Predatory accommodation in vertical contracting with externalities

Philippe Bontems
University of Toulouse (INRA, IDEI)
Zohra Bouamra-Mechemache
University of Toulouse (INRA)

- #Predatory pricing may cause injury to competition (Robinson-Patman Act)
- **However, Marx & Shaffer 1999 offer a contrasted view
- ****BCP** without exclusion and may be welfare improving (predatory accommodation)
- **Assumptions: sequential bargaining between 2 manufacturers and a common retailer, public contracts

- #Predatory accommodation: the first Manufacturer and the retailer jointly benefit from the presence of the second manufacturer
- #Here, simultaneous bargaining with externalities between manufacturers (oligopsonistic interaction on an upstream input market)
- #similar consequences: BMCP

- #Framework consistent with some stylized facts from Food Industry
- Eliterature on oligopsonistic interaction between processors (Chen & Lent (1992), Wann & Sexton (1992), Alston & alii (1997), Hamilton & Sunding (1998), Hamilton (2002))

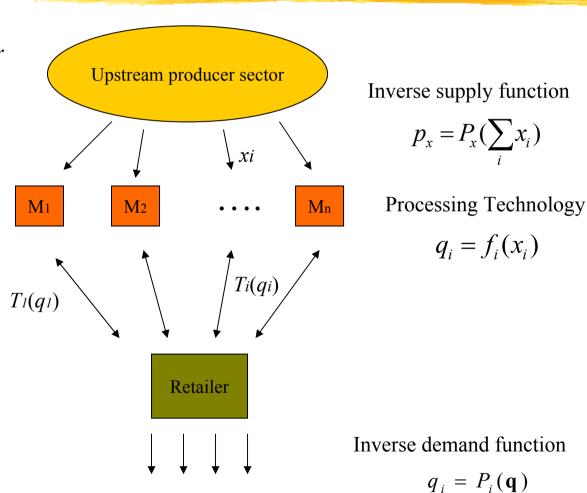
- #This paper: introduces oligopoly interaction with an imperfectly competitive retail sector
- #Extreme case: monopolist retailer
- **#**Simultaneous bargaining game between n Manufacturers and a common retailer
- ***Extension of M&S in presence of** externalities

The model

Competitive Agricultural Sector Homogenous product

n Manufacturers
Oligopoly and oligopsony
Differentiated products

Retailer
Monopoly and monopsony



Final demand

Cost function

Oligopsonistic competition implies negative cost externalities:

$$\partial C_i / \partial q_j > 0$$

Procurement cost depends on the other manufacturers' purchases:

$$C_i(\mathbf{q}) = \left[P_x(\sum_i f_i^{-1}(q_i)) \right] f_i^{-1}(q_i)$$

Main assumptions

A1 : R(q) is continuous, twice differentiable and concave,

A2: $C_i(\mathbf{q})$ is continuous, twice differentiable and convex, $\forall i = 1, ..., n$,

A3 : There are gains from trading all goods, i.e. $\exists \mathbf{q} \in \Re^n_+$ such that $R(\mathbf{q}) - \sum_i C_i(\mathbf{q}) > 0$

where $R(\mathbf{q})$ is the revenue function

$$R(\mathbf{q}) = \sum_{i} P_i(\mathbf{q}) q_i$$

Profits

****Manufacturer profits**

$$\pi^i = T_i - C_i(\mathbf{q})$$

****Retailer profit**

$$\pi^R = R(\mathbf{q}) - \sum_i T_i$$

Bargaining over contracts

Timing:

- 1. Retailer negotiates a contract $T_i(q_i)$ with each M_i simultaneously
- 2. Manufacturers compete to buy the raw product and process the goods
- 3. The retailer resells the differentiated goods to final consumers
- # Focus on equilibria where all products are sold

****** Assumptions:

- 1. Bargaining between R and M_i maximizes joint profit, taking as given all other contracts
- 2. Each player earns its disagreement payoff plus a share of the incremental gain to trade (with proportion λ_i to M_i)

Simultaneous bargaining

- #Multiple equilibria in contracts
- **#Restriction to two-parts tariffs**

$$T_i(q_i) = \begin{cases} w_i q_i - F_i, & q_i > 0 \\ 0, & q_i = 0 \end{cases}, \forall i = 1...n$$

#Joint profit of M_i and R:

$$\Pi^{i} = \sum_{i} \left[P_{i}(\mathbf{q}) q_{i} \right] - C_{i}(\mathbf{q}) - \sum_{j \neq i} T_{j}$$

Simultaneous bargaining 2

Retailing stage:

$$\mathbf{q}(\mathbf{w}) \in \arg\max_{q_1,\dots,q_n} \pi^R = \sum_i \left[(P_i(\mathbf{q}) - w_i)q_i + F_i \right]$$

#Bargaining stage:

$$\max_{w_i} \Pi^i = P_i(\mathbf{q}(\mathbf{w}))q_i(\mathbf{w}) - C_i(\mathbf{q}(\mathbf{w})) + \sum_{j \neq i} \left[(P_j(\mathbf{q}(\mathbf{w})) - w_j)q_j(\mathbf{w}) + F_j \right]$$

Proposition 1 In a simultaneous bilateral bargaining equilibrium with two-parts tariffs, wholesale prices are given implicitly by

$$w_i - \frac{\partial C_i}{\partial q_i} = \sum_{j \neq i} \gamma_{ji} \frac{\partial C_i}{\partial q_j}, \quad \forall i = 1, ..., n.$$
 (5)

where $\gamma_{ji} = \frac{\partial q_j}{\partial w_i} / \frac{\partial q_i}{\partial w_i}$ with $|\gamma_{ji}| \in [0,1]$. Moreover, if products are imperfect substitutes (complements), then wholesale price is below (above) marginal cost $(w_i - \frac{\partial C_i}{\partial q_i} < (>)0, \forall i)$.

- Intuition: decreasing w_i amounts to decrease rivals' quantities and hence its own procurement cost
 reducing its own cost » strategy
- ****** Cost externalities irrelevant if independent demands
- **#** More compelling when products are less differentiated
- **Assuming symmetry, below average cost pricing (with substitutes) iff there is few differentiation

$$1 + \sum_{j \neq i} \gamma_{ji} < 0$$

Proposition 2 In a simultaneous bilateral bargaining equilibrium with two-parts tariffs, joint

profit of all manufacturers and the retailer is not maximized.

Optimal internal price for the integrated structure:

$$w_i = \sum_j \frac{\partial C_j}{\partial q_i}$$

Proposition 3 In a simultaneous bilateral bargaining equilibrium with two-parts tariffs, the

equilibrium payoff to manufacturer M_i , for any i, is:

Scale effect

$$\pi^i = \lambda_i \left[\Pi - \Pi_{-i} - \Delta_{-i} \right]$$

while the equilibrium payoff to the retailer is:

Equilibrium joint profit without Mi

$$\pi^{R} = \left(1 - \sum_{i} \lambda_{i}\right) \Pi + \sum_{i} \lambda_{i} \Pi_{-i} + \sum_{i} \lambda_{i} \Delta_{-i}$$
 Equilibrium joint profit with Mi

where $\Delta_{-i} = \sum_{j \neq i} [w_j q_j - C_j(\mathbf{q})] - \sum_{j \neq i} [w_j \hat{q}_j - C_j(\hat{\mathbf{q}}_{-i})].$

Optimal fee

$$F_i = \left[w_i - \frac{C_i(\mathbf{q})}{q_i} \right] q_i - \lambda_i \left[\Pi - \Pi_{-i} - \Delta_{-i} \right]$$

 \Re If the retailer has all the bargaining power $(\lambda_i=0)$ and if w_i is between MC and AC, then $F_i>0$

Sequential Bargaining

- ***Extension of Marx and Shaffer (1999) to** the presence of externalities
- **#2** manufacturers negotiate sequentially with the retailer
- **₩**M₁ is the first to negotiate
- #Proposition 1 obviously applies to M₂

$$w_2^* = \frac{\partial C_2}{\partial q_2} + \gamma_{12} \frac{\partial C_2}{\partial q_1}$$

Sequential bargaining 2

\mathbb{H} Optimal contract for M_1 :

Proposition 4 At the equilibrium with sequential bilateral negotiations, the wholesale price

for M_1 is given by:

Internalization effect

Marx and Shaffer's rent shifting effect

$$w_1^* - \frac{\partial C_1}{\partial q_1} = (1 - \lambda_2)(1 - \eta)\frac{\partial C_2}{\partial q_1} + \gamma_{21}\frac{\partial C_1}{\partial q_2} - \frac{\lambda_2}{\frac{\partial q_1}{\partial w_1}}(q_1^* - \hat{q}_1)$$
(13)

where
$$\gamma_{ji} = \frac{\partial q_j}{\partial w_i} / \frac{\partial q_i}{\partial w_i}$$
 and $\eta = \gamma_{21} \gamma_{12}$.

« Reducing its own cost » effect

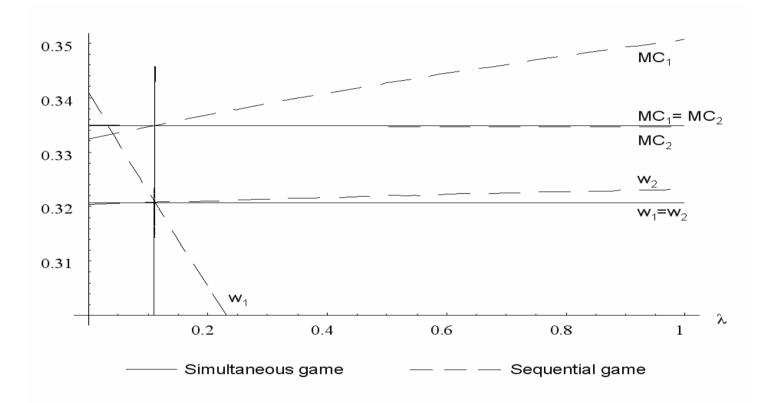
Sequential bargaining 3

pprox M&S rent-shifting effect: non positive if substitutes $q_{
m l}^* < \hat{q}$

Increase in retailer disagreement payoff with M_2 But also increase joint profit with M_2 that weakens bargaining position of R First effect dominates as long as $\lambda_2 > 0$

- -> below marginal cost pricing
- \mathbb{H} Internalization effect is non negative -> above marginal cost pricing Incentives to partially internalize the negative externality of q_1 on C_2
- ★ One effect towards AMCP

Wholesale pricing



For M_1 , for low λ internalization effect overcomes the two other effects (rent-shifting and cost reduction)

For high values, the rent shifting effect becomes dominant and BMCP appears

Surplus analysis

Simultaneous bargaining BMCP may be welfare improving compared to MCP

For instance,

Proposition 5 Assume that n = 2. Consider (symmetric) linear demand functions, $P_i(q_i, q_j) = \alpha - q_i - \nu q_j$ where $0 \le \nu \le 1$ as well as a linear supply function $P_x = \delta + \phi(x_i + x_j)$. In addition, consider a Leontieff (constant return to scale) technology where $q_i = kx_i$. Then, below marginal cost pricing is always welfare improving compared to marginal cost pricing.

Surplus analysis with simultaneous bargaining

TABLE 1: Comparisons between below-cost pricing, marginal cost pricing and integrated

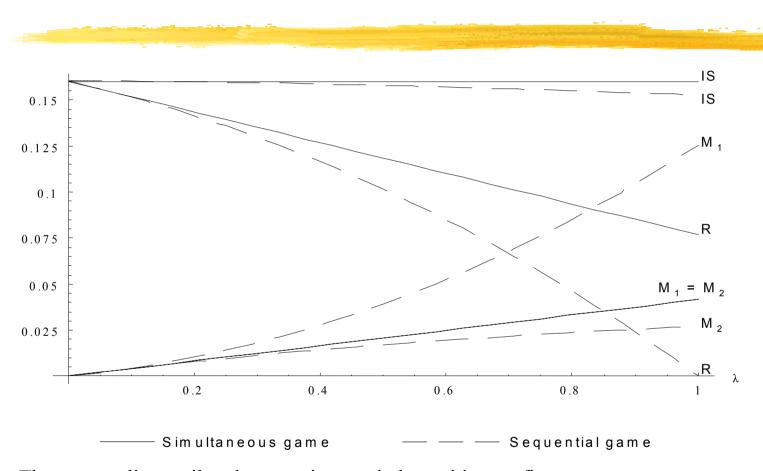
vertical structure

	MCP	BMCP*	IVSP*
PS	0.0123	+4.06%	-7.32%
IS	0.1605	-0.19%	+0.12%
CS	0.0494	+3.85%	-7.08%
W	0.2222	+0.95%	-1.85%
$(w_i - \frac{\partial C_i}{\partial q_i})/w_i$	0.00%*	-4.41%**	+7.50%**
Average cost	0.3055	+0.36%	-4.12%
w_i	0.3333	-3.75%	+7.14%
P_i	0.6666	-0.93%	+1.80%

^{*:} These values are in percentage of MCP. **: These percentages indicate the value of ratios.

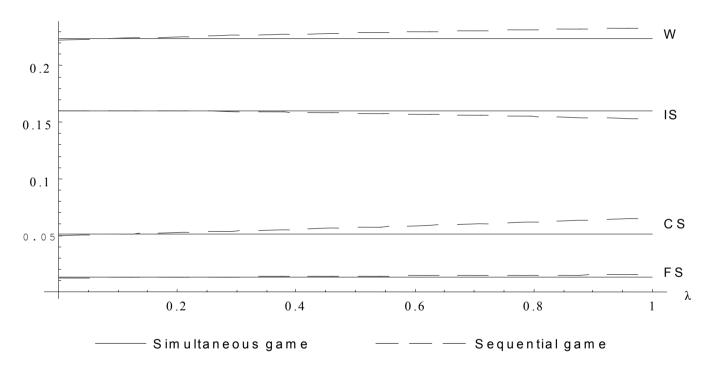
Surplus analysis

Balanced case: $\lambda = \lambda_1 = \lambda_2$



The monopolist retailer always gains a strictly positive profit. In the sequential game, the industry surplus decreases. Being the first to negotiate is preferred by both manufacturers. The retailer would most often play a simultaneous game

Surplus analysis 2



Consumers and upstream producers benefit from a strong bargaining power for manufacturers (increasing competition effect leads to increase in input price but low final price for product 1 which overcomes increase in product 2 price)

A strong bargaining power for the retailer implies a higher size of industry surplus Overall, welfare increases with manufacturers' bargaining power

An unbalanced case

TABLE 3: Market equilibrium, profits and welfare in the unbalanced case

$\lambda_1 = 1, \lambda_2 = 0$	PS	IS	CS	W	π^R	π^1	π^2
Simultaneous game	1.28	16.02	5.13	22.42	11.85	4.17	0
Sequential game with M_1 first	-3.1%	0.1%	-2.7%	-0.7%	5.5%	-15.3%	ó -
Sequential game with M_2 first	19.5%	-4.6%	27.1%	4.1%	6.1%	-35.0%	ć -
$\lambda_1 = 1, \lambda_2 = 0$	$\frac{(w_1-MC_1)}{w_1}$	$\frac{(w_2-1)}{w}$	_	w_1	w_2	P_1	P_2
Simultaneous game	-4.4%	-4.4	1%	32.08	32.08	66.04	66.04
Sequential game with M_1 first	2.5%	-4.6	5%	6.3%	-0.1%	1.5%	-0.03%
Sequential game with M_2 first	-3.5%	-80.	5%	0.7% -	-39.4%	0.2%	-9.6%

The retailer would prefer to negotiate with M₂ first (internalization effect disappears while rentshifting effect is maximal)

M₁ would prefer simultaneous bargaining while retailer would prefer sequential bargaining

Conclusion

- #Oligopsonistic behaviour and bargaining over contracts with a monopolist retailer
- BMCP as a rule in the substitute case and may be welfare improving
- #Inefficiency result for the industry
- Degree of inefficiency depends on the form of contracts
- #Extension of M&S in the sequential case

Extensions

- ****** Comparative statics: in progress
- Transmission of shocks at the upstream level, processing level and demand level on prices and surplus sharing
- **#** More general contracts:
- Non linear pricing, market share contracts
- # More than one retailer: in progress
- Links with multiprincipals-multiagents literature