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1 Introduction

The ongoing restructuring process in the European electricity sector has led to the emergence of

a wholesale market for producers, distributors and non-physically invested traders. This market is

bipolar with a spot part and a forward part for the trading of electricity in advance. Forward contracts

allow hedging for actors economically exposed to the variability of electricity spot price.

In this paper we investigate through time series analysis the dynamic and distributional properties

of daily spot and forward electricity prices across European wholesale markets. We use a unique

database from a major energy trader about prices from over-the-counter markets (2002-2005) of power

contracts to derive a first assessment of the efficiency of these markets. We also derive implications from

the relation between spot and forward prices for the evaluation of hedging effectiveness of bilateral

contracts by the mean of bivariate GARCH models. Finally, we investigate the power of dynamic

correlation parametrization for hedging purpose. Our intuition is that prediction of the data generating

process (DGP) for the correlation coefficient can improve the hedge ratio forecast.4 Some more

intuitions on this topic are given in the introduction of the paper by Ling and McAleer (2003) where it is

argued that forecasting variances and covariance processes may induce some noises in the forecasting of

the correlation coefficient if the specifications for the variances do not capture all the information, which

is the case in general. Unfortunately, maybe due to the particularities of our data, no improvement in

the forecasting of the hedge ratio is achieved.

But why is there a need for time-varying hedge ratio and time-varying correlation? The correlation

constancy is a rather general problem because correlations estimations are involved in a number of

issue. Firstly, correlation between financial returns are of primary importance to compute the efficiency

frontier and market portfolio which gives the lowest risk-return ratio. To fully benefit from gains from

portfolio diversification, an ex ante measure of the correlation is needed, which is usually estimated

by ex post measures. Secondly, correlations are used to calculate risk ratio for VaR (see Jorion, 1995).

A miscalculation of the correlations may under-evaluate the necessary provision for a firm facing a

given aggregate financial risk. Thirdly, derivatives with several underlying assets can only be priced

with an estimation of the correlation between considered assets. Fourthly, hedge ratio is computed by

the covariance estimation which is correlation dependent.

The optimal hedge ratio (OHR) is defined as the proportion of futures contracts to cover the cash

position in order to minimize the portfolio risk (Ederington, 1979). When risk aversion is not more

assumed to be infinite and when futures prices are biased, the OHR can be defined with a reference to

a given utility function. The OHR then incorporate a speculative component inversely proportional

to the risk aversion coefficient. For static hedging, the risk-minimizing OHR is computed using OLS

regression of cash prices returns on futures prices returns. Despite useful and easily computable, this

static hedge ratio does not take into account the relevant conditioning information available to traders

at the moment the decision is taken.

A dynamic version of the Ederington’s (1979) ratio can be established using available information. If

we denote the spot and futures log differences for the ith market as si,t and fi,t, respectively, then the

minimum-variance hedge ratio is defined as

bt =
Cov(si,t, fi,t|ψt−1)

Var(fi,t|ψt−1)
(1)

4The idea of modelling directly the hedge ratio is underlying in Moschini and Myers (2002) but the authors use a modified
version of the BEKK model which does not specify any dynamic for the conditional correlation coefficient.
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where ψt−1 is the σ-algebra generated by all the available information on all markets up to and includ-

ing time t. The role of the conditional correlation coefficient can be put forward using a straightforward

modification of (1):

bt = ρi,sf

√
hi,ss,t√
hi,ff,t

(2)

where ρi,sf is the constant correlation coefficient between spot and futurs returns for the ith market

and hi,ss,t and hi,ff,t are variances for the same market conditionally on the available information for

spot and futures data, respectively. Because the hedge ratio could be estimated by the product of

the correlation coefficient with the ratio of the standard deviations, the constancy of the correlation

coefficient between spot and futures markets has to be further investigated.

The main contribution of this paper lies in the use of a wider class of densities for our return series and

a larger number of ARMA-GARCH specifications to take into account autocorrelations also present in

the series. Indeed, serial correlation is a key stylized fact of power price returns. This is explainable by

the electricity financial market microstructure where a benefit can not be drawn from any predictability

in the return overnight.

Our paper is organized as follows. In section 2, we present the background literature useful for our

study. We present wholesale electricity markets in Europe, the concept of forward trading for risk

reduction, some stylized facts about electricity price behavior and models dedicated to the representa-

tion of these stylized facts and previous attempts to compute the time-varying optimale hedge ratio.

The data used in the paper as well as descriptive statistics and preliminary non normality analysis

are provided in section 3. Section 4 contains the econometric univariate methodology and findings

on each series. In section 5 we detail some multivariate models and give their estimation results for

some pairs of series of spot and forward returns. Implications for hedging are deduced. Finally some

concluding remarks are offered in section 6.

2 Background

2.1 Wholesale electricity markets in Europe

European electricity markets have experienced some dramatic changes in recent years. The objective

to reach some more cost-reflective prices for final consumer has led European Commission to introduce

the opening of markets to competition into national laws.5 Despite the ideal of “Contestable Market”

is far from being attained, progress have been observed in most countries. At least, even if some

markets remain highly concentrated, a wholesale market exists or in a single place (power exchange)

either through bilateral contracts via some brokers. The intuition that a centralized market (Pool) is

more efficient is disproved by the English experience. The British Pool established in 1991 has been

abolished in 2001 for a more flexible structure (NETA) allowing for bilateral transactions. Today,

despite numerous markets for voluntary trading give rise to a coordination problem, they remain less

exposed to manipulation.

Nevertheless, attempts to install organized exchanges for electricity markets have not yet been suc-

cessful. Several exchange places have collapsed or have been abolished. In addition to the British

market, the California exchange collapsed in 2001 because of the authorization given to utilities to
5An exhaustive information on this subject is available on the European Commission DG Competition web site at:
http://ec.europa.eu/comm/competition/sectors/energy/inquiry/index.html
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trade bilaterally. The NYMEX power contracts have been abandoned because of a lack of trades. In

this sense, Wilson (2002) concludes: “necessity and viability of exchanges remain doubtful”(p. 1327)

As a matter of fact, even if the bilateral contracts are dramatically less transparent than exchanges,

we must observe that these contracts remain the privileged tool for experienced actors in these mar-

kets. The recent survey by Strecker and Weinhardt (2001) confirms this view for the European case.

Authors show that trading is tremendously larger in OTC markets than in exchanges. Despite their

study only considers the German case, our experience leads to think that this behavior may be true

of the whole European market. Other developments on this issue can be found in Smeers (2004) or

Bosco et al. (2006).

2.2 Forward markets for electricity and risk reduction

Deregulation of power markets and subsequent unbundling have led to the creation of forward mar-

kets because of new risks involved in this activity. As wisely said by Wilson (2002) :“State-owned

enterprises have the advantage that they share financial risks among all taxpayers. In the era of ver-

tically integrated utilities, they too were effective shock absorbers because their own generation and

transmission sufficed for most retail loads. External shocks to hydro supplies or fuel prices were mod-

erated by long-term procurement contracts, and by regulations allowing fuel costs to be paid by retail

customers via amortized charges. [...] Because regulators approved tariffs periodically, cost shocks

and volatile wholesale prices were averaged and spread over long periods, and further moderated by

cross-subsidies among large segments of customers. This scheme survived large fuel-cost shocks and

high costs for nuclear plants, but ultimately the disparity in some states between the utilities costs

and the prices offered by independent power producers motivated reconsideration.”(p. 1329) or “The

insurance implicit in vertical integration and the regulatory compact ends when liberalized markets

begin; the old risks remain but in the new regime the terms of trade between sellers and buyers are

pecuniary risks for each party.”(p.1335)

Efficient forward markets would theoretically lead to an efficient risk-sharing along the supply chain.

They would allow actors of the energy industry to be exposed to power prices volatility to a lesser

extent. The need for hedging is motivated by estimated sample volatilities for electricity prices, that

are by far the highest for commodities.6 Such levels for price volatilities are generally explained by the

conjunction of three factors: the non-storability of power, the rigidity of demand and the convexity of

cost function.7 Which is expressed as follows by Borenstein (2002): “In nearly all electricity markets,

demand is difficult to forecast and is almost completely insensitive to price fluctuations, while supply

faces binding constraints at peak times, and storage is prohibitively costly. Combined with the fact

that unregulated prices for homogeneous goods clear at a uniform, or near-uniform, price for all sellers

– regardless of their costs of production – these attributes necessarily imply that short-term prices for

electricity will be extremely volatile. Problems with market power and imperfect locational pricing

can exacerbate the fundamental trouble with electricity markets.”(p. 191). According to the author,

causes of observed extreme volatility are themselves due to more profound characteristics of electricity
6The EIA (2002) Report on derivatives for energy commodities provides some interesting benchmarks about volatility
levels in commodity markets (see table 3 p. 12). For instance, during the period 1989-2001, estimated volatility for
non-ferrous metals ranges from 12.0% to 32.3%. It ranges from 20.3% to 99.0% for agricultural commodities, from 38.3%
to 78% for natural gas and petroleum and from 13.3% to 71.8% for meat. Remember that it is only 15.1% for S&P 500
during the same period. Volatilities for electricity prices range from 309.9% to 435.7% for major U.S. markets during
the period 1996-2001.

7The convexity of the cost function has some distributional properties that we will explore during the estimation phase
of the paper. The intuition behind the consequence of convexity for price distribution lies in the following assertion :
“With convex marginal costs and normally distributed demand, the distribution of spot power prices becomes positively
skewed.”(Bessembinder and Lemmon, 2002, p. 1360) We therefore expect to find some significant skewness and kurtosis
in our data.
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markets. First, little flexibility has been built in to the demand side of the market. The seldom use of

metering through demand-response program does not give a sufficient answer to the problem. Second,

the price volatility resulting from inelastic demand and inelastic supply (when output nears capacity)

is further exacerbated by the high capital intensity of electricity generation. Third, the tight supply

situation is exacerbated if markets are not fully competitive. Tight supply conditions in electricity

markets put even a fairly small seller in a very strong position to exercise market power unilaterally,

because there is very little demand elasticity and other suppliers are unable to increase their output

appreciably. Market power is easier to exercise in electricity markets when the competitive price would

have been high anyway, it exacerbates the volatility of prices and further reduces the chance that prices

will remain in a reasonable range.8

In its analysis of the microstructure of electricity markets, Wilson (2002) discriminates between forward

markets for reserves, forward markets for transmission and forward markets for energy. By sequentially

combining a day-ahead market with a real-time market, modern wholesale energy markets provide an

efficient tool for managing trading. As pointed out by Wilson, “Real-time energy demand can typically

be predicted day-ahead within 3% for each hour, so day-ahead scheduling largely suffices.”(p. 1326).

This is a central remark for our analysis allowing to consider day-ahead markets as spot markets when

speaking about risk reduction. The main risk incurred is then rarely through the spot but rather

through the day-ahead market (or market index).

Forward markets allow longer commitments than in RT or DA markets, via bilateral contracts which

are physical or financial. An evaluation from Wilson gives for a mature system up to 80% to long-term

contracts, 20% to day-ahead and less than 10% to spot. Long-term contracts are often specified as

contracts for differences (CfD) as extensively traded in the NordPool.

Of course, forward contracts are termed physical because delivery is expected, but because all trans-

actions can be reversed by purchases or sales in the spot market, all forward contracts are inherently

financial. Wilson adds: “The division of the market between long-term contracting directly or through

brokers, and short-term (day-ahead or day-of) trough power exchanges is partly an artifact of the insti-

tutional arrangements.[...] Their public purpose is to ensure a transparent and liquid forward market

whose prices can be used as benchmarks less volatile than spot prices. Markets for purely finan-

cial instruments such as futures contracts expand the influence of exchanges because they are used

mainly as hedges against the exchange price and they are based on the exchange’s delivery points and

conditions.”(p. 1327)

2.3 Behavior of electricity prices

The determination of an optimal hedge ratio as well as the pricing of derivatives or portfolio choice

with energy products, requires a mathematical model for the behavior of the underlying asset price.

These models can be distributed into three categories.

The first category is the one of equilibrium models among which Routledge, Seppi and Spatt (2001)

and Bessembinder and Lemmon (2002) are recent examples devoted to electricity markets. In this kind

of models, equilibrium values are obtained endogenously by demand and supply forces under some

assumptions about utility functions of economic agents. Both models cited above are particularly
8The issue of market power mitigation through the creation and the improvement of a forward market is discussed
in Harvey and Hogan (2000). Authors argue that Allaz-and-Vila result – that forward trading leads to competition
equilibrium (see Allaz and Vila, 1993) – only holds under rather restrictive conditions which are not met in the electricity
industry (see references therein for early restrictions; a recent contribution by Liski and Montero (2006) provides last
results on the issue).
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noteworthy because they provide genuine intuitions concerning prices and forward premiums behaviors.

For instance, the model of Routledge et al. (2001) allows for mean-reversion, heteroscedasticity and

asymmetries in price probability distribution, that are well-known features of electricity price data.

Identically, Bessembinder and Lemmon’s (2002) model permits forward premium to depend on second

and third centered moments of demand, which are also stylized facts of electricity markets. Overall,

modern equilibrium models provide testable hypothesis, generally in line with reality, but lack of

practical applications for derivatives pricing.

The preferred category of risk manager is the second one, which regroups “reduced-form ‘finance’

models” (as coined by Routledge et al., 2001, p. 2). These models supply analytical solutions that

are easier to use for pricing of derivatives, but they rely on an stochastic process chosen ex ante. The

process has to take into account some particularities of power prices: mean-reversion, price spikes,

zero and even negative prices, strong seasonality, among others. It is then generally a two or even

three-factor model to obtain a better fit of the data. The equilibrium aspect is not present under the

form of supply and demand functions but is part of the model through a risk premium for each risk

factor of the model.

Recent examples of these models for commodities are Schwartz and Smith (2000) who develop a

two-factor model which allows for mean-reversion to an estimated – through long-maturity futures

contracts – long run mean and short-term variations – estimated through differences between short

and long-term futures prices. The diffusion model by Barlow (2002) is a non-linear Ornstein-Uhlenbeck

process which allows for spikes and fits Alberta’s power price series better than previous models. The

paper by Lucia and Schwartz (2002) emphasizes the seasonal pattern of power prices in the NordPool,

which is a predictable component of price. Two one-factor and two two-factor models along with a

sinusoidal function capture this seasonal pattern with a strong mean-reverting effect. Predictability is

shown to greatly influence derivatives pricing and are of primary importance due to the impossibility to

use the standard cost-of-carry model (see also Eydeland and Geman, 1998). In the same spirit as Lucia

and Schwartz (2002), Escribano et al. (2002) model the behavior of daily spot prices in Argentina,

Australia, New Zealand, Scandinavia and Spain with stochastic models mixed with GARCH errors.

Estimation concludes to some identical patterns as in Lucia and Schwartz’ study, namely mean-

reversion, jumps and strong seasonality. Huisman and Mahieu (2003) model day-ahead base load

prices for the Dutch APX market, the German LPX market9 and the UK market using a regime

switching model similar to Lucia and Schwartz (2002). The model performs better for their data than

previous stochastic jump process to take into account the short duration of spikes and the stronger

mean-reversion after occurrence of a spike.10 Recently, Geman and Roncoroni (2006) have proposed

a family of discontinuous processes featuring upward and downward jumps to model electricity spot

prices. These processes allow for mean-reversion and spikes resulting from momentary imbalance

between demand and supply. The estimated models fit the data from three US power markets quite

well and remain sufficiently tractable for pricing and risk management activities.

The third category, the one we are interested in in the present paper, considers time-series models

which are only based on historical data. The aim of these models is to quantify the importance of

some factors – lagged values or exogenous variables – on spot and forward prices. Such econometric

specifications are usable in risk management since seminal papers by Engle (1982) and Bollerslev

(1986) whose models provide an estimation of the variance DGP through an ARMA-type structure.

Derivatives pricing, as well as portfolio choice and hedge ratio determination then become possible.
9LPX stands for Leipzig Power Exchange which has merged with the European Energy Exchange (EEX) in 2002.

10Very recently, Huisman et al. (2007) have applied an identical model to hourly prices considering the data as a panel.
Hourly prices revert around a hourly specific mean price level, which differs over the hours of the day.
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Econometric models are greedy in parameters to estimate but succeed in explaining stylized facts

of electricity prices quoted above. Literature on this topic may be roughly divided between: (i)

univariate models motivated by the approximation of the DGP for power returns, (ii) multivariate

models interested in the joint behavior of some electricity markets returns and possibly the issue of

price convergence and integration, and (iii) multivariate models of spot and forward and/or futures

returns concerned with hedging.

Among main references for univariate analysis, we will keep in mind Hadsell et al. (2004) whose

model resorts to the TARCH model of Zaköıan (1994) for the modelling of five US spot prices quoted

on the NYMEX between 1996 and 2001.11 Their findings indicate persistence of volatility with an

asymmetric or “leverage effect” as described in Black (1976) in all markets. By decomposing their

sample in sub-samples for each year, they put forward a learning effect à la Figlewski (1984), i.e. the

newness of the markets could explain the observed decreasing level of volatility. Hadsell and Shawky

(2006) study the behavior of power day-ahead and retail-time prices in the eleven markets of the New

York Independent Systems Operator (NYISO) during the period January 2001 to June 2004. Using

a random walk model associated with a GARCH(1,1) specification for the innovations, it is shown

that volatility is higher despite less persistent in the real-time market. An interesting finding of the

paper is the relation between volatility levels and congestion which leads them to say that: “Market

participants who are interested in forecasting volatility levels in electricity prices should start with

forecasting expected congestion”(p. 173). Goto and Karolyi (2004) confirm the features of volatility

clustering and jumps for power price data. Authors show that models with seasonality, time-varying

conditional volatility and jumps fit price series in the US, NordPool and Australia quite well. Despite

data come from markets with very different institutional structures, GARCH attributes and jumps

seem to exhibit some similarities, which may be intrinsic to the physical nature of electricity. Byström

(2005) resorts to extreme value theory to assess tails thickness in NordPool hourly spot prices. The

distribution providing the best fit is the generalized Pareto distribution. Estimates are found to be

significantly more accurate than those of standard GARCH models with or without Gaussianity.12 A

recent work by Rusco and Walls (2005) should be noticed because it is of interest for our paper. Its

focus is on the non normality of electricity prices, what we explore as well. Authors resort to the skew-

t and the skew normal densities and show that these densities better fit the data of the Californian

market between April 1998 and 2000. Mount et al. (2006) use a regime-switching model (see Hamilton

(1989) and Gray (1996)) to take into account the frequent observed spikes. The flexibility of their

model comes from the fact that transition probabilities are functions of exogenous variables, namely

load and reserve margin which available date at daily frequency. The estimation of a probability

of switching from a low to a high regime is useful for risk management applications because it may

improve the traders’ ability to forecast spikes. Koopman et al. (2007) propose an extension of a

long memory model with GARCH errors to take into account a strong characteristic of power prices,

namely the seasonality. Seasonality in power prices is intuitive because of the dependence of demand

on weather conditions and business climate. The introduction of periodic coefficients in the mean

equation leads to a better fit of day-ahead prices for NordPool, EEX, Powernext and APX markets.

Finally, the most complete study of electricity prices in a restructured environment is perhaps the

study by Knittel and Roberts (2005). Authors consider five different models to take into account six

identified characteristics for prices series: mean reversion, time of day effects, weekend/weekday effects,

seasonal effects, volatility clustering, extreme values. Among models are Lucia and Schwartz’ (2002)

11Some series begin in 1998 and 1999.
12Extreme value theory is of particular interest for risk management activities as VaR bounds estimates and futurs margin

requirements.
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Ornstein-Uhlenbeck processes for mean reversion, jump-diffusion processes for spikes13 and Nelson’s

(1991) EGARCH model for the leverage effect. These models fit the data quite well with significant

parameters for the different characteristics given above. The study confirms that power spot prices

contain a positive skew that is larger during periods of high demand variability (cf. Bessembinder

and Lemmon, 2002). Results also indicate that the equilibrium model of Routledge et al. (2001)

is fair in its predictions because of the strong observed mean reversion. Data confirm the presence

of an “inverse leverage effect” (electricity price volatility tends to rise more so with positive shocks

than negative shocks). Authors conclude by emphasizing the need of alternative distributions to the

Gaussian because of the estimated higher moments for residuals.

Multivariate specifications are interested not only with prices behavior but also with price and volatil-

ity price transmission between markets. In this field, De Vany and Walls (1999) use a vector error

correction model to analyze the joint behavior of power spot prices in 11 regional US western markets

between 1994 and 1996. Authors conclude to the presence of a unit root in price series in all markets

but one. In addition, all market-pairs are cointegrated, which is for the authors a “first evidence

on the performance of decentralized markets in pricing transmission and power in an open access

environment”. A global pattern of nearly uniform prices seems to emerge despite a complex and ap-

parently inefficient transmission network. Park et al. (2006) have recently confirmed some findings by

De Vany and Walls, namely that a relation exists between prices of distant and not much connected

regions.14 Bower (2002) is the first comprehensive study on this issue concerning restructured Euro-

pean markets. Data covers NordPool, the former English Pool and the UKPX market, the Spanish

market (Omel), the German markets (EEX and LPX) and the Dutch market (APX). The author is

interested in statistical relations existing between these markets. The correlation analysis allows to

conclude to a good integration of different Scandinavian places, whereas returns in European markets

appear to be independent from each other. Its cointegration analysis would conduct to conclude to a

better integration between European countries, but this part of the paper has been criticized in the

literature.15 In the spirit of Bower, Zachmann (2005) studies to which extent European electricity

wholesale day-ahead prices converge towards arbitrage freeness. Using an interesting set of data about

cross-border capacity auctions between Germany, Denmark and the Netherlands, he concludes to the

absence of arbitrage opportunities as soon as congestion costs are taken into account. Nevertheless,

because market transparency and cross-border capacities are far from being sufficient, “a single Euro-

pean market for electricity is still far off.”(p. 20) To the extent of our knowledge, Worthington et al.

(2005) are the first to use some multivariate GARCH (MGARCH) models for electricity returns. They

focus on the transmission of prices and price volatilities in five regional electricity spot markets, by

using a BEKK model (Engle and Kroner, 1995). Results indicate that prices are not affected in level,

but that volatility spillovers are present in nearly all five markets. This is an interesting conclusion

because of the limited nature of the interconnectors between these markets.

Finally, multivariate models may be used to compute a constant or time-varying hedge ratio to cover

a portfolio of assets in the electricity industry. References in this field are Byström (2003) who uses

both the BEKK model and the Orthogonal GARCH (OGARCH) model from Alexander and Chibumba

(1997) on daily price data from the NordPool between January 1996 and October 1999 and shows that

variance reduction is better for a simple OLS hedge ratio. Nevertheless, there seems to be some (very

moderate) gains from including heteroscedasticity in modelling price series. Shawky et al. (2003) are

13Results also are strongly related to those of Lucia and Schwartz (2002).
14Some others interesting conclusions concerning causality can be drawn from their study, but for the sake of place, we

refer the reader to the original paper.
15Boisseleau (2004) and Zachmann (2005) point out that the cointegration approach used in Bower’s study is not appro-

priate because the price series did not contain unit root.
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also interested with the hedging effectiveness but for the Californian market (quoted on the NYMEX).

The mean hedge ratio computed on 16 futures contracts traded between 1998 and 2000 is 1.63, which

is in accordance with Moulton (2005). This is a far high ratio compared to other commodities, but

the volatility of electricity prices also is typically many times higher than in other futures markets.16

Moulton’s (2005) study is concerned with hedging effectiveness of the NYMEX futures contract for

the Californian market during the period August 1996 - December 2000. Because of the very low

correlation between spot and futures returns, an OLS estimation for each contract leads to a very

volatile hedge ratio (from 0.032 to 5.37 the initial position) which is in accordance with our findings

on some markets. Because bilateral trading also existed in California at this period, we can wonder

whether this market would be a better tool for risk management. The erratic behavior for the hedge

ratio may explain the lack of success for the NYMEX contract. We explore such an issue concerning

France and its power exchange.

2.4 Early models of time-varying optimal hedge ratio

Some papers use bivariate models with GARCH error structure to compute the OHR. Very few use

a multivariate model to take into account the portfolio effect in the computation. Cecchetti, Cumby

and Figlewski (1988), Baillie and Myers (1991) and Myers (1991) use a constant correlation model to

estimate an optimal hedge ratio. Both show that OHRs obtained by the mean of time-varying estimates

perform better in risk reduction that standard OLS estimates despite the increment is very limited.

Sephton (1993) extends the Baillie and Myers (1991) model to three commodities. Empirical results

confirm that there are efficiency gains in calculating the OHR using MGARCH. Sephton’s (1993) risk-

minimizing and utility-maximizing OHRs coincide and are stationary. An interesting finding is that

GARCH OHRs are significantly different (greater) from those based on the traditional OLS method.

Kroner and Sultan (1993) model the first moments with a bivariate error correction model and the

second moments with the Bollerslev’s (1990) bivariate constant correlation GARCH(1,1) model. The

model provides greater risk reduction both within-sample and out-of-sample (rolling windows of 7

days).

More recently, Haigh and Holt (2000, 2002) extend the portfolio approach of Gagnon, Lypny and

McCurdy (1998) which provides a portfolio extension to previous studies. Actually, the paper by

Gagnon et al. (1998) is an empirical application of the formal model of Anderson and Danthine (1981)

which is itself n-dimensional interpretation of Ederington (1979) and Holthausen (1979) models. This

approach is useful because it takes into account any portfolio effets due to diversification and can

therefore provide a more adapted hedge ratio when more than one markets are concerned.

3 The data

We first provide some description of the data utilized and then perform some tests to examine non-

normality and serial correlation in the data. These tests will provide us necessary tools for determining

appropriate specifications.
16A great part of the paper of Shawky et al. (2003) is concerned with the forward premium which is not studied in our

present paper. On this subject, in addition to above-cited papers (Bessembinder and Lemmon (2002) and Routledge
et al. (2001)), a relevant reference is Saravia (2003). Its paper is motivated by the dependence between the forward
premium and types of traders accepted in the market. She shows that after the New York electricity wholesale market
opened to speculative traders, the forward premium significantly decreased. A very recent paper by Bessembinder and
Lemmon (2006) also considers the forward premium as an investment tool.
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3.1 Data description

Characteristics of data used in this paper are provided in Table 1. Spot prices series are from national

exchanges or DataStream. Forward prices series are obtained from a major trader of energy commodi-

ties in Europe.17 Each day the responsible of each desk of TRADER reports weighted average day

prices for each OTC market. Weights are in accordance with volume traded at each period of the day.

This average is based on trades concluded on the day and if no trade occurred traders report their

observations about bids and offers on the market. In this respect, the methodology used by TRADER

is not different from the one employed by financial reporting agencies.18 In the extreme, if no bid or

offer occurred on the market, TRADER reports the Platts’ price which is a spread against related

products.

Price series are made by TRADER itself which use a standard rollover procedure. We do not have

precise dates for the rollover but it is made in such a way to keep a contract open if significant volume

remain traded. An immediate advantage of our data on the standard commercially-provided data is

that the dates are not determined in advance and can be adapted to the situation if it is needed.

3.2 Preliminary analysis

For each series of spot or forward prices, raw data Pt are converted to continuously compounded rates

of return yt ≡ ln(Pt/Pt−1). We then provide four figures for each series, namely the representation

of raw data, return data, the kernel density of return data and a quantile-quantile plot (QQ-plot)

against the Gaussian distribution. Simple observation of figures 1 to 15 confirms: (i) a very high level

of volatility and the presence of some outliers in each series, (ii) an alternance of tranquil and volatil

periods in return series (as described by Mandelbrot (1963) and Fama (1965)), (iii) an asymmetric

distribution in most of the return series and (iv) a strong departure from normality. A wide range of

descriptive statistics for returns are reported in tables 2 and 3. Inspection of the table reveals a mean

return which is never significantly different from zero. The annualized volatility defined as
√

250 or√
365 times daily volatility, depending on the number of observations in a year, ranges from 44.42%

to 126% for forward returns and from 265% to 589% for day-ahead returns. This exceptional level for

volatility is a striking feature of power markets. Note that these levels of volatility far exceed figures

provided in section 2.2 for other financial markets but are in line with historical volatilities in the U.S.

markets.19

For all series, except day-ahead France and Germany, we observe a significant positive skewness,

which confirms Bessembinder and Lemmon’s (2002) predictions. Because of the high level of sample-

estimated skewness, the asymmetric behavior of the distribution may not be captured with a normal

density. The observed kurtosis far exceed previous measures in other financial data, including com-

modities returns and even emerging markets returns (see for instance Rockinger and Urga, 2001). This

indicate the presence of many extreme returns implying thicker tails than normal in the distribution.

Finally, the Jarque and Bera’s (1980) test is used to test for non-normality in the returns series. This

test has only recently been shown to be valid for GARCH-generated processes by Fiorentini, Sentana

and Calzolari (2004). The JB test strongly reject the normality hypothesis at any significance level,

arguing for an alternative distribution. The need for a fat-tailed, possibly non-symmetric distribution
17During this study, we will call this trader “TRADER” (pseudonym) because the use of the data is subject to a non-

disclosure agreement.
18Heren, Platts, Argus or Bloomberg are major providers of OTC prices data for European energy markets. Note that

these information sources are extremely costly for academic purpose.
19Information gathered with professionals in electricity trading seems to indicate that differences observed in volatility

levels come from differences in market structures.
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is then suggested.

We now concentrate on autocorrelations. As indicated by computed autocorrelations for the first three

orders, our return data often exhibit some significant autocorrelation, suggesting a non random walk

model as an appropriate filtration.20 This is confirmed with the Ljung-Box test statistics calculated at

the 10th order. In all cases (except French and British forward peak returns) the statistic indicate the

presence of serial correlation. The extreme degree of kurtosis may however affect the power of the test.

Autocorrelation is also present in emerging market return data, whose significant autocorrelation is

generally related to thin trading and high transaction costs. The same applies for electricity markets.

The presence of tranquil and more volatil periods is also confirmed through the use of Ljung-Box tests

on squared returns, whose results are not reported here.21

4 Univariate analysis

Preliminary analysis suggested some ARMA-GARCH structures for our return series. Before multi-

variate estimation, we determine the appropriate specification for each series, which will be kept in the

multivariate case. The best lag structure for conditional means and variances are determined in the

light of Akaike’s information criterion, Schwarz’ information criterion and residual diagnostic checks.

4.1 Econometric approach and estimation

After some filtration of the ARMA form for the return series – see tables 2 and 3 for the selected

conditional mean equation specification – whose results are not reported here for sake of space, we

search for the most appropriate GARCH(p, q) model for the parametrization of the conditional variance

σ2
t as:

σ2
t = ω +

p∑

i=1

βiσ
2
t−i +

q∑

j=1

αjη
2
t−j (3)

with ηt the disturbance term from the mean equation estimation or:

yt = E(yt|ψt−1) + ηt and ηt|ψt−1 ∼ D(ηt|ψt−1) (4)

where ψt−1 denotes the σ-algebra generated by all the available information up through time t−1 and

D(.|ψt−1) is an ad hoc distribution. As is well known, such a specification on the conditional variance

of rates of return allows for the alternance of more or less volatil periods as observed in Figures 1 to 15

and confirmed by some preliminary tests on the square of the residuals. The estimation is performed

using the standard log-likelihood minimization. As demonstrated by Nelson and Cao (1992) The

log-likelihood function for GARCH estimation needs not to be constrained.

4.2 Empirical results

Tables 4 to 7 reports estimated parameters for the univariate GARCH specifications. In all cases but

the German day-ahead base returns, we retain a GARCH(1,1) parametrization. This specification

allows to remove any remaining serial correlation except for the German day-ahead peak returns.22

20Note that some autocorrelations in the returns are generally perceived as a proof of non efficiency in weak sense. Campbell
et al. (1997) note that serial correlation can exist in a long run General Equilibrium model without contradiction with
the weak informational efficiency.

21Preliminary tests on the square of returns are not reported here as diagnostic tests. They are only used in a second step
to inspect for any remaining ARCH effect in the residuals.

22It is removed at the 10% confidence level, however.
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Significance of parameters indicate that ARCH and GARCH effects exist in spot and forward returns

series as suggested by returns plots in figures 1 to 15. In some cases, sums of coefficients are close to

1, indicating an integrated process. These results confirm previous results on electricity prices that

persistence of volatility is strong (see for instance Hadsell et al. (2004)).

For all series, we perform TARCH or EGARCH specifications in order to detect any asymmetric

responses to innovations.23 This kind of asymmetries is generally rejected in currency markets but

present in some stock and bond markets as well as in commodity markets. Our results indicate that

there is no asymmetry.

4.3 Estimation under non-normality

A stylized fact of electricity return confirmed in our data is non-normality. GARCH models can

take this feature into account. Indeed, despite the variability of the variance does not affect the

unconditional variance, it does affect higher moments of the unconditional distribution of shocks. As

shown in Campbell, Lo and MacKinlay (1997, p. 480), under heteroscedasticity, the unconditional

distribution of the shocks has fatter tails than a normal distribution. Nevertheless, because of the

strong non-normality of the financial returns, fitting of the conditional heteroscedastic models may

still be enhanced by assuming a non-normal density for the error term.24 The very strong non normality

of our data also suggests to resort to non Gaussian densities.

Some papers assume a non-normal but symmetric distribution. Bollerslev (1987) uses a Student-t

distribution to model the behavior of two exchange rates and five price indices. His GARCH(1,1)-t

model fits the data better than a normal GARCH(1,1), which does not succeed in fully capturing the

leptokurtosis aspect of the residuals. Baillie and Bollerslev (1989) compare Student-t distribution with

exponential-power distribution in the study of exchange rates. Jorion (1988) selects a normal-Poisson

mixture to model weekly exchange-rates. Nelson (1991) uses a generalized error distribution (GED).

Hsieh (1989) uses Student-t, normal-lognormal mixture25, and GED (following Nelson (1991)) for the

modelling of daily exchange rates.

Other papers considers the issue of asymmetry. Hansen (1994) considers all moments as conditional.

Theodossiou (1998) proposes an extension of the generalized Student-t distribution. The skewed GT

distribution nests some other well-known probability distributions for some specific choice of the pa-

rameters. A good survey on the use of non Gaussian densities – and particularly asymmetric densities

– in conditionally heteroscedastic models is Bond (2000). The author emphasizes the asymmetric

aspect of financial return series and the their treatment in the literature.

We retain four alternative distributions: the normal, the Student-t, the Hansen’s (1994) skew Student-

t and the GED. Log-likelihood functions for these densities are written using the expression of the

density functions. For the Student-t density with ν degrees of liberty it is:

g(x|ν) =
Γ
(

ν+1
2

)

√
π(ν − 2)Γ

(
ν
2

)
(
1 +

x2

(ν − 2)

)(ν+1)/2

(5)

23The asymmetric response models allow to consider the so-called “leverage effect” highlighted by Black (1976). Despite
the possible existence of nonlinear dynamics in electricity returns, we do not use the APARCH model by Ding et al.
(1993) which requires nonlinear optimization techniques (see Giot et Laurent (2003) for more details and an application
to the determination of VaR bounds for several commodities).

24Bollerslev (1987, p. 544): “Even though the unconditional distribution corresponding to the GARCH(p, q) model
with conditionally normal errors is leptokurtic, it is not clear whether the model sufficiently accounts for the observed
leptokurtosis in financial time series.”

25As Clark (1973) and Tauchen and Pitts (1983) in a homoscedastic environment.
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The skewed Student-t density with ν degrees of liberty and an asymmetry parameter λ is written:

g(x|ν, λ) =





bc
(
1 + 1

ν−2

(
bx+a
1−λ

)2)−(ν+1)/2

x < −a/b

bc
(
1 + 1

ν−2

(
bx+a
1+λ

)2)−(ν+1)/2

x ≥ −a/b
(6)

with 2 < ν < ∞ and −1 < λ < 1 and the constants a,b and c as follows:

a = 4λc
(ν − 2

ν − 1

)
; b2 = 1 + 3λ2 − a2 ; c =

Γ
(

ν+1
2

)

√
π(ν − 2)Γ

(
ν
2

) (7)

And the GED density is:

g(x|ν) =
νΓ

(
3
ν

)

2 3

√
Γ
(

1
ν

) exp(−1
2

∣∣∣x
λ

∣∣∣
ν

) (8)

where λ = Γ(1/ν)1/2Γ(3/ν)−1/22−2/ν is used to normalize the variance.

Tables 4 and 5 illustrate the better goodness of fit of non Gaussian distributions for French returns.

The log-likelihood is always improved. This highlights the need for leptokurtic distribution for power

returns data. However it is not possible to compare improvements for day-ahead and forward series.

Note that results are similar for series of other countries.

5 Multivariate analysis and optimal hedging

As argued in the introduction, multivariate models can be used for the computation of optimal hedge

ratios. Selected multivariate models for our study are: the BEKK model, the CCC model and the

DCC model.26

5.1 Multivariate GARCH: the general case

The general specification for a constant correlation multivariate GARCH model of a n-dimensional

process yt = (y1,t, ..., yn,t)′ is given by:

yt = E[yt|Ψt−1] + ηt (9)

ηt = ztΣ
1/2
t with E(zt) = 0 ; Vart(zt) = In (10)

where E[.|Ψt−1] is the expectation operator conditionally to the available information on all series.

ηt = (η1,t, ..., ηn,t)′ is the vector of innovations and Σt ≡ [σij,t] is a n×n positive definite matrix with

σij,t = Covt(ηi,t+1, ηj,t+1). Because σii,t = Vart(ηi,t+1), Σ1/2
t is a positive definite matrix. From these

properties of z and (10), it follows that E[ηη′|Ψt−1] = Σt. We then have a vector of returns whose

covariance matrix evolves through time. The mean equation (9) can be thought as a filtration for non

zero mean returns.
26Recent surveys on MGARCH models are Bauwens, Laurent and Rombouts (2006) and Silvennoinen and Teräsvirta

(2007).
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In its most general form, the parametrization for the conditional covariance matrix was proposed by

Bollerslev, Engle and Wooldridge (1988) as27:

vech(Σt) = ω + Φvech(Σt−1) + Λvech(ηtη
′
t) (11)

This general parametrization model Σt as a linear function of lagged values of Σt, lagged squared

errors and cross products of errors. The “curse of dimensionality” arises in this model because of the

number of parameters to estimate in this model, which is O(n4), precisely n2(n + 1)2/2 + n(n + 1)/2.

In the case of three series, the number of parameters to estimate is for instance 78. In order to keep

the model manageable for more than two series, restrictions have to be placed on this specification.

In this respect, Bollerslev et al. (1988) assume Φ and Λ diagonal. In this VEC model, Σt only

depends in a linear way on its own lagged values and on lagged square errors. In this simpler model,

the number of parameter to estimate becomes 3n(n + 1)/2 and thus only grows as O(n2).

To maintain a reasonable number of parameters and positive definiteness of the covariance matrix,

different parametrizations for the conditional covariances matrices are proposed.

5.2 The BEKK model

We first study the BEKK model of Engle and Kroner (1995) (named after an earlier working paper

by Baba, Engle, Kraft and Kroner). In its full parametrization, the BEKK model can be written as:

Σt = C ′C + B′Σt−1B + A′ηt−1ηt−1
′A (12)

where C is a lower triangular matrix, and B and A are square matrices. Positive definiteness is

guaranteed by the use of quadratic forms. Hence, strong restrictions that have to be made on the

VEC model to ensure positive definiteness are bypassed. Restrictions of the BEKK model include

the diagonal BEKK and the scalar BEKK. In the diagonal BEKK, matrices B and A are diagonal

matrices. In the scalar BEKK, B and A are scalars. The richness of the structure is then greatly

reduced and refers to the VEC model.

Drawbacks from the BEKK parametrization are: (i) the remaining significant number of parameters

to estimate which still grows with O(n2). For a BEKK model with one lag on ARCH and GARCH

components, this give (5n2 + n)/2 coefficients (24 parameters for a trivariate BEKK(1,1,1) model).

(ii) the impossibility to interpret estimated coefficients. Any covariability persistence is then difficult

to characterize. (iii) the implicit hypothesis of a constant correlation structure. It is then useful to

enrich the structure of the model by allowing for time-varying correlations.

5.3 The Bollerslev’s (1990) CCC

In the Bollerslev’s (1990) model, covariances between i and j are allowed to vary only through the

product of standard deviations with a correlation coefficient which is constant through time. The

dynamic of standard deviations is governed by the GARCH(1,1) variances’ dynamic or any univariate

GARCH model. Keeping the covariance matrix Σt ≡ [σij,t], we have:

σii,t = ωii + βiiσii,t−1 + αiiη
2
i,t (13)

and

σij,t = ρij
√

σii,tσjj,t (14)
27The “vech” (half - vec) operator stacks the non-redundant elements of a matrix – those on and below the main diagonal

– into a vector. The number of resultant elements for a n× n matrix is n(n + 1)/2 elements.
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As pointed out by Bollerslev (1990), under the assumption of constant correlation, MLE of the corre-

lation matrix and sample-based correlation matrix coincide. Because of the positive semi-definiteness

of the sample-based estimate, the same is guaranteed for the conditional covariance matrix. The main

advantage of this model is to greatly simplify computation by keeping out of the likelihood function

the correlation matrix. The number of parameters to estimate when a GARCH(1,1) is retained is

n(n+5)/2. The main drawback of this model is that the sign of the conditional correlation is constant

over time once ρij is estimated. This may be a problem in the estimation of OHRs. This model has

been use, without success, for hedging purpose in Lien, Tse and Tsui (2002) on a panel of financial

and non financial commodities.

5.4 Testing for non constant correlation

Tests of constant correlation have been proposed by Tse (2000) and Bera and Kim (2002). Details

about these tests are given in the appendix. The use of these two tests is interesting for our data

because while the IM test has good approximate nominal size, it lacks power. Empirical illustrations

show that the constant correlation hypothesis is sometime severely rejected only because of the non-

normality of the data. Conversely, the LM test is less adapted for smaller samples but is relatively

robust against non-normality. Consequently, both tests are complements in our analysis.

Computed statistics for our data do not indicate any strong rejection or acceptance of the null hypoth-

esis of constant correlation. For instance for France, the LMC – which follows a χ2 with one degree of

freedom under the null of constant correlation – is 7.81.10−4 rejecting the hypothesis of non constant

correlation.28 Conversely, the value of the IM test we compute is 5.37 (with same critical levels). The

IM test thus argues for a rejection of the constant correlation hypothesis. We also perform a studen-

tized version of the test. The value obtained is 0.250 arguing for a rejection of the null hypothesis.

These findings are identical for other series and we then decide to estimate the DCC model for all

series in order to investigate further the correlation constancy.

5.5 The DCC model of Engle (2002)

As highlighted by Erb, Harvey and Viskanta (1994), Longin and Solnik (1995,2001) or Tsui and Yu

(1999), correlations between returns may not be constant in time. In their studies, correlations are

stronger when prices are falling. To model this feature of the series some dynamic correlation models

can be employed in order to avoid an implicit loss of information when estimating conditional variances

and covariances. Among dynamic correlation models are Christodoulakis and Satchell (2002), Tse and

Tsui (2002) and Engle (2002). We retain the Engle’s model for its tractability.

The general form of the Dynamic Conditional Correlation model introduced by Engle (2002) and Engle

and Sheppard (2001) is defined by:

Σt ≡ DtRtDt (15)

Rt ≡ Q∗−1
t QtQ

∗−1
t (16)

28Critical values are 3.8415 at the 5% level and 2.70 at the 10% level.
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Qt = (1−
P∑

p=1

αp −
Q∑

q=1

βq)Q +
P∑

p=1

αp(ηt−pηt−p
′) +

Q∑
q=1

βqQt−q (17)

where Dt is a n × n diagonal matrix of time varying standard deviations defined by any univariate

GARCH model, Dt is a n × n time varying correlation matrix, Qt is defined by (16), Q is the

unconditional covariance matrix using standardized residuals from the univariate estimates, and Q∗
t

is a diagonal matrix of the square root of the diagonal elements of Qt. We then have the time varying

correlation matrix defined as Rt ≡ [ρij,t] with [ρij,t] = qij,t√
qiiqjj

. Engle and Sheppard (2001) give

sufficient conditions for the positive definiteness of the DCC model.

Interestingly, the DCC model can be estimated in two steps and the number of parameters to estimate

is greatly reduced. The model is then manageable for a greater number of series. The model also

keeps intuition in the interpretation of the parameters, which is lost by using a factor model in the

spirit of Diebold and Nerlove (1989) where parameters describe an unobserved variable. Nevertheless,

this simplification is made at a cost. Indeed, an implicit assumption of the DCC model is that αp and

βq being scalars, all correlations obey the same dynamic.

5.6 Estimation results

The number of estimated parameters for the BEKK model is high and have no direct interpretation,

so we do not report estimates here. For each series, all coefficients are significant, indicating that

covariance matrix is dependent from its lagged value and dependent from lagged innovations. Despite

the fact that the model seems to be well specified, the variance reduction is near zero or even negative

(see Table 9). This conclusion confirms the poor power of the BEKK model for hedging purpose as

highlighted by Bera et al. (1997) among others. This also questions the deeper issue of the predictive

power of conditionally autoregressive heteroscedastic models. In addition, the computed OHRs with

the BEKK specification appear highly volatil (see figure 16 for the French case) but ratios are similar

in magnitude to Moulton’s (2005) hedge ratios.29 Estimation of the CCC model give identical results

with no variance reduction despite significant estimated parameters. This confirms findings from Lien

et al. (2002) about low hedging effectiveness of the CCC model.

Estimation results for the DCC model are only reported for French data (see table 10). Again, results

for other countries are in line with the French case. We observe that coefficients γ and δ are near

from zero, indicating the absence of a dynamic structure for correlation. This may confirm the Tse’s

(2000) test whose results reject the hypothesis of non constant correlation. Optimal hedge ratio and

variance reduction for this model is computed but, of course, no significant improvement appears.

Maybe the expected improvement for hedge ratio forecasting through the use of a dynamic correlation

model is not achieved because of the very low sample correlation coefficient in our data. Some further

investigations with other financial data may help to conclude on the power of this model for correlation

forecasting.

The estimated parameters for the DCC model are provided in Table 10. Again, the estimates are

significant for the spot returns but the ARCH term is not for forward returns. However, the model

does not improve the CCC specification and gives similar conditional moments and optimal hedge

ratio.
29Remember that Moulton (2005) obtain values ranging from 0.032 to 5.37.
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6 Concluding remarks

The analysis of returns of spot and forward markets for France, Germany, the Netherlands, and the

UK leads us to conclude to a strong rejection of the random walk hypothesis. For all the series (except

French and British forward peak returns) an autoregressive, possibly moving average, specification has

to be retained. However, the use of non Gaussian densities greatly improves the data fit, particularly

for spot returns. After filtration, a GARCH behavior is identified for all series, indicating a memory

in the evolution of the returns’ variance.

As suggested by the very low level of sample correlations, the hedging effectiveness of forward markets is

insignificant, especially if transaction costs are considered. More sophisticated time series techniques

than the conventional OLS computation for the OHR do not improve – and sometimes decrease –

variance reduction. Determination of the OHR through the use of dynamic correlation model does

not enhance our results.

The present study can be extended in a number of directions. First, power of dynamic conditional

correlation models may be further investigated using less specific financial data. Second, hedging

effectiveness of European forward markets may be analyzed with other hedging horizons. Third a

hedging portfolio in the spirit of Gagnon et al. (1998) may be computed, but we definitely doubt of the

potential of forward markets for hedging purpose, at least for short-term. Fourth, the paper strongly

argue in favor of non normal densities and this line of research, particularly active nowadays (see for

instance Bauwens and Laurent (2005)), is promising for electricity returns. Finally, the specification

of higher moments transmission and/or models of volatility transmission (see Hansen (1994), Harvey

and Siddique (1999) and Brooks et al. (2005)) may provide interesting insights about the European

integration of the electricity industry.
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Appendix: testing for constant correlation in a MGARCH

Tse’s (2000) Lagrange Multiplier test

To test the relevancy of any dynamic model, we first use the Lagrange Multiplier (LM) test by Tse (2000). We
do not retain the test suggested by Bollerslev (1990) because it is inappropriate as pointed out by Li and Mak
(1994).30 In addition, Bollerslev’s procedure is not a test for constancy of correlation but for linear dependence
between the conditional correlation coefficient ant its lagged values. Interestingly, Tse’s test does not need
to estimate an encompassing model. The constant-correlation model is extended in way that allows for time-
varying correlations and some key parameters in this extended model are then imposed to be zero. Study of
the properties of the test in small samples using Monte Carlo methods shows that it has good approximation
nominal size in sample sizes of 1000 or above.

Tse considers the following specification for the time-varying correlations:

ρij,t = ρij + δijηi,t−1ηj,t−1 (18)

The constant correlation hypothesis can then be tested by examining the hypothesis H0 : δij = 0 for all i and
j. Nevertheless, specification in equation (18) does not guarantee that ρij,t is always below 1. This issue is
left for the optimization stage.

The conditional variance matrix is defined as in the CCC original model and allows to compute the log
likelihood Lt for t = 1, ..., T in order to estimate the k parameters. We then obtain the k × 1 vector of scores
s = ∂L/∂θ). We denote S as the T × k matrix with rows as score vectors defined above. The proposed LMC
statistic to test H0 is:

LMC = ŝ′(Ŝ′Ŝ)−1ŝ = l′Ŝ(Ŝ′Ŝ)Ŝ′l (19)

with l the T × 1 column vector of ones and Ŝ is S evaluated at θ̂. The statistic is asymptotically distributed
as a χ2

M with M = n(n− 1)/2 the number of additional restrictions placed to constrain the model.

Bera and Kim’s (2002) Information Matrix test

A second test is Bera and Kim (2002). Their test is based on the Chesher’s (1984) interpretation that White’s
information matrix (IM) test is a test of parameter heterogeneity. They thus apply this test to the Bollerslev’s
(1990) CCC model to test for the constancy of parameters in time.

The test is based on the hypothesis that the variances of the parameters of interest are zero assuming they are
constant through time. The test is not based on an arbitrary distributional assumption despite it is shown to
be rather sensitive to non-normality. In addition, unlike Longin and Solnik (1995) and Tse (2000), absolute
value of the correlation coefficient has no risk to exceed 1. The proposed statistic is derived from the efficient
score form of the IM matrix test proposed by Orme (1990) and takes the form:

IMe =

[ ∑T
t=1(v̂

∗2
1t v̂∗22t − 1− 2ρ̂2)

]

4T (1 + 4ρ̂2 + ρ̂4)
(20)

with

ρ̂ =
1

T

T∑
t=1

η̂∗1tη̂
∗
2t (21)

and

v̂∗t = (v̂∗1t, v̂
∗
2t)

′ =
(η∗1t − ρη∗2t√

1− ρ2
,
η∗2t − ρη∗1t√

1− ρ2

)′
(22)

where η∗1t and η∗2t are standardized residuals for series 1 and 2, respectively. Under the null hypothesis of
constant correlation, IMe follows a χ2 with one degree of freedom. Monte Carlo simulations show that the
behavior of the test is not too bad using a Student-t distribution.

30The Ljung-Box portmanteau test suggested by Bollerslev uses cross products of the standardized residuals and critical
values are based on the χ2 distribution. However the portmanteau statistic is not asymptotically distributed as a χ2

and its use is then misleading.
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Series

Germany France 

Day-ahead Forward Day-ahead Forward 

Statistics base peak base peak base peak base peak

No. observ. 1178 1178 1178 1178 887 887 887 887

Mean 0.000645 0.000537 0.000388 0.000233 0.000374 0.000410 0.000481 0.000498 

Median 0.000000 -0.002277 0.000000 0.000000 -0.003460 -0.002278 0.000000 0.000000 

Maximum 1.439101 1.797569 0.268929 0.321584 1.801293 1.885525 0.957271 1.043630 

Minimum -1.306005 -1.609391 -0.174624 -0.190354 -1.918174 -2.191700 -0.595086 -0.609766 

Std. dev 0.172722 0.204128 0.028159 0.035954 0.238537 0.286198 0.050308 0.059622 

Annual. Vol. 273 % 322 % 44.42 % 56.76 % 455 % 546 % 83.79 % 93.28 % 

Skewness -0.149826* 0.030016 1.353263* 1.470289* -0.188365* -0.182053* 5.912276* 5.206121* 

Exc. Kurtosis 14.33720* 15.08667* 19.28366* 17.81598* 12.36465* 14.54501* 170.8832* 126.7304* 

Jarque-Bera 10093.75* 11171.92* 18611.66* 16003.91* 5655.603* 4930.974* 1084390* 569809.4* 

Raw returns 
autocorrelations 

rho(1) -0.126 -0.164 0.123 0.108 -0.296 -0.227 -0.212 -0.333 

rho(2) -0.096 -0.108 -0.033 -0.041 -0.028 0.056 0.023 -0.017 

rho(3) -0.060 -0.047 -0.010 0.009 -0.043 -0.021 -0.051 -0.049 

Q(10) 52.892 61.844 31.658 26.054 90.833 63.142 50.235 112.98 

Filter ARMA(1,1) ARMA(1,1) AR(1) AR(1) ARMA(2,1) ARMA(2,1) AR(1) C

Filtered returns 
autocorrelations 

rho(1) -0.012 -0.026 0.006 0.006 0.001 -0.001 -0.005 -0.227 

rho(2) -0.008 -0.007 -0.049 -0.054 0.003 -0.008 -0.033 0.056 

rho(3) 0.009 0.027 -0.008 0.012 0.019 0.020 -0.050 -0.021 

Q(10) 10.083 10.349 13.439 12.769 8.5115 9.7788 11.295 63.142 

Table 2: Descriptive statistics of returns at daily frequency (Germany, France) Note: Es-

timated skewness (ŝk) and excess kurtosis ( ˆkur) are normally distributed with mean 0 and variances 6/T and 24/T ,

respectively. T ŝk/6 and T ˆkur/24 thus follow a χ2 with one degree of freedom. Significance at the 5% level are indicated

with (*). rho(n) stands for autocorrelation of order n. Q(10) is the Ljung-Box statistics up to the 10th order for

observations and residuals.



Series

England and Wales Netherlands 

Index Forward Day-ahead Forward 

Statistics base peak base peak base peak

No. observ. 1058 1058 1058 1407 1476 1407 1476 

Mean 0.000412 0.000411 0.000408 0.000349 0.000347 0.000303 0.000866 

Median 0.000000 -0.000249 -0.000672 0.000000 0.000000 0.000000 0.000000 

Maximum 1.771216 0.266325 0.401573 2.197785 2.291793 1.475907 0.321584 

Minimum -1.522510 -0.229169 -0.437298 -2.533399 -2.663848 -0.847298 -0.190354 

Std. dev 0.168122 0.029023 0.043107 0.345550 0.372642 0.080799 0.035529 

Annual. vol. 265 % 45.84 % 68.14 % 546 % 589 % 126 % 56.13 % 

Skewness 0.735503* 0.862816* 0.177451* 0.137606* 0.184737* 3.203951* 1.513926* 

Exc. Kurtosis 20.28950* 20.43662* 30.91496* 9.76547* 12.24109* 102.8859* 21.91318* 

Jarque-Bera 18242.90* 18542.92* 42137.52* 5595.181* 5260.359* 622982.9* 22562.90* 

Raw returns 
autocorrelations 

rho(1) -0.335 0.111 -0.023 -0.260 -0.269 -0.159 0.084 

rho(2) -0.016 0.004 0.034 -0.058 -0.045 -0.070 -0.059 

rho(3) -0.096 -0.051 0.007 -0.013 -0.030 -0.221 0.021 

Q(10) 136.49 24.560 8.8213 125.91 140.11 141.01 23.952 

Filter AR(1), AR(2) ,AR(4), MA(1) AR(1) C ARMA(2,3) ARMA(3,2) AR(3) ARMA(1,1) 

Filtered returns 
autocorrelations 

rho(1) 0.003 0.001 -0.023 0.001 0.003 -0.002 -0.005 

rho(2) 0.006 -0.002 0.034 -0.005 0.006 0.004 -0.014 

rho(3) -0.002 -0.058 0.007 -0.017 -0.027 0.008 -0.001 

Q(10) 11.945 15.668 8.8213 2.0049 7.1661 6.3733 7.2919 

Table 3: Descriptive statistics of returns at daily frequency (UK, Netherlands) Note: Es-

timated skewness (ŝk) and excess kurtosis ( ˆkur) are normally distributed with mean 0 and variances 6/T and 24/T ,

respectively. T ŝk/6 and T ˆkur/24 thus follow a χ2 with one degree of freedom. Significance at the 5% level are indicated

with (*). rho(n) stands for autocorrelation of order n. Q(10) is the Ljung-Box statistics up to the 10th order for

observations and residuals.



Day ahead returns France base Day ahead returns France peak 

filtration ARMA(2,1)    ARMA(2,1) ARMA(2,1) ARMA(2,1) ARMA(2,1) ARMA(2,1) ARMA(2,1) ARMA(2,1)

density normal Student-t( ) skew Student-t GED( ) normal Student-t( ) skew Student-t GED( )

0.001869 
(0.001511) 

0.002523 
(0.000701) 

0.0016382 
(3.3766e-006) 

0.001539 
(0.000396) 

0.002235 
(0.001746) 

0.003356 
(0.001250) 

0.0017819 
(2.8591e-006) 

0.001914 
(0.000485) 

1
0.136253 
(0.050227) 

0.345194 
(0.073753) 

0.22918 
(0.020496) 

0.227483 
(0.052438) 

0.185269 
(0.064010) 

0.488010 
(0.156912) 

0.25655 
(0.024202) 

0.286490 
(0.062803) 

1
0.832424 
(0.071025) 

0.704968 
(0.041139) 

0.73772 
(0.019325) 

0.768439 
(0.031689) 

0.804646 
(0.075774) 

0.671910 
(0.042484) 

0.7238
(0.014862) 

0.732713 
(0.035065) 

-
3

(specified)
4.1

(1.7712) 
- - 2.728517 

(0.285453) 

4.1
(2.328)

-

- -
-0.048

(0.0016976) 
- -  - 0.038853 

(0.0016519) 
-

- - - 0.922129 
(0.040049) 

-  - - 0.886514 
(0.039531) 

L 239.7833 398.0340 386.23      370.5216 131.9888 302.6129 284.75 277.5477

DW 2.03 2.07 1.96      2.086408 2.097320 2.198104 1.96 2.30

Q(15) 22.12 22.81 28.66      22.79 17.49 0.10 25.55 18.91

Q
2
(15) 4.33 4.68 4.66      4.11 5.39 5.19 5.83 4.95

Table 4: Univariate GARCH specifications for France day-ahead returns Note: The model is a

GARCH(1,1) specified as: σ2
t = ω+β1σ2

t−1+α1η2
t−1. L is for the log-likelihood, DW is the Durbin-Watson statistics and

Q(15) and Q2(15) are for the Ljung-Box statistics up to the 15th order for residuals and squared residuals respectively.

Bollerslev-Wooldridge (1992) robust standard errors and covariance. ν and λ are the number of degrees of freedom for

the Student-t density and the asymmetry coefficient as defined by Hansen (1994), respectively.

Forward returns France base Forward returns France peak 

filtration C        C C C C C C C

density normal Student-t( )
skew

Student-t
GED( ) normal  Student-t skew Student-t GED( )

0.000289 
(0.000128) 

0.000263 
(0.000335) 

2.6081e-005 
(1.0145e-009) 

0.000546 
(4.48E-05) 

0.000438 
(0.000225) 

0.00011998 
(2.1921e-009) 

4.529e-005 
(1.8327e-009) 

6.29E-05 
(1.65E-05) 

1
0.656155 
(0.765934) 

0.577619 
(0.753535) 

0.046201 
(0.0034358) 

0.177650 
(0.061763) 

1.378073 
(1.127077) 

0.13667 
(0.00089559) 

0.067396 
(0.0042086) 

0.087212 
(0.021793) 

1
0.563349 
(0.105379) 

0.862596 
(0.022336) 

0.85824 
(0.017126) 

-0.034637 
(0.022034) 

0.414363 
(0.036766) 

0.86332 
(0.0015053) 

0.8319
(0.013687) 

0.821518 
(0.028361) 

- 2.055973 
(0.073754) 

4.1
(4.3242) 

- -  2.2499 4.1
(3.0382) 

-

-    - 0.057371 
(0.0011556) 

- - - 0.08673 
(0.0009139) 

-

-     - - 0.765938 
(0.019100) 

- - - 0.640956 
(0.024551) 

L 1623.570 2134.982 2088.8   2088.504 1431.575 1946.4 1909.7 1964.584

DW 2.417835    2.423121 2.4238 2.423556 2.419022 2.4536 2.4536 2.453412

Q(15) 14.612 10.896 9.7074    15.868 7.2444 3.4240 3.5536 3.5536

Q
2
(15) 0.8020 0.3411 0.5799    0.3016 0.5044 0.1225 0.1918 0.1918

Table 5: Univariate GARCH specifications for France forward returns Note: The model is a

GARCH(1,1) specified as: σ2
t = ω+β1σ2

t−1+α1η2
t−1. L is for the log-likelihood, DW is the Durbin-Watson statistics and

Q(15) and Q2(15) are for the Ljung-Box statistics up to the 15th order for residuals and squared residuals respectively.

Bollerslev-Wooldridge (1992) robust standard errors and covariance. ν and λ are the number of degrees of freedom for

the Student-t density and the asymmetry coefficient as defined by Hansen (1994), respectively.
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Dutch base day-ahead 

Dutch base forward 0.0775

Dutch peak day-ahead 

Dutch peak forward -0.0481

British base day-ahead 

British base forward 0.1539

British peak day-ahead 

British peak forward 0.1541

German base day-ahead 

Germany base forward -0.0163

German peak day-ahead 

Germany peak forward -0.0490

France peak day-ahead 

French peak forward 0.0052

Germany peak forward 0.0637

Dutch peak forward 0.0652

British peak forward 0.0638

France base day-ahead 

French base forward 0.0057

Germany base forward 0.0490

Dutch base forward 0.0731

British base forward -0.1338

Table 8: Sample correlations
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Parameters Estimates 

1
0.0023334

(1.9838.10
-6

)

11
0.20474

(0.0097447) 

11
0.79526

(0.0057444) 

2
0.000551

(4.4946.10
-7

)

21
0.52539

(0.45028) 

21
0.47461

(0.0050059) 

2.10
-6

(3.58038.10
-5

)

2.10
-6

(1.5074) 

Log-likelihood 1507.3

Table 10: DCC estimation on peak returns for FranceNote: The day-ahead series has been filtrated

through an ARMA(2,1) and the forward series through a constant. Coefficients are defined as in equation 17. L stands

for the log-likelihood. Bollerslev-Wooldridge (1992) robust standard errors and covariance.
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Figure 1: German base spot price in level, first differences, daily returns density and kernel density.
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Figure 2: German base forward in level, first differences, daily returns density and kernel density.
Data from
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Figure 3: German peak spot price in level, first differences, daily returns density and kernel density.
Data from
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Figure 4: German peak forward in level, first differences, daily returns density and kernel density.
Data from
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Figure 5: German base spot price in level, first differences, daily returns density and kernel density.
Data from
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Figure 6: German base forward in level, first differences, daily returns density and kernel density.
Data from
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Figure 7: French peak spot price in level, first differences, daily returns density and kernel density.
Data from
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Figure 8: French peak forward price in level, first differences, daily returns density and kernel density.
Data from
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Figure 9: Dutch base spot price in level, first differences, daily returns density and kernel density.
Data from
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Figure 10: Dutch base forward price in level, first differences, daily returns density and kernel density.
Data from
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Figure 11: Dutch peak spot price in level, first differences, daily returns density and kernel density.
Data from
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Figure 12: Dutch peak forward price in level, first differences, daily returns density and kernel density.
Data from
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Figure 13: UK Index in level, first differences, daily returns density and kernel density. Data from
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Figure 14: UK base forward in level, first differences, daily returns density and kernel density. Data
from
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Figure 15: UK peak forward in level, first differences, daily returns density and kernel density. Data
from
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Figure 16: Conditional optimal hedge ratio with OLS, BEKK and CCC model


