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1 Introduction

How much should a government invest in public infrastructure? How much in basic re-

search? Or recently heavily debated: How much CO2 should be mitigated? All these

decision problems exhibit two characteristics: A classical public good problem and an

intergenerational equity problem. Economists would agree that the public good prob-

lem should be solved by internalizing the externalities, for example, via a Pigouvian

tax. However, as in long-run decision problems stocks, such as stocks of pollutants or

knowledge, are affected which, in turn, will influence the well-being of later generations,

it is not clear how high the respective tax should be. This, of course, depends on the

planner’s objective and, in particular, on the weight attached to the utility of future

generations. Most of the times the planner is supposed to maximize the utility of an

infinitely lived agent which is interpreted as the sum of the utilities of the present and

all future generations, but there is an ongoing dispute about the right social rate of

time preference. The discussion finds its extreme positions in the normative approaches

of early authors, for example, Fisher (1930), Pigou (1920), Ramsey (1928), respectively

in the recent climate change debate of Cline (1992) and Stern (2007), who argue for

low social time preference rates on ethical grounds, and in the positive approach by, for

example, Manne et al. (1995) and Nordhaus (2007), who hold that social preferences are

reflected by market outcomes.

This paper argues that the discussion should explicitly consider the life cycles of the

different generations for three reasons: First, from the infinitely lived agent specification,

the underlying assumptions about the time preference rates of individual households

and the social planner cannot be unambiguously deduced. Thus, it may not be clear

whether a supposed positive approach is positive or just an arbitrary normative choice.

Second, the desideratum of a social planner to treat all generations equally possesses two

different aspects: treating all generations alive equally at a each point in time and treating

generations living today equally to those to be born in the future. In particular the first

aspect cannot be captured in an infinitely lived agent framework. Third, the optimal

solution of a social planner maximizing a utilitarian welfare function in an overlapping

generations economy may not be implementable in a market economy via a tax/subsidy

regime. Infinitely lived agent models neglect this fact.

In order to substantiate these claims, we set up a ‘selfish’ overlapping generations econ-

omy in continuous time. To keep the focus on intergenerational equity we abstract from
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any externalities.1 We show analytically under what conditions an overlapping gen-

erations economy is observationally equivalent to a classical Ramsey-Cass-Koopmans

economy. Without an operative bequest motive of the individual households, which is

suggested by a number of empirical studies (e.g., Hurd 1987, Hurd 1989, Laitner and

Ohlsson 2001), no conclusions on intergenerational equity considerations are possible

from observing solely the market interest rate.

We also show that the infinitely lived agent model can be interpreted as an ‘uncon-

strained social planner’ that possesses full power to allocate the resources in order to

maximize a utilitarian social welfare function. That is, the infinitely lived agent’s rate

of time preference reflects the unconstrained social planner’s weights for the different

generations’ utilities. However, in an overlapping generations model without bequests,

this solution would require major redistribution from old to young, at least in the case

where the social time preference is weakly lower than that of the individual households.

In this case, there is a trade off between equality among the generations living at the

same point in time and equality between generations of today and in the future. The

closer is the time preference of the social planner to that of the individuals, the more

equally treated are the generations alive at a given time at the expense of a more unequal

treatment of generations living at different times. Both aspects are only reconciled when

individuals and the social planner exhibit a time preference rate of zero.

The unconstrained social planner’s optimum may be difficult to implement due to the

substantial redistribution requirements. Therefore, we define the problem of a ‘con-

strained social planner’ that is not able to discriminate individual households by age

but can only influence prices. One could think of a democratically legitimized govern-

ment. Our analysis shows that the time preference rate of a Ramsey consumer in the

observationally equivalent infinitely lived agent economy differs from the weight a con-

strained social planner attaches to the different generations’ well-being. This questions

the interpretation of the infinitely lived agent’s objective function as a social welfare

function consisting of the weighted sum of subsequent generations’ utility.

Applying our results to the recent debate on climate change mitigation, we conclude that

intergenerational equity should rather be discussed within an overlapping generations

framework, as the infinitely lived agent model fails to cover important aspects.

There are several papers that examine the relation between infinitely lived agent models

1 This seems justified as the infinitely lived agent models in the climate change discussion calibrate
preference parameters without explicitly considering the externalities the model is applied to.
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and overlapping generations models.

Aiyagari (1985) proved that under certain assumptions the overlapping generations

model with two-period lived individuals is observationally equivalent to an infinitely lived

agent model in discrete time. The equivalence between a Ramsey-Cass-Koopmans econ-

omy and a model with finitely lived consumers in continuous time was also established by

Calvo and Obstfeld (1988). However, their main concern was with time inconsistencies in

fiscal policy arguing that these may arise if a government’s fiscal tools are too limited to

allow it to decentralize the command optimum. Our paper differs from Aiyagari (1985)

in that it derives the equivalence between the Ramsey-Cass-Koopmans economy and

the overlapping generations model in continuous time and provides the explicit mapping

between the two frameworks with respect to the different rates of time preference. In

contrast to Calvo and Obstfeld (1988) our focus is on aspects of intergenerational equity

rather than time inconsistency of policies. In fact, all policies considered in this paper are

time consistent. Two further differences are worth mentioning. First, we literally model

finite life spans of individuals rather than using the specification where each individual

possesses a certain probability of death at each point in time. The important difference

in our context is that the strictly finitely lived selfish individuals would never make an

investment that exceeds their lifetime, whereas the consumer of the “death-probability”-

type would make investments with arbitrarily long gestation periods if the rate of return

is sufficiently high. Second, switching to a discrete time two-period overlapping genera-

tions model, Calvo and Obstfeld (1988) argue that even a constrained planner that is not

able to discriminate transfers by age can implement the command optimum given the

time horizon is infinite rather than finite. We also consider a constrained social planner.

However, our analysis shows that in a continuous time setting with infinite planning

horizon the first best is not implementable implying that Calvo and Obstfeld (1988)’s

result is strongly connected to their discrete-time-Diamond (1965)-setup.

Also in environmental economics applications, such as Howarth (1998), Howarth (2000),

Gerlagh and Keyzer (2001), Gerlagh and van der Zwaan (2000), and Stephan and Müller-

Fürstenberger (1997), it has been observed that infinitely lived agent models can be

calibrated to yield similar outcomes as overlapping generations models. These papers

use numerical simulations of intergrated assessment models, whereas we derive the re-

lation analytically in a continuous time setup, however, without explicitly considering

environmental externalities.

Formally, our overlapping generations model is most closely related to d’Albis (2007) who

examines the influences of demographic structure on capital accumulation and growth.
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In addition to his paper, we allow for exogenous technological change and have a clear

focus on intergenerational equity. More remotely, our paper relates to the literature on

overlapping generations and debt neutrality such as Barro (1974), Blanchard (1985) and

Weil (1989).

The paper is structured as follows. In section 2, we develop the overlapping generations

model in continuous time. We derive conditions for observational equivalence of the

decentralized overlapping generations economy and an infinitely lived agent model in

section 3. In section 4, we examine the relation between the latter and two social planner

solutions, unconstrained and constrained. In Section 5 we apply our results to the recent

debate on climate change mitigation. We conclude in section 6.

2 An Overlapping Generations Growth Model in Continuous

Time

In this section, we present an overlapping generations growth model in continuous time.

The key elements are that we assume each generation to live a finite time span and only

to care for own lifetime consumption. We analyze the long-run individual and aggregate

dynamics of a decentralized economy, assuming market equilibria on all markets at all

times.

2.1 Households

We assume a continuum of households, each living the finite time span T . All house-

holds exhibit the same intertemporal preferences irrespective of their time of birth

s ∈ (−∞,∞). In fact, households maximize their welfare U , which is the discounted

lifetime utility derived from consumption

U(s) =

∫ t

t−T

c(t, s)1−
1
σ

1 − 1
σ

exp
[
−ρH(t− s)

]
dt , (1)

where c(t, s) is the consumption at time t of households born at time s, σ is the constant

intertemporal elasticity of substitution, and ρH is the constant rate of time preference

of the households. At any time alive, each household is endowed with one unit of labor,

which is supplied inelastically to the labor market at wage w(t) over the whole life span
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T . Households can accumulate assets b(t, s), which earn interest r(t). The households’

budget constraint is given by:2

ḃ(t, s) = r(t)b(t, s) + w(t) − c(t, s) , t ∈ [s, s + T ] . (2)

Households are born without assets and are not allowed to be indebted at time of death.

We assume that households are not altruistic and, therefore, do not bequeath assets to

succeeding generations. Thus, the following boundary conditions apply for all generations

s:

b(s, s) = 0 , b(s+ T, s) ≥ 0 . (3)

As intertemporal welfare U of a household born at time s can always be increased by

consumption at time s+T , the latter inequality will hold with equality in the household

optimum.

Maximizing equation (1) subject to conditions (2) and (3) yields the well known Euler

equation

ċ(t, s) = σ
[
r(t) − ρH

]
c(t, s) , t ∈ [s, s+ T ] . (4)

The behavior of a household born at time s is characterized by the system of differential

equations (2) and (4) and the boundary conditions for the asset stock (3).

At any time t ∈ (−∞,∞) the size of the population N(t) increases at the constant rate

ν. Without loss of generality, we normalize the population at time t = 0 to one:

N(t) = exp[νt] . (5)

Due to the finite life span T of each household, equation (5) implies the following birth

rate γ:3

γ =
ν exp[νT ]

exp[νT ] − 1
. (6)

2 Throughout the paper, partial derivatives are denoted by subscripts (e.g., Fk(k, l) = ∂F (k, l)/∂k),
derivatives with respect to time t are denoted by dots and derivatives of functions depending on one
variable only are denoted by primes.

3 The equation is derived by solving
R t

t−T
γ exp[νs] ds = N(t), which states that at time t all households

alive sum up to the population size N(t).
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2.2 Firms

We assume a continuum of identical competitive firms i ∈ [0, 1]. All firms produce a

homogeneous consumption good under conditions of perfect competition from capital

k(t, i) and ‘effective labor’ A(t)l(t, i), where A(t) characterizes the technological level of

the economy and grows exogenously at a constant rate ξ. Without loss of generality, we

normalized technological progress at t = 0 to one:

A(t) = exp[ξt] . (7)

All firms have access to the same production technology F (k(t, i), A(t)l(t, i)), which

exhibits constant returns to scale and positive but decreasing marginal productivity

with respect to both inputs capital and effective labor. Furthermore, F satisfies the

Inada conditions.

Constant returns to scale production and symmetry of the firms allow us to work with

a representative firm, whose decision variables are interpreted as aggregate variables.

Introducing aggregate capital in terms of effective labor

k(t) =

∫ 1
0 k(t, i) di

A(t)
∫ 1
0 l(t, i) di

, (8)

yields the intensive form production function f
(
k(t)

)
= F

(
k(t), 1

)
. Profit maximization

of the representative firm yields for the wage w(t) and the interest rate r(t):

w(t) = A(t)
[
f
(
k(t)

)
− f ′

(
k(t)

)
k(t)

]
, (9a)

r(t) = f ′
(
k(t)

)
. (9b)

2.3 Aggregate Economy and Market Equilibrium

Investigating the aggregate economy, we first introduce aggregate household variables per

effective labor, which are derived by integrating over all living individuals and dividing

by the the technological level and the labor force of the economy according to the scheme

x(t) =

∫ t

t−T
x(t, s)γ exp[νs] ds

A(t)
∫ 1
0 l(t, i) di

, (10)
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where x(t) and x(t, s) denote aggregate per effective labor respectively individual house-

hold variables.

The economy consists of three markets: the labor market, the capital market and the

consumption good market. We assume the economy to be in market equilibrium at all

times t. In particular, this implies that labor demand equals the population size, i.e.,
∫ 1
0 l(t, i) di = N(t), and capital in terms of effective labor equals aggregate assets in

terms of effective labor, i.e., k(t) = b(t).

Then, the dynamics of the aggregate economy is characterized by4

ċ(t) =
{
σ
[
f ′
(
k(t)

)
− ρH

]
− (ν + ξ)

}
c(t) +

γ

exp[ξt]

[

c(t, t) −
c(t, t− T )

exp[νT ]

]

, (11a)

k̇(t) = f
(
k(t)

)
− (ν + ξ)k(t) − c(t) . (11b)

Introducing the definition ∆c(t) = γ
exp[ξt]

[

c(t, t) − c(t,t−T )
exp[νT ]

]

−νc(t), we can rewrite equa-

tion (11a) as

ċ(t)

c(t)
= σ

[
f ′
(
k(t)

)
− ρH

]
− ξ +

∆c(t)

c(t)
. (11c)

We will see later that the term ∆c(t)
c(t) gives the difference between the decentralized over-

lapping generations economy and the observationally equivalent Ramsey type economy.

2.4 Steady State

Our analysis will concentrate on the long-run steady state growth path of the economy, in

which both consumption per effective labor and capital per effective labor are constant

over time, i.e., c(t) = c⋆, k(t) = k⋆.5 Then, from equations (9) follows that also the

interest rate r(t) = r⋆ = f ′(k⋆) is constant in the steady state, and the wage w(t) grows

exponentially at the rate of technological progress. Thus, we can introduce the wage rate

in terms of the technological level, w̃, which is constant in the steady state

w⋆ = w̃(t) = exp[−ξt]w(t) =
[
f(k⋆) − f ′(k⋆)k⋆

]
. (12)

4 Observe that ẋ(t) = −(ν + ξ)x(t) + exp[−(ν + ξ)t]
R t

t−T
ẋ(t, s)g exp[νs] ds + g

h

x(t, t) − x(t,t−T )
exp[(ν+ξ)T ]

i

.
5 d’Albis and Augeraud-Véron (2007) show in a similar overlapping generations model with an AK

production specification that the economy converges oscillatory to a unique steady state.

7



Introducing the constants

φ =
1 − exp[−(r⋆ − ξ)T ]

1 − exp[−(r⋆ − σ(r⋆ − ρ))T ]
, ψ = w⋆φ

r⋆ − σ(r⋆ − ρ)

r⋆ − ξ
> 0 , (13)

we can express the consumption path and wealth of an individual household in terms of

the technological level A(t) to yield:

c̃(t− s) = c⋆(t, s) exp[−ξt] = ψ exp
[(
σ(r⋆ − ρ) − ξ

)
(t− s)

]
, (14a)

b̃(t− s) = b⋆(t, s) exp[−ξt] =
w⋆

r⋆ − ξ

{
φ exp

[(
σ(r⋆ − ρ) − ξ

)
(t− s)

]

+(1 − φ) exp[(r⋆ − ξ)(t− s)] − 1
}
. (14b)

Thus, in the steady states, the individual household variables in terms of the techno-

logical level depend only on the age, t − s, of a household but not on calender time t.

Applying the aggregation rule (10), we derive for the aggregate values per effective labor:

c⋆ = gψ
exp[(σ(r⋆ − ρ) − ν − ξ)T ] − 1

σ(r⋆ − ρ) − ν − ξ
, (15a)

k⋆ =
w⋆

r⋆ − ξ

{

gφ
exp[(σ(r⋆ − ρ) − ν − ξ))T ] − 1

σ(r⋆ − ρ) − ν − ξ)
(15b)

+ g(1 − φ)
exp[(r⋆ − ν − ξ)T ] − 1

r⋆ − ν − ξ
− 1

}

.

As r⋆ = f ′(k⋆) and w⋆ = [f(k⋆) − f ′(k⋆)k⋆], equation (15b) is an implicit equation

for the capital stock per effective unit of labor in the steady state k⋆. The following

proposition elaborates on the solutions of this implicit equation.

Proposition 1 (Existence and uniqueness of the steady state)

There exists a k⋆ > 0 that solves equation (15b) if

lim
k→0

[−kf ′′(k)] >
1

σT
. (16a)
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Figure 1: Steady state paths of consumption (left) and asset (right) for individual house-
holds in terms of the technological level of the economy.

k⋆ is unique if

s(k) ≤ ζ(k) and
d

dk

(
s(k)

ζ(k)

)

≥ 0 ,where (16b)

s(k) =
kf ′(k)

f(k)
(share of capital in output)

ζ(k) =
−f ′(k)[1 − s(k)]

kf ′′(k)
(elasticity of substitution betw. capital and labor).

The proof is given in the appendix.

For the remainder of this paper we assume conditions (16b) to hold. Although we cannot

solve the implicit equation (15b) analytically and, therefore, cannot calculate the steady

state interest rate r⋆, we can give a lower bound as the following proposition states.

Proposition 2 (Lower bound of steady state interest rate)

If there exists a k⋆ > 0, then

f ′(k⋆) = r⋆ > ρ+
ξ

σ
(17)

The proof can be found in the appendix.

To illustrate the dynamics of the decentralized overlapping generations economy in the

steady state, Figure 1 shows steady state paths for individual consumption and assets in
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terms of the technological level of the economy.6 The individual consumption path grows

exponentially over the lifetime of each generation. Individual household assets show an

inverted U shape, i.e., households are born with no assets, accumulate assets in their

youth and consume their wealth towards their death.

3 Decentralized Overlapping Generations Versus Infinitely

Lived Agent Economy

Now, we investigate if and under what conditions the long-run steady state of the de-

centralized overlapping generations economy introduced in the previous section is obser-

vationally equivalent to the long-run steady state of an economy, in which population

growth and the production side of the economy remain unchanged, but an infinitely lived

agent chooses consumption and asset accumulation such as to maximize the intertempo-

ral welfare of a Ramsey dynasty. Before we proceed, we define the term ‘observational

equivalence’.

Definition 1 (Observational Equivalence)

Two economies are observationally equivalent in the long-run steady state if the aggregate

paths per effective labor of both, consumption c(t) and assets b(t), converge to the same

long-run steady state.

We assume that the infinitely lived agent exhibits the same intertemporal elasticity of

substitution σ as the households in the overlapping generations economy, but does not

need to exhibit the same rate of time preference. More formally, we seek the rate of

time preference ρ̄ of the infinitely lived agent such that the aggregate paths per effective

labor of the decentralized overlapping generations economy, c(t) and b(t), as given by the

system of differential equations (11), are identical to the optimal paths of consumption

and assets per effective labor of the infinitely lived agent in the long-run steady state

Defining c̄(t) = exp[ξt]c(t) as the aggregate consumption per capita, the welfare Ū of

the Ramsey dynasty is given by:

Ū =

∫ ∞

0

c̄(t)1−
1
σ

1 − 1
σ

exp[νt] exp[−ρ̄t] dt . (18)

6 The calculations use the following model specifications: f(k) = kα, α = 0.3, ρ = 0.03, σ = 1, ξ = 0.015,
ν = 0, T = 75.
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Again, we assume that all markets clear, and thus the budget constraint equals

k̇(t) = f(k(t)) − (ν + ξ)k(t) − c(t) , (19)

which is identical to (11b).

Maximizing (18) subject to the budget constraint (19) and the transversality condition

lim
t→∞

{

k(t) exp[(ν + ξ)t] exp

[

−

∫ t

0
r(t′)dt′

]}

= 0 , (20)

yields the standard Euler equation for aggregated consumption per effective labor:

ċ(t)

c(t)
= σ

[
r(t) − ρ̄

]
− ξ . (21)

As technology and population growth is identical in both economies, the equation of

motion for the aggregated capital per effective labor is identical in the infinitely lived

agent economy (19) and the decentralized overlapping generations economy (11b). Thus,

the two economies are observationally equivalent in the long-run steady state if the two

Euler equations (21) and (11c) coincide in the steady state. This implies the follow-

ing relationship between the time preference rates ρ of the individual household in the

decentralized overlapping generations economy and ρ̄ of the infinitely lived agent:

ρ̄ = ρ−
1

σ

∆c(t)

c(t)
. (22)

Whether the time preference rate ρ̄ of the infinitely lived agent exceeds that of an

individual household of the decentralized overlapping generations economy ρ depends

on whether ∆c(t)
c(t) is positive or negative. Although we cannot determine the sign of ∆c(t)

c(t)

in general, we can explicitly calculate it in the steady state. The following proposition

gives the result.

Proposition 3 (Equivalence between decentralized OLG and ILA ecnonomy)

The steady state of a decentralized overlapping generations economy is observationally

equivalent to the steady state of an infinitely lived agent economy iff

ρ̄ = r⋆(ρ) −
ξ

σ
> ρ . (23)

Proof: From equations (14a) and (15a) we derive in the steady state ∆c(t)
c(t) = ξ−σ(r⋆−ρ).

Inserting into equation (22) yields the equality of (23). Note that r⋆ in the steady state

11



depends implicitly on the time preference rate ρ of the individual households, as can be

seen from equation (15b). The inequality follows directly from Proposition 2. �

Proposition 3 states that, for the two economies to be observationally equivalent in the

long-run steady state, the rate of time preference ρ̄ of the infinitely lived agent has to be

higher than that of the individual households of the decentralized overlapping generations

economy, ρ. The interpretation is straightforward. Given the same time preference rate

and real interest rate, the net present value of one unit of investment in assets is lower

for the household in the overlapping generations economy than for the infinitely lived

agent, due to the finite lifetime of the former. Thus, for both to invest the same amount

and, therefore, for the interest rate r⋆ to coincide, the rate of time preference ρ of the

individual households in the overlapping generations economy has to be lower than the

time preference rate of the infinitely lived agent ρ̄.

As we cannot solve for r⋆ analytically, we cannot directly determine the spread ∆ρ = ρ̄−ρ

of the time preference rates in the steady state. However, we can analyze how the spread

reacts to a change in the exogenously given parameters. The following proposition gives

the results.

Proposition 4 (Comparative statics of the spread of ∆ρ)

In the observationally equivalent steady state, the following conditions for the spread

∆ρ = ρ̄− ρ of the time preference rates hold:

∂∆ρ

∂ξ
< 0 if ξ <

σ(r⋆ − ρ) + r⋆ − ν

2
, (24a)

or ξ >
σ(r⋆ − ρ) + r⋆ − ν

2
∧ σ(r⋆ − ρ) − ξ − ν > 0 ,

∂∆ρ

∂ν
> 0 , (24b)

∂∆ρ

∂σ
< 0 if ξ = 0 , (24c)

∂∆ρ

∂T
< 0 , (24d)

lim
T→∞

ρ̄ = ρ+
ν

σ
−

1

σ(ξ + ν − σ(r⋆ − ρ))
. (24e)

The proof is given in the appendix.

To give some intuition, recall equation (23). For a given time preference rate of the

individual household, ρ, the spread ∆ρ increases in the interest rate corrected by the
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ratio of the rate of technological progress and the intertemporal elasticity of substitution.

In this way, it is very plausible that a marginal increase of the rate of technological

progress has an ambiguous effect on ∆ρ. On the one hand, the ratio ξ
σ

would increase,

leading to a lower ρ̄ of the infinitely lived agent in the corresponding Ramsey-Cass-

Koopmans economy. On the other hand, the reaction of the interest rate is ambiguous.

Clearly, an increase in ξ would imply a higher marginal productivity of capital, however,

the adjustment of the individuals’ saving rates depends on their preferences, that is,

whether the income or substitution effect prevails. If the substitution effect is strong

enough the interest rate would fall as a consequence of a higher rate of technological

progress and the spread ∆ρ would decline. Proposition 4 states parameter constellations

that are sufficient for this case to occur. With a sufficiently strong income effect, the

interest rate would increase in the rate of technological progress. In this situation no

clear statements are possible with respect to the behavior of ∆ρ without specifying the

production function any further.

Proposition 4 also states that ∆ρ unambiguously increases in the rate of population

growth. The decisive factor is that the young generations which possess little savings

receive a stronger weight relative to the older generations with high amounts of capital.

The amount of capital per effective labor declines and, as a consequence, the interest

rate and ∆ρ increases.

It is also very intuitive that the interest rate decreases with an increase in the elasticity

of intertemporal substitution because with a higher σ, the individual household is more

willing to accept deviations from a uniform pattern of consumption over time. Hence,

the agents would save more leading to a lower interest rate. In this way, the spread ∆ρ

would unambiguously decline if there was no technological progress. If ξ is positive, the

term ξ
σ

, which is decreasing in σ, allows no clear statement with respect to the behavior

of ∆ρ.

Finally, we can say that the finitely lived individuals would increase their savings if they

lived a marginal unit of time longer. Staying with the previously given intuition, the net

present value of investment in assets increases for the overlapping generations household

if its lifetime increases. However, although ∆ρ declines in T , it will not converge to

zero in the limit T → ∞. The reason is that newly born generations in the overlapping

generations economy are constrained in their saving behavior by their income, whereas

in the Ramsey dynasty all the assets are shared equally among the agents alive.7

7 With T = ∞ our overlapping generations economy corresponds to the one presented by Weil (1989).
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4 Utilitarian Overlapping Generations Versus Infinitely Lived

Agent Economy

In this section, we investigate the conditions under which an overlapping generations

economy, governed by a social planner maximizing a social welfare function, is obser-

vationally equivalent to an economy in which an infinitely lived agent decides about

investment and consumption.

We assume a utilitarian social welfare function in which the social planner trades off the

weighted lifetime utility of different generations. The weight consists of two components.

First, the lifetime utility of the generation born at time s is multiplied by its cohort size.

That is, the social planner considers the total lifetime utility of each generation. Second,

the social planner exhibits a social rate of time preference ρS ≥ 0, i.e., the total lifetime

utility of the generation born at time s is discounted at a constant rate.8

We assume a social planner maximizes a utilitarian welfare function, as described above,

from t = 0 onward. Thus, the social welfare function consists of two parts. First, the

weighted intergal of the remaining lifetime utility of all generations which are already

alive at time t = 0 and the weighted integral of all future generations

W =

∫ 0

−T

{
∫ s+T

0

c(t, s)1−
1
σ

1 − 1
σ

exp
[
−ρH(t− s)

]
dt

}

γ exp[νs] exp
[
−ρSs

]
ds

+

∫ ∞

0

{
∫ s+T

s

c(t, s)1−
1
σ

1 − 1
σ

exp
[
−ρH(t− s)

]
dt

}

γ exp[νs] exp
[
−ρSs

]
ds .

(25)

The term in brackets is the (remaining) lifetime utility U(s) of a household born at time

s (cf. equation 1), the functional form of which is a given primitive for the social planner.

The term γ exp[νs] denotes the cohort size of the generation born at time s and ρs is

the social planner’s rate of time preference. Changing the order of integration equation

(25) can be written as

W =

∫ ∞

0

{
∫ t

t−T

c(t, s)1−
1
σ

1 − 1
σ

γ exp
[(
ρS−ρH−ν

)
(t− s)

]
ds

}

exp
[(
ν−ρS

)
t
]
dt

8 We are well aware that this social welfare function is an arbitrary normative choice, as many other social
welfare functions are conceivable. Nevertheless, it represents the de facto standard in the economic
literature (see e.g. Burton (1993), Calvo and Obstfeld (1988)), and is also the interpretation applied
to the infinitely lived agent models in the climate change debate.
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=

∫ ∞

0

{
∫ T

0

c(t, t− a)1−
1
σ

1 − 1
σ

γ exp
[(
ρS−ρH−ν

)
a
]
da

}

exp
[(
ν−ρS

)
t
]
dt , (26)

where t− s is substituted by age a in the second line.

In the following, we consider two different scenarios. In the unconstrained utilitarian

OLG economy, a social planner maximizing the social welfare function (26) decides

about investment and households’ consumption. Thus, the social planner is in command

of a centralized economy. In contrast, in the constrained utilitarian OLG economy the

social planner relies on a market economy, in which the households own the firms and

the capital stock, and decide about investment and consumption such as to maximize

their individual lifetime utility (1). The social planner can only influence prices by a

tax/subsidy regime to maximize social welfare (25).

4.1 Unconstrained Utilitarian Overlapping Generations Economy

In general, the outcome of the decentralized overlapping generations economy studied in

section 2 will not maximize the social welfare function W . Thus, we start by determining

the unconstrained social planner’s optimal allocation by solving

max
c(t,s)

∫ ∞

0

{
∫ T

0

c(t, t− a)1−
1
σ

1 − 1
σ

γ exp
[(
ρS−ρH−ν

)
a
]
da

}

exp
[(
ν−ρS

)
t
]
dt , (27)

subject to the budget constraint (19) and the transversality condition (20).

Following the approach of Calvo and Obstfeld (1988), the optimization problem (27) can

be interpreted as two nested optimization problems. Defining

V
(
c̄(t)
)

= max
{c(t,t−a)}T

a=0

∫ T

0

c(t, t− a)1−
1
σ

1 − 1
σ

γ exp
[(
ρS−ρH−ν

)
a
]
da , (28)

subject to

c̄(t) ≥ exp[−νt]

∫ t

t−T

c(t, s)γ exp[νs] ds =

∫ T

0
c(t, t− a)γ exp[−νa] da , (29)

the first maximization problem is to distribute aggregate consumption per capita at

time t optimally among all generations alive at time t. Then, we obtain for the second
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maximization problem

max
c̄(t)

∫ ∞

0
V
(
c̄(t)
)
exp[νt] exp

[
−ρSt

]
dt , (30)

subject to the budget constraint (19) and the transversality condition (20).

From the first maximization problem we learn how the social planner optimally dis-

tributes consumption between all generation alive at the same time t. The following

proposition states the result.

Proposition 5 (Optimal consumption distribution at one point in time)

The optimal solution of the maximization problem (28) subject to condition (29) reads:

c(t, t− a) =
σ
(
ρS − ρH

)
− ν

γ (exp [(σ (ρS − ρH) − ν)T ] − 1)
c̄(t) exp

[
σ
(
ρS − ρH

)
a
]
. (31)

As a consequence, all households receive the same amount of consumption at time t

irrespective of age for ρH = ρS, and receive less consumption the older (younger) they

are at a given time t for ρH > ρS (ρH < ρS).

The proof is given in the appendix.

Proposition 5 says that the difference between the households’ rate of time preference,

ρH , and the social rate of time preference, ρS , determines the distribution of consumption

between households of different age at a given time t. In particular, if ρH > ρS ,9 at any

instant of time the consumption profile with respect to the individuals’ age is the opposite

of that of the decentralized solution, as can be seen from the Euler equation (4). That is,

in the social planner’s solution households receive less consumption the older they are,

whereas they would consume more the older they are in the decentralized overlapping

generations economy.

In addition, Proposition 5 poses an “equality-trade-off” to the social planner if house-

holds exhibit a positive rate of time preference. Then, a social rate of time preference of

zero would weigh the lifetime utilities of today’s and future generations equally, but also

implies that at each point in time the young enjoy higher consumption than the old. In

contrast, a social rate of time preference equal to that of the individuals yields an equal

9 We do not take up a stance on the relationship between the individual and the social rate of time
preference, but merely hint at the resulting consequences. This is in line with Burton (1993), who
argues that “. . . they represent profoundly different concepts” (p. 121/122) and, thus, may differ.
However, if they are supposed to differ, than it is usually assumed that ρH > ρS (see also Heinzel and
Winkler 2007: Sec. 2).
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distribution of consumption among the generations alive at each point in time at the ex-

pense of an unequal treatment of lifetime utilities of different generations. The trade-off

vanishes only if the individuals’ rate of time preference is zero. Of course, this trade-off

can only be captured in an overlapping generations model which explicitly considers the

life cycles of different generations.

We now turn to the second maximization problem (30) subject to the budget constraint

(19) and the transversality condition (20). Observe that it is formally equivalent to a

Ramsey consumer who exhibits the instantaneous utility function V
(
c̄(t)
)

and the time

preference rate ρS .10 We obtain V
(
c̄(t)
)

by inserting the optimal consumption profile

(31) into equation (28)

V
(
c̄(t)
)

=

[

γ
(
exp

[(
σ
(
ρS − ρH

)
− ν
)
T
]
− 1
)

σ (ρS − ρH) − ν

] 1
σ
c̄(t)1−

1
σ

1 − 1
σ

. (32)

As the social planner’s maximization problem (30) is invariant against affine transfor-

mations of the objective function, it is identical to the maximization problem of the

Ramsey consumer who maximizes (18) subject to the budget constraint (19) and the

transversality condition (20) if the social planner’s time preference rate ρS is equal to

the time preference rate of the Ramsey consumer ρR.

Proposition 6 (Unconstrained utilitarian OLG and ILA ecnonomy)

An overlapping generations economy, in which a social planner solves maximization prob-

lem (27) subject to the budget constraint (19) and the transversality condition (20) is

observationally equivalent to an infinitely lived agent economy, in which a Ramsey con-

sumer maximizes (18) subject to (19) and (20) iff

ρS = ρR . (33)

Proof: Equation (33) follows directly from inserting equation (32) into maximization

problem (30). �

Proposition 6 says that, in aggregate terms, the social planner’s problem (27) is equiv-

alent to an infinitely lived agent maximizing (18) if the social planner and the Ramsey

consumer exhibit the same rate of (social) time preference. Note that this holds in gen-

eral and not only for the long-run steady state. One might argue that this equivalence

supports the interpretation of the utility function (18) of a Ramsey consumer as a social

10 This was already shown by Calvo and Obstfeld (1988).
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welfare function (25). There is, however, a crucial difference. While the outcome of the

infinitely lived agent economy can easily be decentralized, the decentralization of the un-

constrained social planner’s problem as a market outcome needs a transfer scheme that

not only depends on time, but also discriminates with respect to age for each point in

time. We consider such a transfer scheme hardly implementable in democratic societies.

In fact, discrimination by race, gender or age is mostly considered as inequitable. As a

consequence, in the following section we examine the situation where the social planner

cannot discriminate transfers by age but only influence prices via taxes and subsidies.

As we shall show, the social optimum cannot be achieved in this case.

4.2 Constrained Utilitarian Overlapping Generations Economy

In constrast to redistribution that explicitly depends on age, it is plausible that a gov-

ernment can impose taxes/subsidies on capital and labor income. Hence, we extend the

market system by a tax/subsidy regime, but do not consider fully dictatorial solutions,

in which the social planner can directly dictate the consumption path of individual

generations.

We use τr(t) and τw(t) to denote the tax/subsidy on returns on savings and on labor in-

come, respectively.11 The individual households of the overlapping generations economy

base their optimal consumption and saving decisions on the effective interest rate re(t)

and the effective wage we(t):

re(t) = r(t) − τr(t) , (34a)

we(t) = w(t)
[
1 − τw(t)

]
. (34b)

The individual budget constraint now reads

ḃ(t, s) = re(t)b(t, s) +we(t) − c(t, s) . (34c)

Given this budget constraint, individual households choose consumption paths ce(t, s)

which maximize lifetime utility (1). Thus, the optimized consumption path ce(t, s) is a

function of the taxes/subsidies τr(t) and τw(t):

ce(t, s) = ce (t, τr(t), τw(t); s) . (35)

11 Following the standard convention, τi(t) is positive if it is a tax and negative if it is a subsidy.
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Note that for given subsidy schemes {τr(t), τw(t)}∞t=0 the individual household’s opti-

mal paths of consumption and assets can be characterized as in the decentralized OLG

economy by (2) and (4) when using re(t) and we(t) instead of r(t) and w(t), respec-

tively. Applying the aggregation rule (10) yields aggregate consumption per effective

labor ce(t) = ce(t, τr(t), τw(t)).

To analyze observational equivalence of the aggregate long-run steady state dynamics,

which is implied by maximizing social welfare (25) on the one hand and achieved by an

infinitely lived agent maximizing the welfare of a Ramsey dynasty on the other hand, we

have to restrict redistribution to mechanisms which do not alter the aggregate budget

constraint (11b) of the economy. This implies that the redistribution scheme has to yield

a balanced government budget at all times. A balanced budget at all times t, which

implies that the aggregate budget constraint (11b) of the economy remains unchanged,

requires

τw(t)w(t) = −τr(t)b̄(t) . (36)

Assuming a balanced aggregate budget at all times allows us to skip τw(t) and only use

τr(t) as an argument in functions that depend on the tax/subsidy scheme. Then, we can

write the social planner’s problem as follows:

max
τr(t)

∫ ∞

0

{
∫ t

t−T

ce(t, τr(t); s)
1− 1

σ

1 − 1
σ

γ exp[(ν + ρH − ρS)s] ds

}

exp[−ρHt] dt , (37)

subject to the budget constraint (19). Introducing V , the aggregate instantaneous utility

of all generations alive at time t

V (t, τr(t)) =

∫ t

t−T

ce(t, τr(t); s)
1− 1

σ

1 − 1
σ

γ exp[(ν + ρH − ρS)s] ds , (38)

and denoting the costate variable for the capital stock as λ, the present value Hamiltonian

is given by

H = V (t, τr(t)) exp[−ρt] + λ(t) [f(k(t)) − (ν + ξ)k(t) − ce(t, τr(t))] . (39)
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The first order conditions for an optimal solution yield:

λ(t) = exp[−ρt]
Vτr(t, τr(t))

ce
τr

(t, τr(t))
, (40a)

λ̇(t) = λ(t)
[
ce

k(t, τr(t))+ν+ξ−f ′(k(t))
]
+ Vk(t, τ(t)) exp[−ρt] . (40b)

In general, this system of integro-differential equations yields no closed form solutions.

However, for the long-run steady state, we can establish conditions such that the outcome

of the optimization problem (37) is observationally equivalent to an infinitely lived agent

who maximizes the welfare of a Ramsey dynasty (18). The following proposition gives

the result.

Proposition 7 (Constrained utilitarian OLG and ILA ecnonomy)

The long-run steady state of an overlapping generations economy, in which a social

planner solves maximization problem (37) subject to the budget constraint (19) is obser-

vationally equivalent to the long-run steady state of an infinitely lived agent economy, in

which a Ramsey consumer maximizes (18) subject to (19) iff

ρS =
V̂k(τ

⋆
r )

V̂τr(τ
⋆
r , k

⋆)
ce

τr
(τ⋆

r ) − ce

k(τ
⋆
r ) + ρR , (41)

with

ce(τ⋆
r ) = γψ̂(τ⋆

r )
exp[(σ(r⋆−τ⋆

r −ρ)−ν−ξ)T ] − 1

σ(r⋆−τ⋆
r −ρ)−ν−ξ

, (42a)

V̂ (τ⋆
r ) = γ

ψ̂(τ⋆
r )

σ−1
σ

σ−1
σ

exp
[(

(σ−1)(r⋆−τ⋆
r −ρ)−

σ−1
σ
ξ−ν−ρ+ρ̂

)
T
]
−1

(σ−1)(r⋆−τ⋆
r −ρ)−

σ−1
σ
ξ−ν−ρ+ρ̂

, (42b)

ψ̂(τ⋆
r ) = (w⋆+τ⋆

r k
⋆)

[r⋆−τ⋆
r −σ(r⋆−τ⋆

r − ρ)] {1−exp[−(r⋆ − τ⋆
r −ξ)T ]}

{1−exp[−(r⋆−τ⋆
r −σ(r⋆−τ⋆

r − ρ))T ]} (r⋆−τ⋆
r −ξ)

. (42c)

The proof is given in the appendix. As V̂ (τ⋆
r ) and ce(τ⋆

r ) depend on ρH via the life-

time utility maximization of the individual households, equation (41) defines a relation

between the individual time preference rate ρ, the time preference rate of the social

planner ρS and the time preference rate ρR which an infinitely lived agent has to exhibit

for the two economies to be observationally equivalent in the steady state. In particu-

lar Proposition 7 states that, in general, the time preference rate of the infinitely lived

agent cannot be interpreted as the social time preference rate of the constrained planner

in an observationally equivalent overlapping generations economy. Or put differently,
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a constrained social planner whose social time preference rate is identical to the time

preference rate of the infinitely lived agent prefers an aggregate consumption and capital

accumulation path that is different from the one in the infinitely lived agent economy. As

it seems realistic that a planner such as a democratically legitimized government cannot

arbitrarily redistribute between the generations alive at each point in time, the result in

Proposition 7 questions the validity of the infinitely lived agent framework as a tool to

derive policy advice.

Another point is interesting. As indicated earlier, the individual households’ savings and

consumption paths correspond to the ones in the decentralized economy for w(t) = we(t)

and r(t) = re(t). As the optimal tax in steady state τ⋆
r is constant, the individual house-

holds’ life cycles are qualitatively unchanged by the tax/subsidy scheme. In particular,

this implies that for ρH > ρS the constrained social planner is not able to attain the

first best allocation of the unconstrained social planner which would require a reversal

of the decentralized consumption profile of the individual households.

This result stands in contrast to Calvo and Obstfeld (1988) who show that even a planner

that cannot discriminate (lump sum) taxes between different generations is able to reach

the first best. The reason for the difference is that Calvo and Obstfeld (1988) use an

overlapping generations model of the Diamond (1965)-type with only two generations

alive at each point in time. As only one generation, the young, make the saving decision

one instrument is sufficient to effectively target transfers to one of the generations. In

our model there exists a continuum of generations at each point in time which makes it

impossible to effectively direct transfers to different generations when only market prices

can be influenced. However, the tax/subsidy scheme available to the constrained social

planner would also suffice to reach the first best in a Diamond (1965)-type overlapping

generations model.

5 Stern Versus Nordhaus on Intergenerational Equity and the

Choice of the Social Rate of Time Preference

In the following, we apply the results derived in sections 3 and 4 to critically review recent

approaches to the evaluation of climate change mitigation scenarios. We will focus on

Stern (2007) and its critique by Nordhaus (2007), which both use in principle a Ramsey-

Cass-Koopmans growth model in which an infinitely lived agent maximizes the welfare

of a Ramsey dynasty. If one interprets the utility of the Ramsey consumer as a social
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welfare function, intergenerational equity concerns are closely related to the choice of

the time preference rate ρ̄ of the Ramsey consumer, as it determines the weight given

to the utility of later “generations”. In fact, there exists a long-lasting debate about the

“right” choice of the time preference rate ρ̄.12

5.1 Stern’s and Nordhaus’ Arguments in a Nutshell

The publication of Stern (2007) triggered a lot of interest among fellow economists (e.g.,

Beckerman and Hepburn 2007, Dasgupta 2007, Mendelsohn 2006, Tol and Gary 2006), as

Stern, although using fundamentally the same methodological approach and the same

data, projected considerably higher damages from global warming and, therefore, ad-

vocates much stronger and more immediate policy actions than comparable studies.13

Despite some minor details, the difference in results mainly stems from using an excep-

tionally low time preference rate of ρ̄ = 0.1% per year in combination with an intertem-

poral elasticity of substitution of σ = 1, which leads to a steady state real interest rate of

r⋆ = 1.4% per year (in contrast, Nordhaus 2007 assumes parameter values which yield a

real interest rate r⋆ = 5.5% in the DICE-2007 model). As the real interest rate can be in-

terpreted as the opportunity costs of investments into climate change mitigation, Stern’s

real interest rate justifies substantially higher emission abatement levels than Nordhaus’

interest rate, which can be achieved by setting substantially higher tax rates on carbon

emissions. Stern justifies his approach similarly to Ramsey (1928) that “discounting is

ethically indefensible”, but chooses a positive ρ̄ which corresponds to a hazard rate that

earth or at least humankind might cease to exist.

In his critique of the Stern review, Nordhaus (2007) takes the perspective that in an

integrated assessment model the baseline scenario, the scenario in which no (additional)

environmental policy is enacted, should compute empirically observable values, in par-

ticular for the real interest rate. He, therefore, advocates to choose σ and ρ̄ such as

to yield real interest rates in the “sensible” range of 4–7% per annum. Nevertheless, he

clearly states that the objective function is to be interpreted as a utilitarian social welfare

function, which considers the utility derived from consumption of different generations.

12 Excellent overviews of the issue of time preference, intergenerational equity and discounting include
Lind (1982), Portney and Weyant (1999), Frederick et al. (2002) and Groom et al. (2005).

13 For example, in the baseline scenario without controlling climate change, Stern (2007) estimates the
social cost per ton of carbon in 2015 at $350, while Nordhaus (2007) derives $35 per ton of carbon
(both in 2005 prices).
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5.2 Discussion of Nordhaus’ Approach

As a matter of fact, the developed countries and also most countries in transition ex-

hibit some kind of market economy in which generations of different age interact. This

interaction yields some (aggregate and risk-free) long-run market interest rate r⋆. Obser-

vation alone, however, does not give any hint how this rate emerged (see Aiyagari 1985).

Nordhaus seems to assume that the setting of an infinitely lived Ramsey consumer is an

appropriate description for the baseline scenario, in which no (additional) environmental

policy is enacted. The validity of this assumption hinges very much on how altruistic

the individuals are. Only if bequests are operative, i.e. the Ricardian equivalence holds,

the interest rate conveys the opportunity cost of investments in the very long run, which

exceeds the lifetime of individual households. If the bequest motive is not operative –

as suggested by a number of empirical studies (e.g., Hurd 1987, Hurd 1989, Laitner and

Ohlsson 2001) – our decentralized overlapping generations economy, calibrated to yield a

long-run interest rate of r⋆ = 5.5%, may be a more accurate description of the economy

and the underlying behavioral assumptions.

As is clear from our analysis, a market interest rate r⋆ = 5.5% can be achieved in a

decentralized overlapping generations economy by an infinite set of combinations of in-

dividual preference parameters σ and ρ. For each individual set of preference parameters

one achieves a different observationally equivalent infinitely lived agent specification,

which differ in σ and ρ̄ (in the appendix we calculate various combinations of ρ and

σ which result in r⋆ = 5.5% for different life spans T of the individual households).

Moreover, from the observed market interest rate alone, we cannot infer the preferences

of individual households for intergenerational equity. For example, an observed market

interest rate r⋆ = 5.5% is consistent with our assumption of an overlapping generations

economy with purely selfish individuals. The central point, however, is that in a selfish

OLG economy individuals would never pay voluntarily for investments if their benefits

accrue beyond their own lifetime, whereas a Ramsey consumer can make investments

with arbitrarily long gestation periods. Thus, calibrating the infinitely lived agent model

to reproduce the observed market interest rate in the case that the Ricardian equivalence

does not hold is an arbitrary normative choice.

Moreover, given the social welfare function (25) we consider in this paper, each different

set of individual parameters ρ and σ, which yields a long-run interest rate r⋆ = 5.5% in

the decentralized overlapping generations economy, would yield a different rate of time

preference ρ̂ of the social planner, even if we assume an unconstrained social planner
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who can freely redistribute across generations, and thus ρ̂ = ρ̄. For example, for σ = 0.79

and ρ = 1% we achieve ρ̂ = ρ̄ = 2.97%, whereas for σ = 1.42 and ρ = 3% we achieve

ρ̂ = ρ̄ = 4.09%.

Thus, if one advocates a purely descriptive approach, it is not enough to observe the long-

run interest rate r⋆. However, in most economies we do observe subsidies on different

kinds of long-run investments such as education, retirement savings and research &

development. As a consequence, it might be possible, at least in principle, not only to

observe the market interest rate, but also subsidies on long-term investments. If these

subsidies are being enacted by a constrained social planner, i.e. a government, which has

been elected democratically by the individual households, we can interpret the observed

subsidies as the revealed preference of the households on intergenerational equity. If, in

addition, one knows the individual preference parameters σ and ρ, one can infer a social

rate of time preference ρ̂ by virtue of Proposition 7. Under the assumption that the time

preference rate ρ of the individual households ranges from ρ = 1% to ρ = 3% per annum

(in the appendix we calculate values for ρ ranging from 0–5% in 0.5 steps), Nordhaus’

infinitely lived agent specification is in the steady state observationally equivalent to

an overlapping generations economy in which the contstrained social planner exhibits a

time preference rate ρ̂ in the range of 2.15–2.86%, and subsidizes investment between

1.14–2.24%. This leads to an effective interest rate re between 6.64% and 7.74%.

5.3 Discussion of Stern’s Approach

As outlined before, there is some doubt that observed market data alone is suitable to

infer preferences on intergenerational equity. If one takes this stance, one has to make

some (arbitrary) choice for the time preference rate ρ̂ of the social planner. In general,

such a normative choice of the social welfare function implies redistribution between

different generations, and thus does not reproduce observed market data such as the

interest rate r⋆. In fact, we interpret Stern such that he claims the social rate of time

preference should equal ρ̂ = 0.1%. Moreover, we interpret Stern’s choice of a very low

time preference rate in the spirit of Ramsey (1928) to treat all generations alike. In

an overlapping generations model, however, treating all generations equally can have

different meanings. First, it may imply that all generations alive at the same time have

to be treated equally. Second, it may imply that generations living today have to be

treated equally to generations which are just to be born in the future. In particular, the

first meaning cannot be captured in an infinitely lived agent framework.
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Stern’s choice of a very low time preference rate ρ̄ addresses the second meaning of inter-

generational equity. As seen in Proposition 6, the time preference rate ρ̄ of the Ramsey

consumer is identical to the weight factor ρ̂ an unconstrained social planner imposes on

the lifetime utility of different generations in an observationally equivalent overlapping

generations economy. But as seen in Proposition 5, the social planners optimum may

infer redistribution among the generations alive. If the individual time preference rate ρ

exceeds the time preference rate of the social planner ρ̂ (what we consider to be likely in

the case of ρ̂ = 0.1%), the social planner would distribute consumption such that, at a

given time t, consumption is higher the younger is an individual. Such a redistribution

may not only be impossible to implement but also result in treating generations highly

unequal, as redistribution discriminates by age.

Addressing intergenerational equity in the first sense, however, does not imply a social

planner’s rate of time preference of zero, but to choose the time preference rate ρ̂ equal

to the individual rate of time preference ρ. As seen from Proposition 5, only for ρ̂ = ρ

the unconstrained social planner distributes consumption equally among all generations

alive. Thus, if one considers a sensible range for the individual time preference rate ρ

between 1–3% and sets ρ̂ = ρ, the time preference rate ρ̄ of the observationally equivalent

infinitely lived agent economy ranges from 1–3% in case of an unconstrained social plan-

ner, and between 0.75–2.25% if one assumes a constrained social planner (see appendix).

Both ranges are a long way off Stern’s ρ̄ = 0.1%.

The two different meanings of intergenerational equity are only compatible with each

other if the individual rate of time preference is close to zero. The time preference of

individual households, however, is not subject to normative choice but a given primi-

tive, which has to observed. Empirical evidence does not support that individuals’ time

preferences are close to zero. Another possible avenue to reconcile equity considerations

among generations living at the same time and between generations living at different

times is the concept of a constrained social planner, who redistributes consumption be-

tween generations by a tax/subsidy scheme but treats all generations alive equally, as

the taxes and subsidies do not discriminate by age. This, however, implies that the time

preference rate of the social planner ρ̂ is, in general, not equivalent to the time preference

rate ρ̄ of the observationally equivalent Ramsey consumer. As shown in the appendix,

ρ̄ = 0.1% implies a ρ̂ in the range of 0.12–0.25%, or the other way round, for ρ̂ = 0.1% an

observationally equivalent Ramsey consumer has to exhibit ρ̄ ranging from 0.06–0.08%,

depending on the rate of time preference ρ of the individual households.

25



5.4 Stern Versus Nordhaus: A Final Remark

In our opinion, both Nordhaus’ and Stern’s approach neglect important aspects of in-

tergenerational equity. While Nordhaus tries to deduce preferences on intergenerational

equity by reproducing market interest rates in a infinitely lived agent model, Stern clearly

advocates a normative approach but misses the clash between equity among generations

alive and between generations living at different times. Summing up, we argue that as-

sumptions about individual preference parameters ρ and σ and the time preference rate

ρ̂ of a social planner should be discussed in the more encompassing framework of an over-

lapping generations economy. On this basis, assumptions about intergenerational equity,

which are only implicitly captured in an infinitely lived agent setup, become obvious and

are open for debate.

6 Conclusions

Although the lifetime of individuals is finite, questions of intergenerational equity are

most often discussed within infinitely lived agent frameworks, which are interpreted as a

utilitarian social welfare function. In this paper, we analyzed to what extend this inter-

pretation is justified. In particular, we examined under which conditions the infinitely

lived agent economy is observationally equivalent to (i) a decentralized overlapping gen-

erations economy and (ii) an overlapping generations economy in which a social planner

maximizes a utilitarian welfare function. Further, we applied our results to the recent

dispute between Stern (2007) and Nordhaus (2007) in the discussion on the mitiga-

tion of climate change. We concluded that Stern’s and Nordhaus’ infinitely lived agent

models are not suitable to discuss issues of intergenerational equity, as they cannot

adequately address three important aspects: First, from infinitely lived agent specifica-

tions, underlying assumptions about individual and social time preference rates cannot

be unambiguously deduced. Second, within infinitely lived agent models the distribu-

tion among generations living at the same time cannot be captured. Third, a utilitarian

social planner’s solution may not be implementable in overlapping generations market

economies.

Our analysis employs two central assumptions. First, we assume individual households to

be selfish. Although several empirical studies support this view, extending the model to

include different degrees of altruism is an interesting venue for future research. Second,
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we assume a specific utilitarian social welfare function. Although commonplace in the lit-

erature, other functional specifications are conceivable. However, these extentions would

not change our final conclusion, which is line with Solow (1986) and Howarth (1998),

that infinitely lived agent models are inappropriate for the analysis of intergenerational

equity in long-run decision problems which should rather be examined in overlapping

generations frameworks.
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A Appendix

A.1 Proof of Proposition 1

As in steady state all aggregate per-effective-labor variables are constant and an individual’s

per-efficiency variables only depend on that person’s age but not on the time-periods in which

she lives. I.e. per-efficiency consumption is the same for persons at time t and t + t′ as long

as they are of the same age. This allows us to reformulate the variables in functions of age

rather than functions of time and use the rationale of d’Albis (2007) to proof the existence and

uniqueness of the steady state. Denote a person’s age at time t, (t− s), by ε. We can then write

per-efficiency-unit consumption as

c(t, s)

A(t)
= c̃(ε) =

R(−ε)−σ exp[−(ξ + ρσ)ε]
∫ T

0 R(−z)1−σ exp[−ρz]σdz
w⋆

∫ T

0

exp[(ξ − r⋆)z]dz. (A.1)

Similarly to d’Albis (2007), we define

H((1 − σ)r⋆) :=

∫ T

0

R(−z)1−σ exp[−ρz]σdz, (A.2)

G(r⋆ − ξ) := w⋆

∫ T

0

exp[(ξ − r⋆)z]dz. (A.3)

In this way, we can rewrite (A.1) as

c̃(ε) =
G(r⋆ − ξ)

H((1 − σ)r⋆)
exp[(σr⋆ − ξ)ε] exp[−ρε]σ. (A.4)

With respect to assets, we have

b(t, s)

A(t)
= b̃(ε) = exp[−ξε]

∫ T

ε

exp[ξz](c̃(z) − w⋆) exp[−r⋆(z − ε)]dz

=

∫ T

ε

(c̃(z) − w⋆) exp[(ξ − r⋆)(z − ε)]dz.

Consequently, total assets per effective labor is

b =
B(t)

L(t)A(t)
=

∫ T

0

g exp[ν(t− ε)]b̃(ε)dε exp[−νt]

=

∫ T

0

g exp[(r⋆ − ν − ξ)ε]

∫ T

ε

(c̃(z) − w⋆) exp[(ξ − r⋆)z]dz dε.
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Changing the order of integration. we have

b =

∫ T

0

g(c̃(ε) − w⋆) exp[(ξ − r⋆)ε]

∫ ε

0

exp[(r⋆ − ν − ξ)z]dz dε

=
g

r⋆ − ξ − ν

∫ T

0

(c̃(ε) − w⋆) exp[(ξ − r⋆)ε](exp[(r⋆ − ν − ξ)ε] − 1) dε

=
g

r⋆ − ξ − ν

(
∫ T

0

(c̃(ε) − w⋆) exp[−νε] dε−

∫ T

0

(c̃(ε) − w⋆) exp[(ξ − r⋆)ε] dε

︸ ︷︷ ︸

=0, as b(T ) = 0

)

.

Inserting c̃(ε) yields

b =
g

r⋆ − ξ − ν

(

G(r⋆ − ξ)

H((1 − σ)r⋆)

∫ T

0

exp[(σr⋆ − ξ − ν)ε] exp[−ρε]σdε

︸ ︷︷ ︸

H(ξ+ν−σr⋆)

−

∫ T

0

w⋆ exp[−νε] dε

︸ ︷︷ ︸

G(ν)

)

(A.5)

We can write the wage per effective labor as

w = g

∫ T

0

w⋆ exp[−νε] dε = gG(ν) (A.6)

Note that, of course, w = w⋆. Solving (A.6) for g and inserting into (A.5), we obtain

b =
w

r⋆ − ξ − ν

(

G(r⋆ − ξ)

H((1 − σ)r⋆)

H(ξ + ν − σr⋆)

G(ν)
− 1

)

(A.7)

In steady state we must have

k⋆ = b = φ(k⋆) =
f(k⋆) − f ′(k⋆)k⋆

f ′(k⋆) − ξ − ν

(

G(f ′(k⋆) − ξ)

H((1 − σ)f ′(k⋆))

H(ξ + ν − σf ′(k⋆))

G(ν)
︸ ︷︷ ︸

J(f ′(k⋆))

−1

)

, (A.8)

which corresponds to equation (15b).

We will now establish that

Lemma 1

Function J : R → R++ given by

J(r⋆) =
G(r⋆ − ξ)

G(ν)

H(ξ + ν − σr⋆)

H((1 − σ)r⋆))
(A.9)
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is (i) strictly convex, (ii) limr⋆→+∞ J(r⋆) = limr⋆→−∞ J(r⋆) = +∞.

For later reference it is useful to show the first derivative of function J :

J ′(r⋆) = [σh(ξ + ν − σr⋆) + (1 − σ)h((1 − σ)r⋆) − g(r⋆ − ξ)]J(r⋆) (A.10)

where

g(r⋆ − ξ) =
−G′(r⋆ − ξ)

G(r⋆ − ξ)
=

∫ T

0 ε exp[(ξ − r⋆)ε]dε
∫ T

0
exp[(ξ − r⋆)ε]dε

> 0 (A.11)

h(x) =
−H ′(x)

H(x)
=

∫ T

0
ε exp[−ρε]σ exp[−xε]dε

∫ T

0
exp[−ρε]σ exp[−xε]dε

> 0 (A.12)

The second derivative of J can be written as

J ′′(r⋆) = [−σ2h′(ξ + ν − σr⋆) + (1 − σ)2h′((1 − σ)r⋆) − g′(r⋆ − ξ)]J(r⋆) (A.13)

+[σh(ξ + ν − σr⋆) + (1 − σ)h((1 − σ)r⋆) − g(r⋆ − ξ)]2J(r⋆) (A.14)

We can now apply the same reasoning as d’Albis (2007) to verify (i). Further we have limx→∞ g(x) =

limx→∞ h(x) = 0 and limx→−∞ g(x) = limx→−∞ h(x) = T . Hence, from (A.10) we see that

lim
x→∞

J ′(r⋆)

J(r⋆)
= − lim

x→−∞

J ′(r⋆)

J(r⋆)
= σT (A.15)

and (ii) follows. �

According to above’s considerations, we have

φ(k⋆) =
f(k⋆) − f ′(k⋆)k⋆

f ′(k⋆) − ξ − ν
(J(f ′(k⋆)) − 1), (A.16)

which corresponds to equation (63) of d’Albis (2007). As J(r⋆) exhibits the same properties as

the J(x) of d’Albis (2007), this paper’s steady state proof directly applies when considering that

in our model the golden rule capital stock satisfies f ′(kgr) = ξ + ν. �

A.2 Proof of Proposition 2

The proof shows that σ(r⋆ − ρH) − ξ > 0 is a necessary condition for aggregate assets to be

strictly positive in steady state. Consequently, if k⋆ > 0 the real interest rate in steady state

must be larger than ρH + ξ
σ

.
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Consider the individual household’s wealth profile over her lifetime as given by equation (14b):

b̃(a) =
w⋆

r⋆ − ξ

{
φ exp

[(
σ(r⋆ − ρH) − ξ

)
a
]
+ (1 − φ) exp[(r⋆ − ξ)a] − 1

}
, (A.17)

where a denotes the household’s age. Due to the transversality condition we have r⋆ − ξ > 0.

From (13) we obtain

φ







< 1, if σ(r⋆ − ρH) − ξ < 0,

= 1, if σ(r⋆ − ρH) − ξ = 0,

> 1, if σ(r⋆ − ρH) − ξ > 0.

This allows us to directly infer from (A.17) that σ(r⋆ − ρH) − ξ = 0 implies b(a) = 0 for all

a ∈ [0, T ]. As in this situation no individual household possesses a strictly positive wealth level,

the economy’s capital stock does not exceed zero. To show that σ(r⋆ − ρH) − ξ < 0 precludes

strictly positive capital stocks, we use the second derivative of b(a).

d2 b̃(a)

d a2
=

w⋆

r⋆ − ξ

{
φ
(
σ(r⋆ − ρH) − ξ

)2
exp

[(
σ(r⋆ − ρH) − ξ

)
a
]

+(1 − φ)(r⋆ − ξ)2 exp[(r⋆ − ξ)a]
}
. (A.18)

Since σ(r⋆ −ρH)− ξ < 0 involves φ < 1, it further implies that d2b̃(a)
d a2 > 0. Hence the household’s

wealth profile is strictly convex. Given the boundary conditions b̃(0) = 0 = b̃(T ) this implies that

over her entire lifetime each household exhibits non-positive wealth. This, however, contradicts

strictly positive aggregate savings. Hence we can conclude that σ(r⋆ − ρH) − ξ ≤ 0 precludes

k⋆ > 0.

It is further obvious from (A.17) and (A.18) that σ(r⋆ − ρH)− ξ > 0 does not contradict strictly

positive wealth of the individual households and, consequently, is a necessary condition for k⋆ > 0.

�

A.3 Proof of Propositon 4

Comparative statics of the spread ρ̄−ρ means examining −∆c̄(t)
c̄(t) . Equivalently we could use (23)

and study the changes of ρ̄ with respect to the parameters of interest. Let x be such a parameter.

We would then have:

∂ρ̄

∂x
=
dr⋆

dk⋆

dk⋆

dx
−
∂
(

ξ
σ

)

∂x
. (A.19)
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The variation in the interest rate in x will be determined via the implicit function theorem from

equation (15b), respectively from (A.8). More precisely, with the notation of appendix A.1 we

define:

F (k⋆, x) := k⋆−φ(k⋆) = k⋆−
f(k⋆) − f ′(k⋆)k⋆

f ′(k⋆) − ξ − ν
︸ ︷︷ ︸

M(k⋆,(x))

(

G(f ′(k⋆) − ξ)

H((1 − σ)f ′(k⋆))

H(ξ + ν − σf ′(k⋆))

G(ν)
︸ ︷︷ ︸

J(f ′(k⋆),x)

−1

)

= 0,

(A.20)

and receive

dk⋆

dx
= −

∂F (k⋆,x)
∂x

∂F (k⋆,x)
∂k⋆

. (A.21)

As we concentrate on model specifications that yield unique steady states, i.e. that satisfy con-

ditions (16b), we have

∂F (k⋆, x)

∂k⋆
= 1 − φ′(k⋆) > 0. (A.22)

Recall that the sufficient conditions (16b) guarantee φ′(k⋆) < 1. Due to the strict concavity of

the production function, dr⋆

dk⋆
< 0, and consequently, the sign of dr⋆

dx
is that of ∂F (k⋆,x)

∂x
.

A.3.1 Variation of ρ̄ in ξ

Using (A.19) with x = ξ we receive

∂ρ̄

∂ξ
=
dr⋆

dk⋆

dk⋆

dξ
−

1

σ
. (A.23)

Hence if ∂F (k⋆,ξ)
∂ξ

< 0, ρ̄ is declining in ξ. Otherwise the sign is ambiguous and cannot be

determined without a further specification of the production function.

∂F (k⋆, ξ)

∂ξ
= −

∂M(k⋆, ξ)

∂ξ
(J(f ′(k⋆), ξ) − 1) −M(k⋆, ξ)

∂J(f ′(k⋆), ξ)

∂ξ
(A.24)

As

∂M(k⋆, ξ)

∂ξ
= w⋆(r⋆ − ξ − ν)−2 > 0,
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∂F (k⋆,ξ)
∂ξ

< 0 iff

∂J(f ′(k⋆), ξ)

∂ξ
= J(f ′(k⋆), ξ)

(
∂G(r⋆−ξ)

∂ξ

G(r⋆ − ξ)
+

∂H(ξ+ν−σr⋆)
∂ξ

H(ξ + ν − σr⋆)

)

> 0. (A.25)

This inequality is given whenever

∂G(r⋆−ξ)
∂ξ

G(r⋆ − ξ)
+

∂H(ξ+ν−σr⋆)
∂ξ

H(ξ + ν − σr⋆)
=

∫ T

0
ε exp[(ξ − r⋆)ε]dε

∫ T

0
exp[(ξ − r⋆)ε]dε

−

∫ T

0
ε exp[(σ(r⋆ − ρ) − ξ − ν)ε]dε

∫ T

0
exp[(σ(r⋆ − ρ) − ξ − ν)ε]dε

> 0

or equivalently

exp[(ξ − r⋆)T ]

exp[(ξ − r⋆)T ] − 1
−

1

ξ − r⋆
−

exp[(σ(r⋆ − ρ) − ξ − ν)T ]

exp[(σ(r⋆ − ρ) − ξ − ν)T ] − 1
+

1

σ(r⋆ − ρ) − ξ − ν
> 0. (A.26)

As in general,

d
(

exp[XT ]
exp[XT ]−1 − 1

X

)

dX
> 0 , if X < 0 , and

d
(

exp[XT ]
exp[XT ]−1

)

dX
< 0,

(A.26) holds iff

ξ − r⋆ < σ(r⋆ − ρ) − ξ − ν ∧ σ(r⋆ − ρ) − ξ − ν > 0 , or (A.27)

ξ − r⋆ > σ(r⋆ − ρ) − ξ − ν ⇔ ξ <
σ(r⋆ − ρ) + r⋆ − ν

2
(A.28)

A.3.2 Variation of ρ̄ in ν

Concerning the rate of population growth, we obtain

∂ρ̄

∂ν
=
dr⋆

dk⋆

dk⋆

dν
. (A.29)

To determine the behavior of k⋆ with respect to the population growth rate, it is convenient to

write

φ(k⋆, ν) = b =

∫ T

0

g exp[−νε]b̃(ε)dε,

33



where b̃(ε) = b(ε)
A(t) = b(t,s)

A(t) . As b̃(ε) does not depend on ν, it follows that

∂φ(k⋆, ν)

∂ν
= −

∫ T

0

gε exp[−νε]b̃(ε)dε < 0.

Consequently,

∂ρ̄

∂ν
> 0.

A.3.3 Variation of ρ̄ in σ

With respect to the intertemporal elasticity of substitution, ρ̄ changes according to

∂ρ̄

∂σ
=
dr⋆

dk⋆

dk⋆

dσ
+

ξ

σ2
. (A.30)

As the last summand is positive, the sign of ∂ρ̄
∂σ

depends on the reaction of the OLG’s savings

with respect to a change in σ. The partial derivative can be written as

∂φ(k⋆, σ)

∂σ
=

∫ T

0

g exp[−νε]
∂b̃(ε)

∂σ
dε,

where

b̃(ε) =

∫ ε

0

(

w⋆ −
G(r⋆ − ξ)

H((1 − σ)r)
exp[(σ(r⋆ − ρ) − ξ)z]

)

exp[(r⋆ − ξ)(ε− z)]dz,

and hence,

∂b̃(ε)

∂σ
= − exp[(r⋆ − ξ)ε]

G(r⋆ − ξ)

H((1 − σ)r)
Hε((1 − σ)r⋆)

(
∂Hε((1−σ)r⋆)

∂σ

Hε((1 − σ)r⋆)
−

∂H((1−σ)r⋆)
∂σ

H((1 − σ)r⋆)

)

where

Hε((1 − σ)r⋆) :=

∫ ε

0

exp[(σ(r⋆ − ρ) − r⋆)z]dz.

The derivative is positive if

∂Hε((1−σ)r⋆)
∂σ

Hε((1 − σ)r⋆)
−

∂H((1−σ)r⋆)
∂σ

H((1 − σ)r⋆)
< 0, (A.31)

or

ε exp[(σ(r⋆ − ρ) − r⋆)ε]

exp[(σ(r⋆ − ρ) − r⋆)ε] − 1
−

T exp[(σ(r⋆ − ρ) − r⋆)T ]

exp[(σ(r⋆ − ρ) − r⋆)T ]− 1
< 0. (A.32)
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As

d
(

T exp[XT ]
exp[XT ]−1

)

dT

{

> 0 , XT 6= 0,

= 0 , else,

and ε < T , inequality (A.32) holds for all ages ε and consequently the partial derivative of total

savings in the OLG-economy must also be positive. According to (A.21), we receive

dr⋆

dk⋆

dk⋆

dσ
< 0.

This implies that for positive rates of technological progress, the sign of ∂ρ̄
∂σ

cannot be determined

without further specification of the production function. However, if ξ = 0,

∂ρ̄

∂σ
< 0.

A.3.4 Variation of ρ̄ in T

From (A.19) we obtain

∂ρ̄

∂T
=
dr⋆

dk⋆

dk⋆

dT
, (A.33)

i.e. the variation of ρ̄ with respect to the individual lifetimes depends only on the changes in the

interest rate. According to the considerations at the beginning of this section of the appendix,

the signum of dr⋆

dk⋆

dk⋆

dT
is the same as that of ∂F (k⋆,T )

∂T
.

∂F (k⋆, T )

∂T
= −

∂b

∂T
=

∫ T

0

g exp[−νε]
∂b̃(ε)

∂T
dε+ g exp[−νT ] b̃(T )

︸︷︷︸

=0

.

If he lived a marginal unit of time longer, an individual at age ε would change his saving behavior

according to

∂b̃(ε)

∂T
= − exp[r⋆ε]

G(r⋆ − ξ)

H((1 − σ)r⋆)

(
∂G(r⋆−ξ)

∂T

G(r⋆ − ξ)
−

∂H((1−σ)r⋆)
∂T

H((1 − σ)r⋆)

)
∫ ε

0

exp[(σ(r⋆ − ρ) − r⋆)z]dz.
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This reveals that, dependent on the sign of

∂G(r⋆−ξ)
∂T

G(r⋆ − ξ)
−

∂H((1−σ)r⋆)
∂T

H((1 − σ)r⋆)
,

all agents would either increase or decrease their savings, however, in different intensities depen-

dent on their age. Consequently, ∂b̃(ε)
∂T

> 0 iff

(ξ − r⋆) exp[(ξ − r⋆)T ]
∫ T

0 exp[(ξ − r⋆)z]dz
−

(σ(r⋆ − ρ) − r⋆) exp[(σ(r⋆ − ρ) − r⋆)T ]
∫ T

0 exp[(σ(r⋆ − ρ) − r⋆)z]dz
< 0

As

d
(

X exp[XT ]
exp[XT ]−1

)

dX

{

> 0 , XT 6= 0,

= 0 , else,

we can state that ∂ρ̄
∂T

< 0 iff

ξ − r⋆ < σ(r⋆ − ρ) − r⋆ ⇔ ξ < σ(r⋆ − ρ).

This must always be the case as shown in the proof of proposition 3.

A.3.5 Infinite lifetimes of individuals, limT→∞ ρ̄

From the individual’s Euler equation, the new transversality condition

lim
t→∞

b(t, s) exp[−

∫ t

s

r(t′)dt′] = 0,

and with the assumption σ(r(t) − ρ) − r(t) < 0 , ∀t, we can derive the consumption path of an

individual born at time s as

c(t, s) =
σ(r(s) − ρ) − r(s)

ξ − r(s)
w(s) exp[

∫ t

s

σ(r(t′) − ρ)dt′ + ξs].

In steady state, aggregate consumption per capita with infinite lifetimes writes

c̄(t) = g exp[(σ(r⋆ − ρ) − ν)t]
σ(r⋆ − ρ) − r⋆

ξ − r⋆
w⋆

∫ t

−∞

exp[(−σ(r⋆ − ρ) + ξ + ν)s]ds (A.34)
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Note that when individuals possess infinite lifetimes such a summation over different generations

is only valid if the growth rate of the population is positive. Since nobody dies, zero population

growth means that no new generations will be born and consequently the OLG would be equiva-

lent to the Ramsey-Cass-Koopmans economy. In order to determine the growth rate of aggregate

consumption per capita, we calculate the time derivative of (A.34):

˙̄c(t) = (σ(r⋆ − ρ) − ν)c̄(t) + gc(t, t). (A.35)

Together, equations (A.34), (A.35), and the assumption σ(r⋆ − ρ) − ξ − ν < 0 yield

˙̄c(t)

c̄(t)
= σ(r⋆ − ρ) − ν +

1

ξ + ν − σ(r⋆ − ρ)
.

A comparison with the Euler equation of the Ramsey-Consumer reveals that

ρ̄ = ρ+
ν

σ
−

1

σ(ξ + ν − σ(r⋆ − ρ))
.

A.4 Proof of Proposition 5

The optimization problem (28) subject to condition (29) is an isoperimetric problem (Chiang

1992: 280–282), which can be solved by introducing the stock variable

y(a) =

∫ a

0

c(t, t− a′)γ exp[−νa′] da′ . (A.36)

As yn(a) = c(t, t− a)γ exp[−νa], the present value Hamiltonian reads

H =
c(t, t− a)1−

1

σ

1 − 1
σ

γ exp
[(
ρS−ρH−ν

)
a
]
+ λ(a)c(t, t − a)γ exp[−νa] , (A.37)

where λ(a) denotes the co-state variable of the stock y. The first order conditions yield

λ(a) = c(t, t− a)−
1

σ exp
[(
ρS − ρH

)
a
]
, (A.38a)

λ̇(a) = 0 , (A.38b)

which imply that

c(t, t− a) = X(t) exp
[
σ
(
ρS − ρH

)
a
]
, (A.39)

with some function X(t) that does not depend on age a. Inserting equation (A.39) into condition

(29) and solving for X(t), we obtain

X(t) =
σ
(
ρS − ρH

)
− ν

γ (exp [(σ (ρS − ρH) − ν) τ ] − 1)
c̄(t) (A.40)

37



Inserting X(t) back into equation (A.39) yields equation (31). �

A.5 Proof of Proposition 7

The steady state of an OLG economy, in which a constraint social planner solves maximization

problem (37), is observationally equivalent to the steady state of an economy, in which an in-

finitely lived agent maximizes the welfare of a Ramsey dynasty (18), if they exhibit the same

stock of capital k⋆. To see this, recall that k⋆ determines the interest rate r⋆ and the wage w⋆ via

the production function f . This also implies that the aggregate consumption per effective labor

c is the same in both economies, as the budget constraint is identical for the constraint planner

and the Ramsey consumer.

We first solve for the Euler equation for the constraint social planner. In the steady state both

effective capital k and the investment subsidy τr are constant over time:

k(t) = k⋆ τr(t) = τ⋆
r . (A.41)

As a consequence, in the steady state V and ce depend at most directly on t but not indirectly

via τr and k. Moreover, we can directly compute the equations for V (t, τ⋆
r ) and ĉ(t, τ⋆

r ). In the

constrained utilitarian OLG economy, individual steady state consumption and aggregate per

capita steady state consumption given by equations (14a) and (15a) when we replace r⋆ an w⋆

by re = r⋆ − τ⋆
r and we = w⋆ + τ⋆

r k
⋆. Introducing ψ̂(τ⋆

r , k
⋆), which is ψ of equation (13) with r⋆

an w⋆ replaced by re and we, and which is given by equation (42c), we derive equation (42a) for

ce(τ⋆
r ), which does not depend on t. For V (t, τ⋆

r ) we derive:

V (t, τ⋆
r ) =

= γ
ψ̂

σ−1

σ

σ−1
σ

∫ t

t−T

exp

[(
σ−1

σ
ξ+ν+ρ−ρ̂

)

s+ (σ−1)(re−ρ)(t−s)

]

ds

= γ
ψ̂

σ−1

σ

σ−1
σ

exp
[(

(σ−1)(r⋆−τ⋆
r −ρ)−

σ−1
σ
ξ−ν−ρ+ρ̂

)
T
]
−1

(σ−1)(r⋆−τ⋆
r −ρ)−

σ−1
σ
ξ−ν−ρ+ρ̂

exp

[(
σ−1

σ
ξ+ν+ρ−ρ̂

)

t

]

= V̂ (τ⋆
r ) exp

[(
σ−1

σ
ξ+ν+ρ−ρ̂

)

t

]

(A.42)

where V̂ (τ⋆
r , k

⋆) is given by equation (42b).

Inserting V̂ and ce into equation (40a) and differentiating with respect to time yields:

λ̇(t) =

(
σ − 1

σ
ξ + ν − ρ̂

)

λ(t) , (A.43)
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Inserting equations (A.43) and (40a) into equation (40b) yields the Euler equation

ρ̂ =
V̂k(τ⋆

r )

V̂τr
(τ⋆

r )
ce

τr

(τ⋆
r ) − ce

k(τ⋆
r ) + f ′(k⋆) −

ξ

σ
. (A.44)

From the Euler equation of the infinitely lived agent (21) we know that:

ρ̄ = r⋆ −
ξ

σ
. (A.45)

Taking into account that f ′(k⋆) = r⋆ yields equation (41). �

A.6 Numerical calculations

In addition to the parameters given in the tables, we have chosen a Cobb-Douglas production

function f(k) = kα with α = 0.3.

A.6.1 Nordhaus

ILA → util. OLG

We calculate what the ILA specifications ξ = 0.02, σ = 0.5, r⋆ = 0.055 imply for an observa-

tionally equivalent utilitarian OLG economy for different individual time preference rates ρ for

given lifetime T = 75.

ρ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

τ⋆
r -0.66% -0.89% -1.14% -1.40% -1.67% -1.95% -2.24% -2.54% -2.86% -3.17% -3.5%

ρ̂ 1.86% 2.00% 2.15% 2.31% 2.48% 2.66% 2.86% 3.06% 3.27% 3.49% 3.70%

dec. OLG → ILA

For ξ = 0.02, we calculate what combinations of individual parameters lead to r⋆ = 0.055

in a decentralized OLG economy and what ρ̄ exhibits the observationally equivalent ILA

economy for different lifetimes T of the individual households.

T=50:
ρ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

σ 0.98% 1.08% 1.20% 1.35% 1.54% 1.80% 2.15% 2.69% 3.59% 5.39% 10.77%

ρ̄ 3.46% 3.64% 3.83% 4.02% 4.20% 4.39% 4.57% 4.76% 4.94% 5.13% 5.31%

T=75:
ρ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

σ 0.65% 0.71% 0.79% 0.89% 1.02% 1.19% 1.42% 1.78% 2.37% 3.56% 7.11%

ρ̄ 2.41% 2.69% 2.97% 3.25% 3.53% 3.81% 4.09% 4.37% 4.66% 4.94% 5.22%
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T=100:
ρ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

σ 0.53% 0.59% 0.65% 0.73% 0.84% 0.98% 1.17% 1.47% 1.95% 2.93% 5.86%

ρ̄ 1.75% 2.09% 2.43% 2.77% 3.11% 3.45% 3.79% 4.14% 4.48% 4.82% 5.16%

const. OLG → ILA

For ξ = 0.02, T = 75 and given combination of σ and ρ, which yield r⋆ = 0.055 in the

decentralized OLG, we calculate r⋆ and τ⋆
r in a constraint social planner OLG economy

for different ρ̂, and what ρ̄ exhibits the observationally equivalent ILA economy.

ρ = 0.01, σ = 0.79, T = 75:

ρ̂ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 2.39% 2.68% 3.10% 3.59% 4.16% 4.81% 5.55% 6.36% 7.24% 8.18% 9.17%

τ⋆
r -0.52% -0.73% -0.85% -0.84% -0.68% -0.39% 0.03% 0.57% 1.22% 1.96% 2.78%

ρ̄ -0.14% 0.15% 0.57% 1.06% 1.63% 2.28% 3.02% 3.83% 4.71% 5.65% 6.64%

ρ = 0.015, σ = 0.89, T = 75:

ρ̂ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 2.19% 2.44% 2.81% 3.25% 3.78% 4.40% 5.11% 5.91% 6.78% 7.72% 8.71%

τ⋆
r -0.33% -0.62% -0.85% -0.93% -0.85% -0.61% -0.24% 0.27% 0.90% 1.63% 2.45%

ρ̄ -0.06% 0.19% 0.56% 1.00% 1.53% 2.15% 2.86% 3.66% 4.53% 5.47% 6.46%

ρ = 0.02, σ = 1.02, T = 75:

ρ̂ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 2.03% 2.23% 2.54% 2.93% 3.41% 3.99% 4.67% 5.45% 6.31% 7.25% 8.25%

τ⋆
r -0.08% -0.45% -0.79% -0.97% -0.98% -0.82% -0.50% -0.03% 0.57% 1.30% 2.12%

ρ̄ 0.06% 0.26% 0.57% 0.96% 1.44% 2.03% 2.70% 3.50% 4.34% 5.28% 6.28%

ρ = 0.025, σ = 1.19, T = 75:

ρ̂ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 1.93% 2.07% 2.30% 2.62% 3.05% 3.58% 4.23% 4.98% 5.83% 6.77% 7.78%

τ⋆
r 0.26% -0.21% -0.67% -0.97% -1.09% -1.02% -0.77% -0.35% 0.24% 0.95% 1.78%

ρ̄ 0.24% 0.38% 0.61% 0.93% 1.36% 1.89% 2.54% 3.29% 4.14% 5.08% 6.10%

ρ = 0.03, σ = 1.42, T = 75:

ρ̂ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 1.91% 1.98% 2.12% 2.35% 2.69% 3.16% 3.76% 4.49% 5.33% 6.28% 7.30%

τ⋆
r 0.61% 0.11% -0.45% -0.90% -1.16% -1.21% -1.04% -0.67% -0.12% 0.59% 1.42%

ρ̄ 0.24% 0.38% 0.61% 0.93% 1.36% 1.89% 2.54% 3.29% 4.14% 5.08% 6.10%

A.6.2 Stern

ILA → util. OLG

We calculate what the ILA specifications ξ = 0.013, σ = 1, r⋆ = 0.014 imply for an
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observationally equivalent utilitarian OLG economy for different individual time prefer-

ence rates ρ for given lifetime T = 75.

ρ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

τ⋆
r -0.09% -0.11% -0.13% -0.15% -0.17% -0.20% -0.23% -0.27% -0.31% -0.36% -0.42%

ρ̂ 0.12% 0.13% 0.13% 0.14% 0.15% 0.16% 0.17% 0.19% 0.20% 0.22% 0.25%

dec. OLG → ILA

For ξ = 0.013 and σ = 1, we calculate the resulting r⋆ in a decentralized OLG economy

for different time preference rates ρ and lifetimes T of the individual households and

what ρ̄ exhibits the observationally equivalent ILA economy.

T=50:
ρ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 4.98% 5.28% 5.89% 5.91% 6.26% 6.62% 6.99% 7.38% 7.77% 8.18% 8.96%

ρ̄ 3.68% 3.98% 4.29% 4.61% 4.96% 5.32% 5.69% 6.08% 6.47% 6.88% 7.30%

T=75:
ρ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 3.60% 3.91% 4.25% 4.61% 4.99% 5.39% 5.80% 6.23% 6.67% 7.12% 7.58%

ρ̄ 2.30% 2.61% 2.95% 3.31% 3.69% 4.09% 4.50% 4.93% 5.37% 5.82% 6.28%

T=100:
ρ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 2.92% 3.25% 3.61% 4.00% 4.41% 4.84% 5.28% 5.74% 6.20% 6.67% 7.15%

ρ̄ 1.62% 1.95% 2.31% 2.70% 3.11% 3.54% 3.98% 4.44% 4.90% 5.37% 5.85%

util. OLG → ILA

For ξ = 0.013, σ = 1, T = 75 and given combination of ρ and r⋆ in the decentralized
OLG, we calculate r⋆ and τ⋆

r in a constraint social planner OLG economy for different
ρ̂, and what ρ̄ exhibits the observationally equivalent ILA economy.

ρ = 0.01, T = 75, r⋆ = 0.0425:

ρ̂ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 1.38% 1.66% 2.05% 2.50% 3.02% 3.63% 4.32% 5.09% 5.92% 6.81% 7.74%

τ⋆
r -0.10% -0.40% -0.62% -0.68% -0.59% -0.34% 0.04% 0.56% 1.18% 1.89% 2.68%

ρ̄ 0.08% 0.36% 0.75% 1.20% 1.72% 2.33% 3.02% 3.79% 4.62% 5.51% 6.44%

ρ = 0.015, T = 75, r⋆ = 0.0461:

ρ̂ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 1.37% 1.64% 2.00% 2.41% 2.91% 3.49% 4.15% 4.90% 5.73% 6.62% 7.57%

τ⋆
r -0.11% -0.45% -0.72% -0.84% -0.81% -0.62% -0.28% 0.19% 0.79% 1.49% 2.27%

ρ̄ 0.07% 0.34% 0.70% 1.11% 1.61% 2.19% 2.85% 3.60% 4.43% 5.32% 6.23%
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ρ = 0.02, T = 75, r⋆ = 0.0499%:

ρ̂ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 1.37% 1.62% 1.94% 2.33% 2.78% 3.33% 3.96% 4.69% 5.50% 6.39% 7.34%

τ⋆
r -0.12% -0.50% -0.83% -1.01% -1.03% -0.90% -0.62% -0.20% 0.36% 1.03% 1.80%

ρ̄ 0.07% 0.29% 0.59% 0.94% 1.36% 1.86% 2.46% 3.15% 3.94% 4.81% 5.75%

ρ = 0.025, T = 75, r⋆ = 5.39:

ρ̂ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 1.36% 1.59% 1.89% 2.24% 2.66% 3.16% 3.76% 4.45% 5.24% 6.11% 7.05%

τ⋆
r -0.13% -0.55% -0.93% -1.17% -1.26% -1.19% -0.98% -0.61% -0.11% 0.53% 1.27%

ρ̄ 0.06% 0.29% 0.59% 0.94% 1.36% 1.86% 2.46% 3.15% 3.94% 4.81% 5.75%

ρ = 0.03, σ = 1.42, T = 75:

ρ̂ 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

r⋆ 1.36% 1.57% 1.83% 2.15% 2.53% 3.00% 3.55% 4.20% 4.95% 5.80% 6.72%

τ⋆
r -0.14% -0.60% -1.03% -1.33% -1.48% -1.48% -1.34% -1.04% -0.59% -0.01% 0.70%

ρ̄ 0.06% 0.27% 0.53% 0.85% 1.23% 1.70% 2.25% 2.90% 3.65% 4.50% 5.42%
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