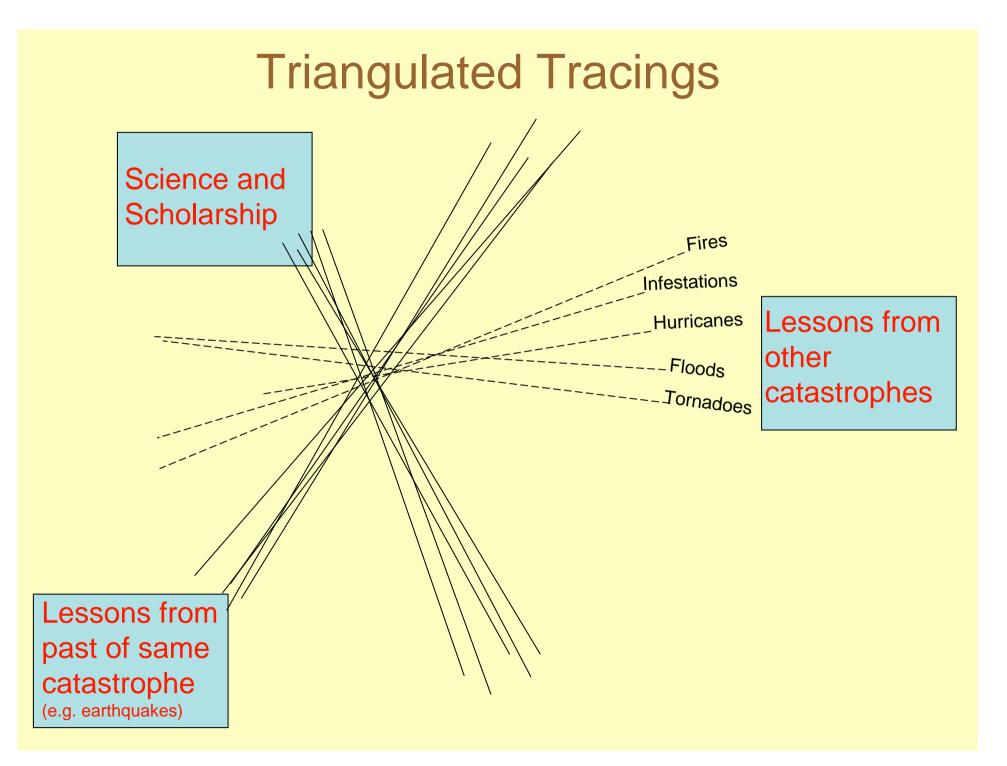
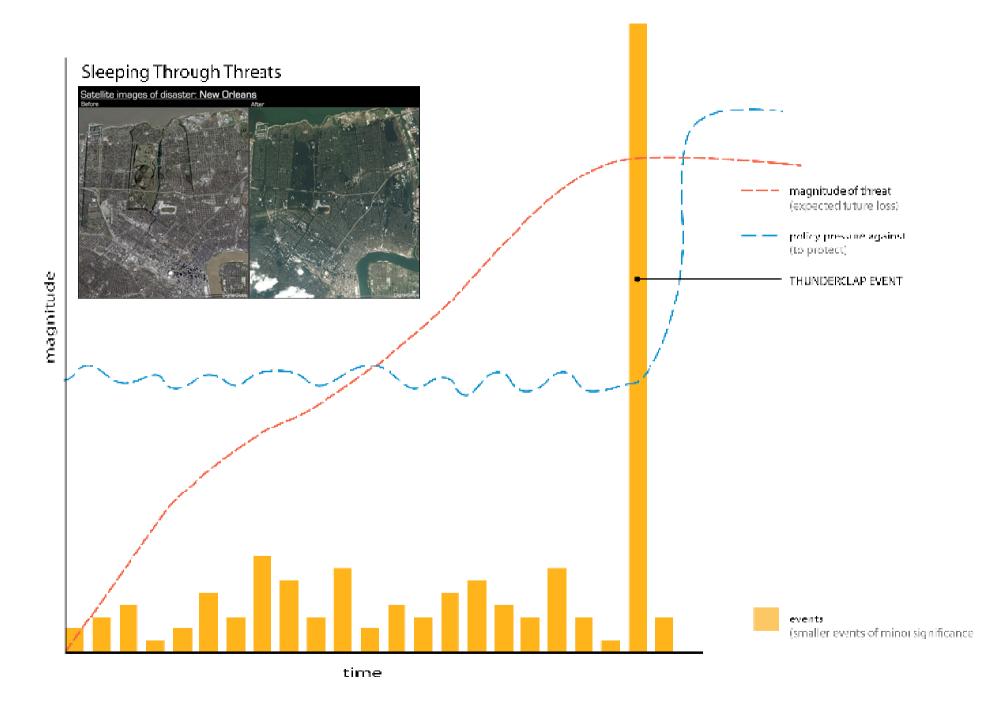
Man and Nature: Partners in Disasters

May 31, 2007


Richard Zeckhauser


Toulouse Conference

work with Alan Berger, Carolyn Kousky, Alberto Abadie

Four Major Points

Triangulated Tracings
Acting Before, During, and After Disasters
JARring Actions
Fat Tails

	Affecting the Future	Coping with the Present	Remediating the Past
Probabilities Attention and Prediction Impacts	A	B	C
Positive Action Net Negative	D	E	F

	Affecting the Future	Coping with the Present	Remediating the Past
Probabilities Attention and Prediction Impacts	A	В	С
Positive Action Net Negative	D	E	F

Attention and Prediction

Affecting the Future

Probabilities markets, e.g., fiscal solutions blue ribbon studies, e.g., IPCC academic analyses, e.g., KSG prediction markets?

Impacts studies mentioned above FAT TAILS (Normal misleading) too many 12-foot men future terrorist losses

	Affecting the Future	Coping with the Present	Remediating the Past
Probabilities Attention and Prediction Impacts	А	В	С
Positive Action Net Negative	D	E	F

Action

Affecting the Future

Positive protection planning mitigation risk spreading

Net Negative JARring actions

	Affecting the Future	Coping with the Present	Remediating the Past
Probabilities Attention and Prediction Impacts	А	В	C
Positive Action Net Negative	D	E	F

Probabilities

Attention and Prediction

Impacts

Remediating the Past

Dribble versus blast consequences Risk uncertainty and ignorance Ticking bombs global warming pine beetles monocultures Sleeping dogs brownfields risk, economic development mine wastes abandoned Alarm clock events Yellowstone 1988 France summer 2003 9/11/01

Probabilities Attention and Prediction Impacts Positive Action Net Negative	Affecting the Future A D	Coping with the Present B E	Remediating the Past		Remediating the Past
					Who payswho owns losses? Unclear responsibility brownfields, generations of polluters
	Positive			Local, regional, or national Now or later Bottom up or centralized allocation Voluntary, litigated (payment from others) or taxation	
Action			Property right in status quo- e.g., grandfathering risks After-the-fact payments		
Net Negative			et Negativ	ve	Versus insurance, subsidized insurance Politics and distortion HAZWRAP nuclear waste sites People versus places restored

JARring Actions

- Acronym: Jeopardize <u>A</u>ssets that are <u>R</u>emote
- A particular type of externality: cost imposed on others who are spatially or temporally distant
- Could also be distant due to the probabilistic nature of imposed costs

The Problem

Normal mechanisms to control externalities (e.g., liability, contracting, political regulations for those in jurisdiction) do not work well for JARring actions.

Policy Challenges

- Hard to assign responsibility for consequences → plausible deniability
- Collective action problems
- People tend to look for local causes
- Scientific uncertainty
- Hard to calculate changes in risk levels

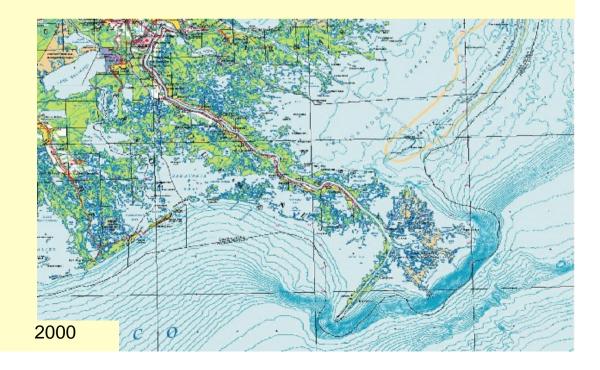
JARring Actions that Increase Flood Risks for Others

- Filling wetlands
- Increasing impervious surface area
- Construction of dams + levees/poor planning and design decisions
- Increasing drainage of agricultural land

One Example:Loss of a Storm Buffer

Louisiana contains about 40% of the country's wetlands but is also home to 80% of the country's wetland loss; since 1900 over 1 million acres have vanished.

(PHOTO BY ELLIS LUCIA / The Times-Picayune)


Even accounting for several small restoration projects underway, it is estimated that another 513 square miles (a little over 328,000 acres) of land will be lost by 2050.

Tracking the Loss

The rate of wetland loss has dropped from a high of about 40 square miles per year in the 1960s to 24 square miles per year today.

An area of wetlands close to the size of Manhattan is lost annually off the Louisiana coast, or about one football field of wetlands is lost every 38 minutes

Source: http://www.publichealth.hurricane.lsu.edu/Louisiana%20C oastal%20Land%20Loss.htm

Causes of Loss: Lack of Sediment Reaching Gulf

Sources: <u>http://www.lewis-clark.org/content/content-article.asp?ArticleID=1412</u> <u>http://www.industcards.com/hydro-usa-ne-dakotas.htm</u>

sediment stuck behind dams

© 2000 Airphoto, Jim Wark. All rights reserved.

Sediment Sent to Sea

Nine major shipping lanes

8,000 mile network of canals to facilitate exploration

deadly levels of saltwater infiltration into freshwater marshland

Subsidence due to lack of sediment, exacerbated by withdrawals of oil and natural gas

Dredging of Canals

MRGO (Mississippi River Gulf Outlet)

http://www.saveourlake.org/wetlands.htm

source: www.saveourlake.org

•MRGO is 76 miles long (Panama Canal is 50 miles), and required the removal of 60 million more cubic yards of earth than did the Panama Canal.

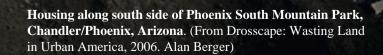
•Panama Canal = 14,000 vessels per year, \$400 million annual tolls

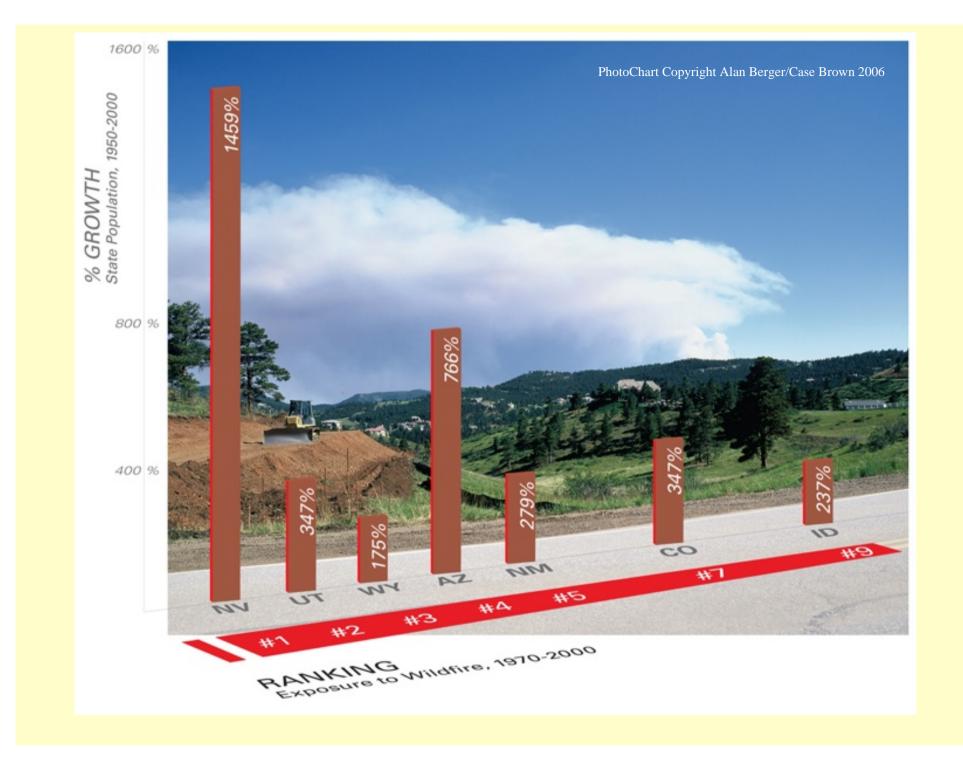
•MRGO = < 5 ships per day, \$0 tolls, \$13 million to \$37 million per year just to keep it dredged.

•Construction completed in 1965 - killed more than 11,000 acres of cypress swamps and turned over 20,000 acres of brackish marsh into saline marsh (saltwater intrusion), killing all freshwater vegetation and wildlife.

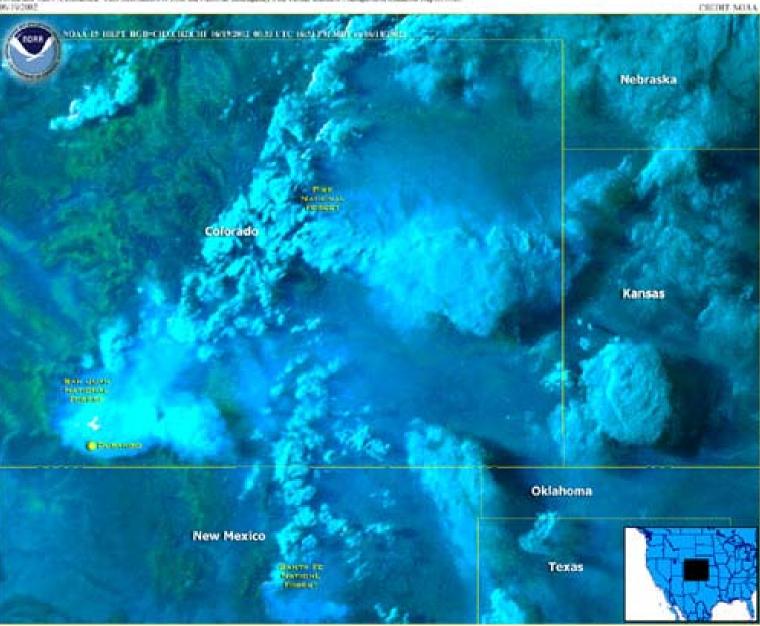
The 2000 floods in Britain

- 10,000 homes and businesses were flooded
- According to the BBC, rainfall in the fall of 2000 was the highest since 1766 when record keeping began
- 5 million people in Britain and Whales are at risk from flooding; £214 billion in property is at risk


Images from Cambridge University Centre for Risk in the Built Environment http://www.arct.cam.ac.uk/curbe/floods.html

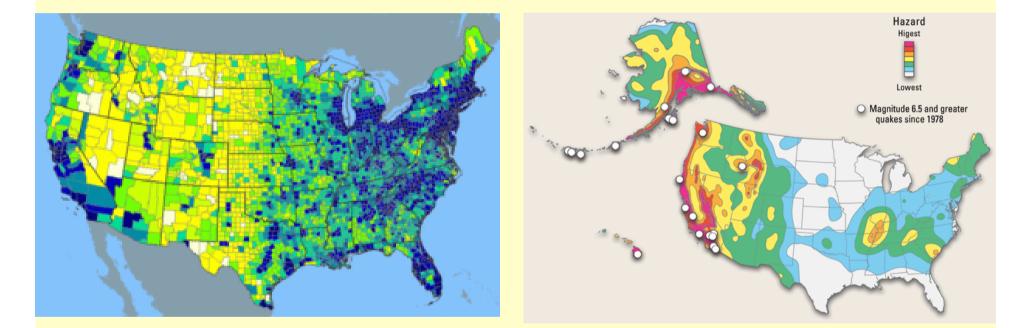

Issues Left to the Audience (Due to time limitations)

- Government Action Needed
- Possible Policy Responses
- Incentives, Insurance and Planning for the Future

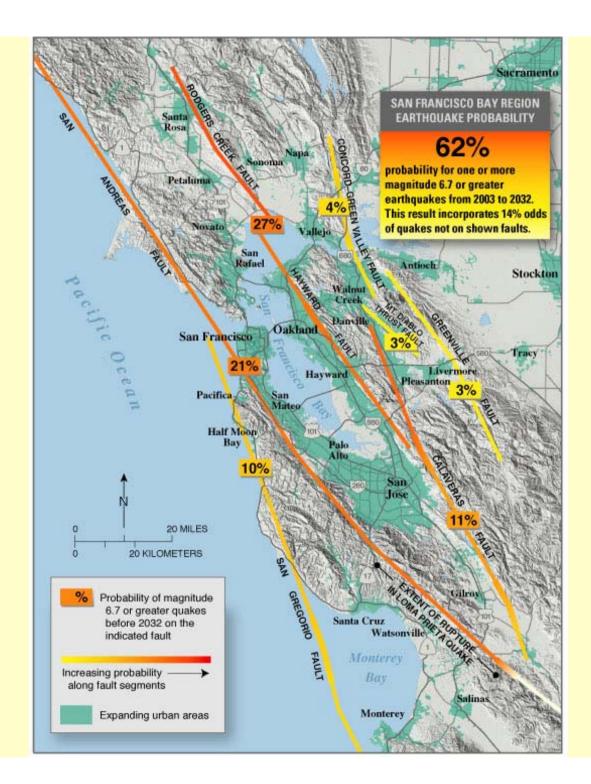

What's Wrong with This Picture?

1111

Heat algorithms (med) and smoke (light blue lease) ary wellful from free burning in Colorado and New Mexico. The Reyman Fire has borned 183,000 score in Pilez National Forest, CD and was 40% contained. The Mesonary Balge Fire has specified 43,320 score in Same Fe Mational Forest and was Pilez National Forest and was 20% contained. The Reyfold Transport Fire has specified 43,300 score in Same Fe Mational Forest and was Pile contained. This information is from the Supervised Interagency Fire Contae Indiana Management Situation Report from the Pilez National


Historically Significant Wildland Fires 1988-1999 Continental U.S.					
Date	Name	Location	Acres	Significance	
1988	Yellowstone	Montana and Idaho	1,585,000	Large Amourt of Acreage Burned	
1988	Canyon Creek	Montana	250,000	Large Amourt of Acreage Burned	
June 1990	Painted Cave	California	4,900	641 Structures Destroyed	
June 1990	Dude Fire	Arizona	24,174	6 Lives Lost 63 homes destroyed	
October 1991	Oakland Hills	California	1,500	25 Lives Lost and 2,900 Structures Destroyed	
August 1996	Cox Wells	Idaho	219,000	Largest Fire of the Year	
1998	Flagler/St. John	Florida	94,656	Forced the evacuation of thousands of residents	
August 1999	Dunn Glen Complex	Nevada	288,220	Largest Fire of the Year	
September - November 1999	Kirk Complex	California	86,700	Hundreds of people were evacuated by this complex of fires that burned for almost 3 morths	

FAT TAILS: Observe massive multiple of largest to next in three categories: Largest fire of year, people evacuated, and structures destroyed.


Earthquakes and People

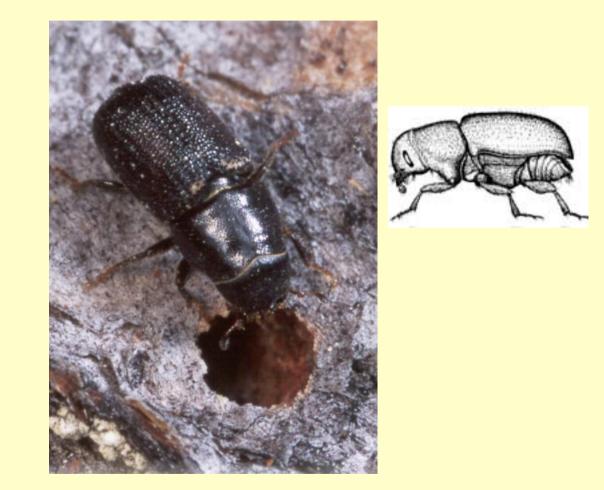
- We routinely build in areas at risk from earthquakes consider the Bay Area.
- This is largely because earthquakes are an "amenity risk."
- Amenity Risks: risks that have associated with them a benefit
- Compare to Noxious Risks

Comparing population density to earthquake hazard

Source: Wikipedia, USGS

Potential Disaster: Earthquake in Istanbul

- Scientists predict large earthquake likely in next 30 years
- 1000 mile faultline running east to west
- Population of up to 15 million
- Higher rents in safer areas
- Many buildings do not conform to building codes



Source: http://archives.cnn.com/2000/NATURE/04/28/istanbul.quake.enn/

		Largest E	arthquakes	6		Deadlies	st Earthqua	kes
Yea	ar Date	Magnitude	Fatalities	Region	Date	Magnitude	Fatalities	Region
200	03/28	8.7	1,313	Northern Sumatra, Indonesia	10/08	7.6	80,361	Pakistan
200	12/26	9.0	283,106	Off West Coast of Northern Sumatra	12/26	9.0	283,106	Off West Coast of Northern Sumatra
200	09/25	8.3	0	Hokkaido, Japan Region	12/26	6.6	31,000	Southeastern Iran
200	02 11/03	7.9	0	Central Alaska	03/25	6.1	1,000	Hindu Kush Region, Afghanistan
200	06/23	8.4	138	Near Coast of Peru	01/26	7.7	20,023	India
200	0 11/16	8.0	2	New Ireland Region, P.N.G.	06/04	7.9	103	Southern Sumatera, Indonesia
199	9 09/20	7.7	2,297	Taiwan	08/17	7.6	17,118	Turkey
199	08 03/25	8.1	0	Balleny Islands Region	05/30	6.6	4,000	Afghanistan- Tajikistan Border Region
199	10/14	7.8	0	South of Fiji Islands	05/10	7.3	1,572	Northern Iran
	12/05	7.8	0	Near East Coast of Kamchatka				
199	96 02/17	8.2	166	Irian Jaya Region Indonesia	02/03	6.6	322	Yunnan, China
199	95 07/30	8.0	3	Near Coast of Northern Chile	01/16	6.9	5,530	Kobe, Japan
	10/09	8.0	49	Near Coast of Jalisco Mexico				
199-	10/04	8.3	11	Kuril Islands	06/20	6.8	795	Colombia
199	08/08	7.8	0	South of Mariana Islands	09/29	6.2	9,748	India
199	12/12	7.8	2,519	Flores Region, Indonesia	12/12	7.8	2,519	Flores Region, Indonesia
199	01 04/22	7.6	75	Costa Rica	10/19	6.8	2,000	Northern India
	12/22	7.6	0	Kuril Islands				
199	0 07/16	7.7	1,621	Luzon. Philippine Islands	06/20	7.4	50,000	Iran

FAT TAILS: Observe massive multiple of largest to next in fatalities.

Mountain Pine Beetles

Dendroctonus ponderosae

Mountain Pine Beetles

- Largest infestation in North American history
- Infest area in British Columbia three times the size of Maryland

- 12 western states
- Attacks older, overcrowded, even-aged trees perfect food resulting from past foresting activities
- Result of wildfire suppression and forest management flaws
- Associated with warming winters (global warming?)
- Timber companies may benefit, millions of trees to be removed
- 80% of the coniferous forest in the American West is predicted to be die due to MPB over next 100 years

By 2250 most of the natural resources will be mined out of the western U.S., leaving over 100,000 square miles of altered landscape.

Trapper Mine (surface coal). 2000.Western Colorado.(From *Reclaiming the American West*, Alan Berger) 166. **Bingham Canyon Mine** (copper). 2000. Near Salt Lake City, Utah.(From *Reclaiming the American West*, Alan Berger)

Top taxpayer liability in the U.S.

Existing Financial Assurance (Bonding) = \$33.2M

Estimated Cost to Reclaim at \$50,000/Acre = \$1.35B

Estimated Shortfall of Liability = \$1.317B

Metal Mines Pre-law and Post-law are determined state by state

Fat Tails

1.Most familiar individual outcomes, e.g., human heights, have small variability relative to the mean. We do not see 12-foot men.

2.Other outcomes are aggregates, with large numbers of trials. They also have low variability relative to the mean.

3. These are the models we carry in our head. But they are *fundamentally misleading* when we think about low probability catastrophes.

4.Catastrophes: low probability, single-event outcomes. Their magnitudes (acres lost to wildfire, people lost in a terrorist attack, damage due to a flooding incident have high variability relative to the mean.

5. The largest experience to date is a poor indicator for the size of the next catastrophe larger than that, or even for expected losses.

6.Prior to 9/11, the most people lost to a terrorist attack in the U.S. was below 300. Now the number is fewer than 3,000. But there is a good chance that 100,000 could be lost, or many more.

7. Theme of Martin Weitzman review of Stern Report. Report perhaps right for wrong reason. Need protection against outlier event. (Focuses more on risk aversion, whereas even with expected value there is a scary very distant right tail.)

8.5-7 million deaths from Avian Flu. Why not 50,000 or 50 million?

UK Top 10 Natural Disasters

Number Killed

Disaster type	Date	No Killed
Wind Storm	4-Dec-1952	4,000
Extreme Temperature	Aug-2003	2,045
Slides	21-Oct-1966	140
Wind Storm	Jan-1990	85
Flood	15-Aug-1952	34
Epidemic	4-May-1985	34
Wind Storm	5-Jan-1991	28
Epidemic	Aug-1984	26
Wind Storm	24-Jan-1984	22
Wind Storm	14-Jan-1968	20

Source: EM-DAT: The OFDA/CRED International Disaster Database, www.em-dat.net - Université Catholique de Louvain - Brussels - Belgium

Disaster type	Date	Damage US* (000's)
Flood	11-Oct-2000	5,900,000
Wind Storm	Jan-1990	4,893,350
Wind Storm	4-Jan-1998	1,991,400
Wind Storm	15-Oct-1987	1,700,000
Wind Storm	24-Oct-1998	665,400
Wind Storm	7-Jan-2005	650,000
Wind Storm	23-Dec-1995	600,000
Flood	9-Apr-1998	500,000
Wind Storm	26-Oct-2002	400,000
Wind Storm	28-Oct-2000	290,723

Economic Damages

France Top 10 Natural Disasters

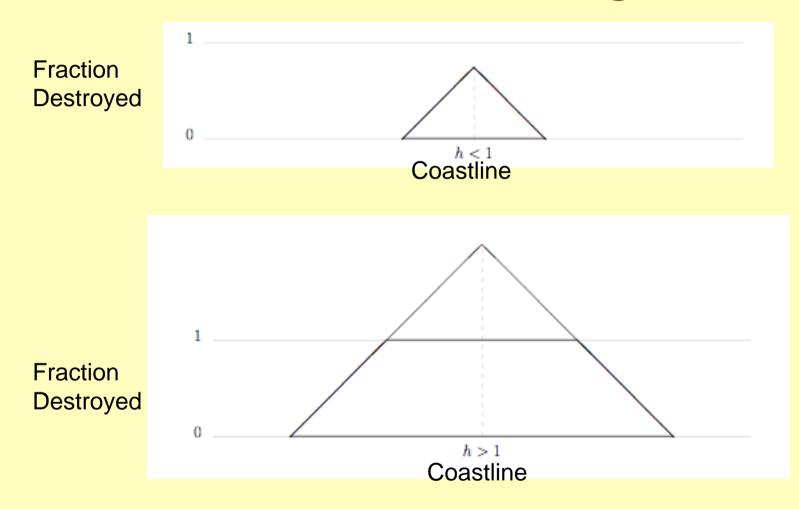
Number Killed

Disaster type	Date	No Killed
Extreme Temperature	1-Aug-2003	14,947
Wind Storm	26-Dec-1999	92
Slides	16-Apr-1970	72
Wind Storm	Jan-1990	66
Wind Storm	22-Sep-1992	47
Earthquake	11-Jun-1909	46
Slides	10-Feb-1970	42
Flood	12-Nov-1999	36
Flood	30-Sep-1958	35
Flood	8-Jul-1977	26

Source: EM-DAT: The OFDA/CRED International Disaster Database, www.emdat.net - Université Catholique de Louvain - Brussels - Belgium

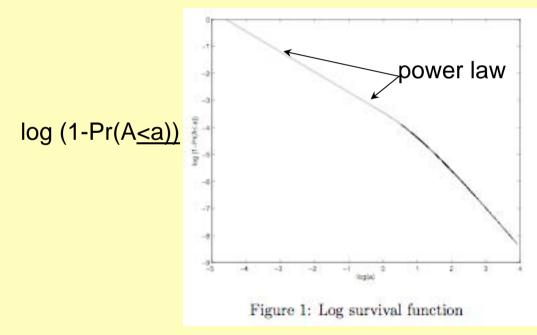
Disaster type	Date	Damage US* (000's)
Wind Storm	26-Dec-1999	8,000,000
Extreme Temperature	1-Aug-2003	4,400,000
Wind Storm	Jan-1990	1,969,275
Wind Storm	16-Oct-1987	1,700,000
Drought	Jul-1989	1,600,000
Flood	2-Dec-2003	1,500,000
Flood	8-Sep-2002	1,190,000
Extreme Temperature	20-Apr-1991	772,000
Flood	17-Jan-1995	700,000
Flood	Mar-1983	604,000

Economic Damages

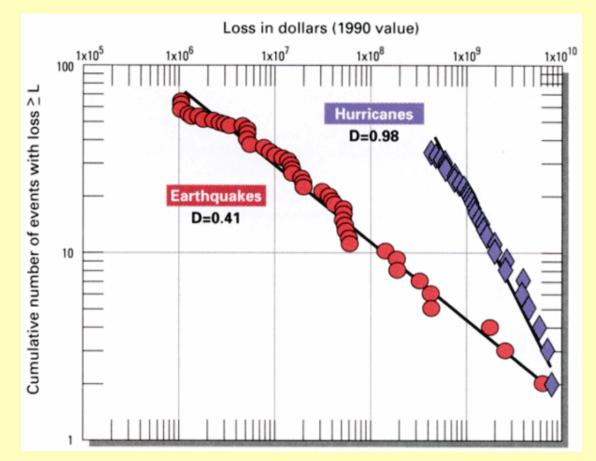

Winter Storms in Europe

- SwissRe calls them a "major catastrophe loss potential"
- e.g. December 1999 storms: Lothar and Martin
 - 80+ deaths
 - US \$18 billion in damages
- AIR estimates Europe could experience storm with insured losses over €40 billion (about US\$54 billion).

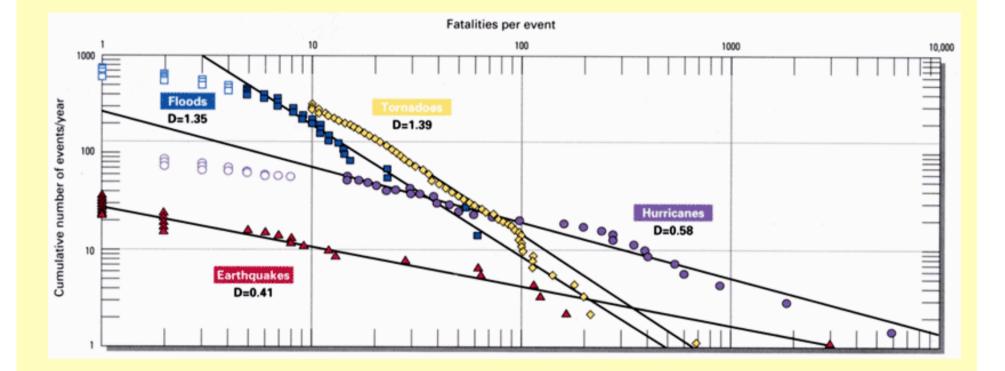
Example of forest loss from a winter storm. Source: SwissRe, "Storm over Europe – An underestimated risk "


Model of Damages

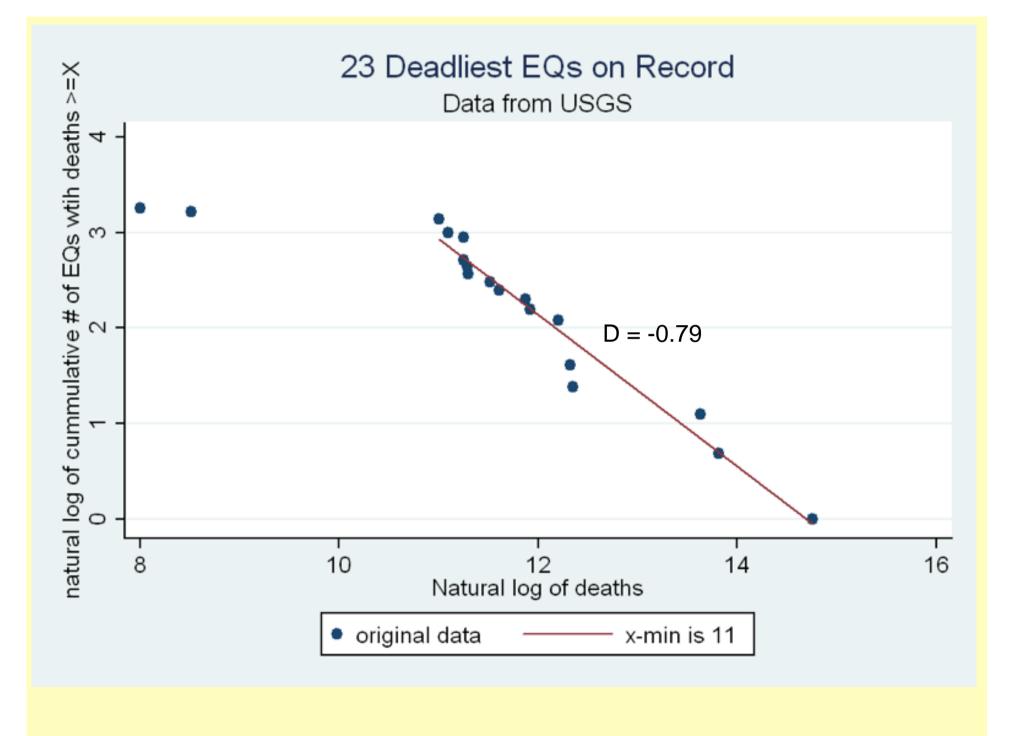
Power Law Result

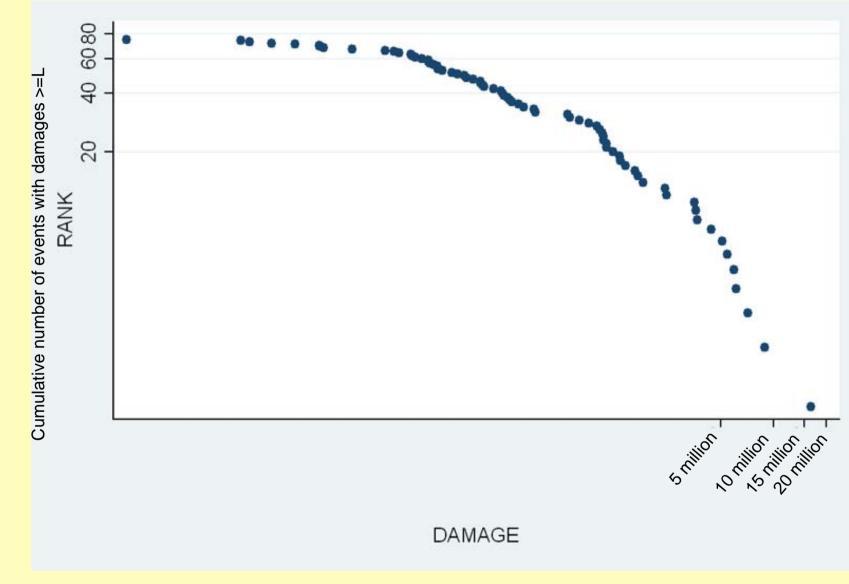

Now, suppose that h has a Pareto distribution with parameters (c_0, k) : $\Pr(h \le c) = 1 - \left(\frac{c_0}{c}\right)^k$, for $c_0 \le c < \infty$.

k = 3/2



Power Law: $p(x)=Cx^{D}$

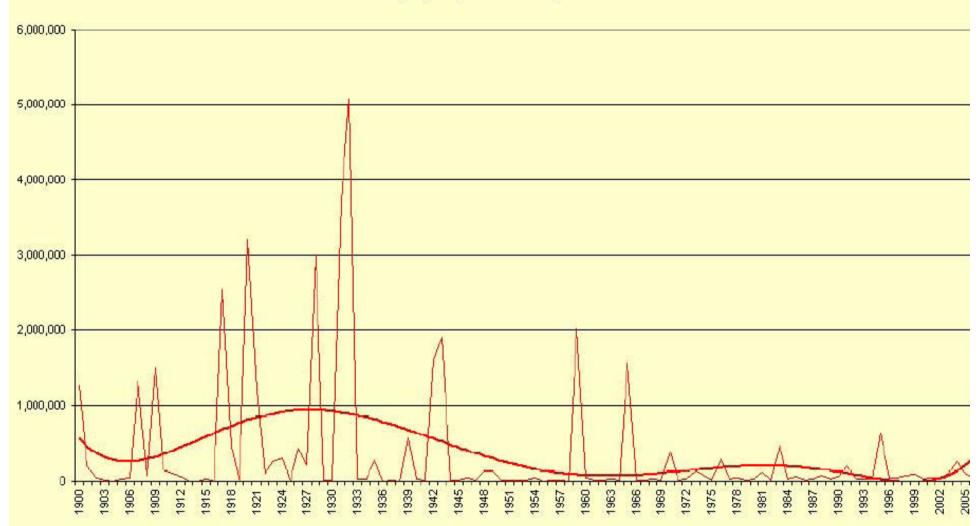

log(p(x)) = log(C) + Dlog(x)



Source: Barton, C. and S. Nishenko (2003). Natural Disasters—Forecasting Economic and Life Losses. USGS Fact Sheet. Available online at: http://pubs.usgs.gov/fs/natural-disasters/index.html

Source: Barton, C. and S. Nishenko (2003). Natural Disasters—Forecasting Economic and Life Losses. USGS Fact Sheet. Available online at: http://pubs.usgs.gov/fs/natural-disasters/index.html

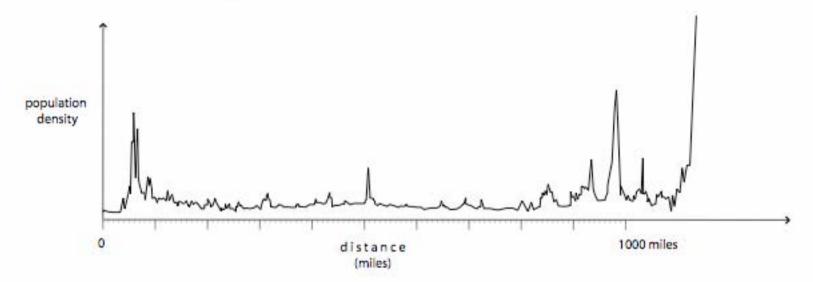
Yearly Total Damages from Floods in the United States

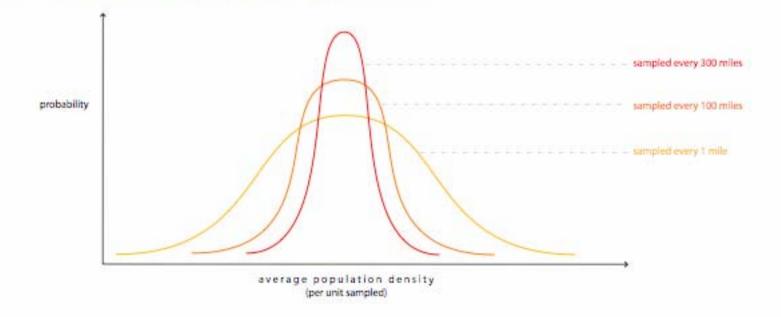

This is from flood damage data from a reanalysis of National Weather Service estimates from 1926-2003. Available online at: http://www.flooddamagedata.org/

Loss = Impact x Density

Impact=f(x) Density=g(d) Loss is integral of the two functions...

Future work f(x) is being affected by human actions g(d) is shifting to the right in many high-risk areas g(d,x) becomes more concentrated as x increases


Total number of people reported killed by disasters: 1900 - 2006


Equation for time trend-line : y = 0.0003x6 - 0.0313x5 + 11.684x4 - 687.31x3 + 17337x2 - 151530x + 703336: R2 = 0.13

Source : "EM-DAT : The OFDA/CRED International Disaster Database; www.em-dat.net - Université catholique de Louvain - Brussels - Belgium"

POPULATION DENSITY ALONG A COASTLINE

PROBABILITY DISTRIBUTION OF POPULATION DENSITY SAMPLES

JARring Actions The Reality

While we can never contract with the future or accurately predict all of the consequences of our actions and policies, policymakers must extend their thinking about their impacts and the impacts of private entities beyond the local, the near term, the likely, and the recently newsworthy.

FAT TAILS The Reality

Uncertainty abounds when we confront low probability events, often shrouded by the cloud of ignorance. Distributions of outcomes will not be known. Experience across classes of catastrophes and across disparate geographic realms indicates that such distributions are well described by fattailed distributions. The past is no longer prologue to the future; it is an underestimate. Where we have been surprised in the past, greater surprises must be expected in the future.