an outside good
- With some exceptions, lit ignores income variation
 - ★ We'll consider heterogeneous tastes and income
- Propose an integrated approach to horiz & vert differentiation
 - ★ We'll analyze convex combinations of
 - Hotelling (1929) horizontal model
 - Mussa and Rosen (1986) vertical model

The Hotelling model

The problem that Hotelling posed

- Consumers are located along the unit interval
 - ★ Hotelling assumed a uniform distribution
- Two firms choose a location in this interval
- Once locations are fixed, firms set prices.
- Each consumer buys exactly one unit from some firm
 ★ choice depends on prices and transportation cost

Hotelling as Horizontal differentiation

Natural to treat location as an hedonic attribute.

- E.g., choice of a wine variety
 - * 0 represents Napa Valley Chardonnay
 - * 1 represents Carneros Sauvingnon Blanc.
 - \star in the middle:
 - North Coast Chardonnay
 - North Coast Sauvignon Blanc.
- Looking forward, need an outside good as well:
 - ★ differentiated wine vs beer
 - ★ differentiated private schools vs public school
 - ★ differentiated cars vs public transportation

- Consumer's location is his ideal variety
- Willingness to pay declines quadratically
- Transportation cost notion reinterpreted:
 - * preferences single-peaked in attribute space
 - * consumer may buy cheaper, less preferred variety
- Key feature: preferences ideosyncratic
 - ★ no attribute "better" than any other
 - ★ ordinal rankings purely subjective
 - some drink Chardonnay, others Sav Blanc
- No notion of quality in this model
 - * Obviously a huge limitation for practical applications

The Hotelling Specification

Consumer *z* **gets utility** $h_{i,z}$ **from buying product** *i***:**

$$[H^*] \qquad h_{i,z}(x_i, \theta_z, \mathbf{p}) = C - t(x_i - \theta_z)^2 - p_i$$

- x_i is the location of firm i, i = 1, 2
- p_i is the price of good i
- θ_z is consumer *z*'s ideal location
- *t* is the steepness of single peaked preferences
- *C* is because negative utility is such a depressing idea
- w.l.o.g, $x_2 \ge x_1$.

Consumers are distributed on $[\underline{\vartheta}, \overline{\vartheta}]$ according to pdf f.

• the marginal consumer is defined by the condition

$$t(x_1 - \tilde{\theta}(\mathbf{x}, \mathbf{p}))^2 + p_1 = t(x_2 - \tilde{\theta}(\mathbf{x}, \mathbf{p}))^2 + p_2$$

so that $\tilde{\theta}(\mathbf{x}, \mathbf{p}) = \frac{t(x_2^2 - x_1^2) + (p_2 - p_1)}{2t(x_2 - x_1)}$

- market shares are then given by:
 - \star consumers in $[\underline{\vartheta}, \tilde{\theta}(x, p)]$ buy from #1
 - \star consumers in $[\tilde{\theta}(x,p),\bar{\vartheta}]$ buy from #2

Two-stage version of this model quite well understood.

- Anderson, Goeree and Ramer (1997) is a wonderful paper
 - * Good news &/or bad news: solns easy to characterize
 - \star everything determined shape of f at the median
 - only the marginal consumer matters
 - \star the basic tension:
 - moving closer gains market share
 - moving closer intensifies price competition
 - ★ in equilibrium, these forces are balanced

The tension is illustrated by the figure below

In the left panel

- \star a unit drop in *i*'s price shifts the marg consumer left
- * gain in market share is the blue tile
- In the right panel
 - \star same change in *i*'s price gains a smaller tile

★ incentive to compete by price mitigated

• Hence the "principle of maximal differentiation"

Pure vertical differentiation

At the other end of the product differentiation spectrum:

- Ordinal rankings are purely objective
 - * the only distinction between products is quality
 - ★ everybody prefers more quality to less
 - * at equal prices, one firm would supply the entire market
- Most cited specification is Mussa and Rosen (1986)

$$[V^*] v_z(x_i, \theta_z, \mathbf{p}) = C + 2tx_i\theta_z - p_i$$

θ_z measures intensity of z's preference for quality
 * "discerning" consumers have high θ's

Melding the two frameworks

Both are extreme representations of product differentiation

- Preferences aren't purely ideosyncratic
- Nor are they purely objective
 - * Some prefer red wine to white, others the reverse
 - * But (virtually) everybody prefers Silver Oak to Gallo
- Natural first step: represent products in two dimensions
 - * horizontal characteristic viewed ideosyncratically
 - ★ vertical characteristic represents quality
- To my knowledge, this approach hasn't been explored

A rude shock

Cremer and Thisse (1991): $[H^*]$ can be rewritten as $[V^*]$!

• Let all firms produce at constant marginal cost;

 \star In $[H^*]$ let this cost be zero

★ In $[V^*]$, assume marg cost for *i* is tx_i^2 .

• Firms' strategic variable is markup m_i

* in
$$[H^*]$$
, $m_i = p_i$.

* in
$$[V^*]$$
, $m_i = p_i - tx_i^2$.

Now rewrite utility specs above as

 $\begin{bmatrix} H^* \end{bmatrix} \quad h_{i,z}(x_i, \theta_z, \mathbf{m}) = C + 2tx_i\theta_z - tx_i^2 - m_i - t\theta_z^2$ $\begin{bmatrix} V^* \end{bmatrix} \quad v_{i,z}(x_i, \theta_z, \mathbf{m}) = C + 2tx_i\theta_z - tx_i^2 - m_i$

 $\begin{bmatrix} H^* \end{bmatrix} \quad h_{i,z}(x_i, \theta_z, \mathbf{m}) = C + 2tx_i\theta_z - tx_i^2 - m_i - t\theta_z^2$ $\begin{bmatrix} V^* \end{bmatrix} \quad v_{i,z}(x_i, \theta_z, \mathbf{m}) = C + 2tx_i\theta_z - tx_i^2 - m_i$

- h and v differ only by the constant $t\theta_z^2$
 - \star the difference has no impact on *z*'s ordinal rankings.
- Interpretation: in the vertical model, z buys $x_2 > x_1$ iff $\star z$'s quality preference intense enough to offset cost diff
- Cremer and Thisse conclude:

"...the distinction between vertical and horizontal differentiation appears to be merely a matter of interpretation. Formally speaking the Hotelling-type model and the corresponding vertical product differentiation model are equivalent" (p. 384)

The Equivalence Evaporates

$$[H^*] \quad h_{i,z}(x_i, \theta_z, \mathbf{m}) \quad = \quad C + 2tx_i\theta_z - tx_i^2 - m_i - t\theta_z^2$$

 $\begin{bmatrix} V^* \end{bmatrix} \quad v_{i,z}(x_i, \theta_z, \mathbf{m}) \quad = \quad C + 2tx_i\theta_z - tx_i^2 - m_i$

- This result has been widely cited
 - ★ Nobody seems to have commented on its limitation
 - * Add an outside good and the constant term matters!
- Add a participation constraint to both models:

* z buys one unit iff $\max_i h_{i,z}$ (or $\max_i v_{i,z}$) ≥ 0 .

The set of active participants is quite different: as C _:
 ★ In [H*], consumers on periphery drop out first
 ★ In [V*], consumers with low θ's drop out first

Our Model

Our model extends the literature in three ways

- Move smoothly between the vertical & horizontal extremes
- Consumers have heterogeneous income levels
- Consumers can purchase neither product
 - * (Anderson et al. (1992) also has a no-purchase option.
 - * They study a probabilistic choice model:
 - * Consumer located at θ purchases good *i* with prob

$$F_i(\theta) = \frac{\exp([-p_i - t|x_i - \theta|]/\mu)}{\exp(V/\mu) + \sum_{\kappa=1}^2 \exp([-p_\kappa - t|x_\kappa - \theta|]/\mu)}$$

* This approach is too "reduced form" for our tastes)

• Utility specification in our model:

$$RS^*] \quad u_{i,z}(x_i, \theta_z, \mathbf{m}) = C + 2tx_i\theta_z - tx_i^2 - m_i + y_i \\ - t\left(\beta\theta_z^2 + (1-\beta)E\theta^2\right)$$

• Cf. [H*] and a slightly modified [V*]

$$[H^*] \quad h_{i,z}(x_i, \theta_z, \mathbf{m}) = C + 2tx_i\theta_z - tx_i^2 - m_i - t\theta_z^2$$

$$\begin{bmatrix} V^* \end{bmatrix} \quad v_{i,z}(x_i, \theta_z, \mathbf{m}) \quad = \quad C + 2tx_i\theta_z - tx_i^2 - m_i - tE\theta^2$$

- The differences:
 - \star The income term y_i has been added
 - \star The addition to $[V^*]$ is independent of everything

★ As $0 \leftarrow \beta \rightarrow 1$, move from $[H^*]$ to $[V^*]$

 \circ β only affects the set of buyers who participate.

• Consumer participates iff $\max_i u_{i,z}(x_i, \theta_z, \mathbf{m}) \geq \alpha y_z$.

 \star As α increases, participation constraint tightens

- Distribution of consumers is truncated bivariate normal
 - * support of y_z is $[y, \bar{y}]$
 - * support of θ_z is $[\overline{\theta}, \overline{\theta}]$
 - * mean of distribution is (μ_{θ}, μ_{v})
 - * variance of distribution is $\Sigma(\beta) = \begin{vmatrix} \sigma_{\theta} & \beta \rho \\ \beta \rho & \sigma_{y} \end{vmatrix}$

- $\rho > 0$ proxies diminishing marginal utility of income
 - * Our primitive taste parameter is independent of income
 - * But $\frac{d^2 u}{dv^2} < 0$ implies richer folk pay more for quality

Computation and Smoothing

We nest Matlab's solution engine, fmincon

- This requires a lot of smoothness
 - \star Everything has to be \mathbb{C}^3 at least
- But the problem as posed isn't even \mathbb{C}^1 :
 - * integration bounds can change abruptly
 - * so derivative based solution engines can't work.
- We move smoothly between regions using logistic weights
 - ★ each integration region is smooth w.r.t. our variables
 - ★ logistic weights change smoothly
 - \star so solns to a perturbed version of $[RS^*]$ are obtainable.

Properties of the Model

The role of participation constraints

- Much more going on now than in the familiar version
 - ★ pressure to maximally differentiate as usual

centrifugal force

 \star as firms spread out they lose consumers in middle

creates countervailing centripetal force

- effectively, we'll be studying three-firm competition
 - ***** intensive margin: compete against other diff product
 - * extensive margin: compete against outside good
- additional richness means problem is harder to solve

* hopeless to try for analytic solutions

Market regions in equilibrium with loose part. constr.

- The black dotted box is the space of consumers
 - ★ Tastes & firm locations on horizontal axis
 - \star Income is on the vertical axis

Market regions in equilibrium with tight part. constr.

- Note that firms have moved in towards the center
 - ★ participation as expected is lower
 - * but constraints now bind on the outside. Why?

Market regions out of equilibrium with tight part. constr.

- Firms are located exactly at mid-point between edges
 - * participation drops off symmetrically at edges
 - * at this point, centripital force dominates. Why?
 - * two factors; one's obvious; the other subtle

Comparative Statics

What happens as we go from horiz to vertical competition?

• We increase β , comparing loose & tight constraints

References

Anderson, Simon P., A de Palma, and Gap-Seon Hong, "Firm Mobility and Location Eq librium," *Canadian Journal of Economics*, 1992, 25, 76–88.

- _____, J Goeree, and Roald Ramer, "Location, Location, Location," *Journal of Economic Theory*, 1997, 77, 102–127.
- Cremer, H. and J.-F. Thisse, "Location Models of Horizontal Differentiation: a Special Ca of Vertical Differentiation," *Journal of Industrial Economics*, 1991, *39*, 383–390.

Hotelling, H., "Stability in Competition," *Economic Journal*, 1929, 39, 41–57.

Mussa, M. and S. Rosen, "Monopoly and Product Quality," *Journal of Economic Theory*, 198 18, 301–317.