An Experimental Comparison of Critical Peak and Hourly Pricing

Frank A. Wolak Department of Economics Director, Program on Energy and Sustainable Development Stanford University Stanford, CA 94305-6072 wolak@zia.stanford.edu http://www.stanford.edu/~wolak

Outline of Talk

- Describe mismatch between traditional approach to retail pricing and efficient wholesale market operation
 - Symmetric treatment of load and generation
- · Assess performance of popular dynamic pricing programs in US
 - Hourly pricing (HP), critical peak pricing (CPP), CPP with rebate
- DCPowerCents experiment
 - Customer groups and treatments applied
- Measurement framework employed
 - Nonparametric treatment effects
- Empirical results
 - Large treatment effects relative to previous work
 Higher for All-Electric customers
 - Option to quit is important
 - Cost of taking action does not appear to be important
 - Information provision and automatic response technology economically important

Symmetric Treatment of Consumers and Producers

- In all markets, default price all consumers must pay and producers must receive is real-time price
 - Neither is required to pay or receive this price, but in order to avoid it, market participant must sign hedging arrangement
- Example from airline industry
 - Customers always have option to show up at airport and purchase ticket for flight they would like to travel on at realtime price
 - This purchase strategy has significant price risk because flight can sell out
 - To hedge risk, consumer purchases ticket in advance (fixedprice forward contract)

Symmetric Treatment of Consumers and Producers

- Because of legacy of vertically integrated-monopoly market structure, in many jurisdictions customers have a "free hedge" against real-time price risk through a fixed retail price (schedule) for all consumption
 - In vertically-integrated monopoly regime, utility provided spot electricity price insurance to customer
 - Customer paid firm's average cost for each KWh consumed and utility ensured supply was always available
- In wholesale market regime it is very difficult to set a fixed retail price that is guaranteed to always cover wholesale energy costs all possible consumption levels

Symmetric Treatment of Load and Generation

- No customer needs to pay real-time price, but all customers need to face risk of real-time price just as generation unit owner does
 - Real-time price risk exists and someone must manage it
 - Putting all real-time price risk on suppliers and retailers is unlikely to be least-cost solution
- Customers can select plan that assumes desired level risk, but they must pay appropriate price for hedge and against real-time price and quantity risk they receive
- Research Question---What should these pricing plans look like?

Dimensions of Dynamic Pricing Plans

- Hourly pricing (HP)--Pass through hourly wholesale price in default retail rate
 - · Customer manages all hourly wholesale price risk
 - High cost of taking action could limit size of demand response
- Critical peak pricing
 - Addresses cost of taking action by committing to sustained period of high prices with advance warning
 - Moral hazard problem with retailer declaring CPP days
- Critical peak pricing with rebate
 - · Addresses cost of taking action and moral hazard problem
 - · Has "option to give up" problem
- Information provision and demand response
 - Smart thermostats

Politically Acceptable Dynamic Pricing

- Major complaint with implementing hourly retail pricing is that customers cannot respond to hourly wholesale prices

 Difficult to determine when is best time to take action
- If taking action is costly and price increase is for one hour in duration, a very large price spike is needed to cause most customers to respond
 - For residential customer with (2.5 KW) flat load shape, a large price spike is needed to overcome \$5 cost of taking action to reduce demand by 20 percent
 - \$10,000/MWh for a 0.5 KWh demand reduction for 1 hour
 - Longer duration of high prices requires smaller increase in prices
 \$5,000/MWh average price for 0.5 KWh demand reduction for 2 hours
- Mechanisms that address cost-of-taking-action problem can result in more customers taking on real-time price risk
 - Critical Peak Pricing (CPP) is a popular way to do this

Politically Acceptable Dynamic Pricing

- Critical Peak Pricing—Customer consumes according to usual fixed-price tariff or increasing block fixed-price tariff during all hours of each day
- Customers face risk of Critical Peak Pricing (CPP) day
 - Retailer commits to no more than N (N \approx 10) CPP days in a prespecified time interval
 - During peak-period of a CPP day, customer pays a much higher price for all energy consumed during peak period
 - Strong incentive reduce demand during this time period
 - Peak period is typically 4 to 6 hours during day
 - Addresses cost of taking action problem by committing to a sustained period of high prices
- · Potential moral hazard problem for retailer
 - Can declare CPP day to manage short-term wholesale energy purchase costs due to inadequate forward market procurement
 - Little incentive for retailer not to use all N CPP days because these are high profit days for retailer
 - CPP price much higher than average retail price

Politically Acceptable Dynamic Pricing

- CPP with rebate is more popular with consumers because it addresses this moral hazard problem
 - During peak hours of CPP days customer receives rebate relative to reference a level consumption, only if its actual consumption is less than reference consumption
 - Retailer faces risk that total rebates paid will be more than wholesale energy procurement cost savings
 - If CPP period wholesale price is \$300/MWh (implicit in retail price), then if wholesale price is below \$300/MWh, retailer loses money paying for rebate
 - Retailer only wants to declare CPP days when rebates paid are less than wholesale cost savings

Politically Acceptable Dynamic Pricing

- CPP with rebate (CPP-R) implies that customers *guaranteed not to pay more* than they would have under baseline tariff
 - "You can't lose from rebate mechanism"
- Customers have *the option to quit* with no cost implications if it is too difficult to reduce their consumption
 - Pay for consumption above reference level during CPP period at fixed retail price
- Under CPP-R, marginal price of fixed retail price plus rebate is only relevant if consumption is less than reference level
 - Only carrot of rebate is used under CPP-R
- Under CPP, both carrot and stick used
 - Higher price for all consumption during CPP period

Research Questions

- Do customers respond to high real-time price warnings and CPP events?
 - Treatment effect of discrete event (price elasticities will come later)
- How do these price responses differ across customer classes?
 - Regular versus all electric customers
 - Low-income versus regular customers
 - Summer versus winter
- Does "cost of taking action" limit demand response of HP customers versus CPP customers?
- Does "option to quit" result in CPP response greater than CRR with rebate (CPP-R) response?
- Do Smart thermostats boost demand response?

- International Brotherhood of Electrical Workers
- Pepco (contributed \$2 million from shareholder funds)

Program Participants

Active Participants		Active Participants	By Income Level
Rate Code	Count	Income Level	Count
All Electric	215	Low-Income	118
Not All Electric	642	Non Low-Income	739
Total	857	Total	857
Rate Code	Count	Four Customer	Codes
Active Participants	By Rate Code	Customers are from a	ll eight Wards
Mate Coue	Count	Four Customer	Codes
Control	388		
Control CPP	388 236	R = Not All Electric	
		R = Not All Electric AE = All Electric	
CPP	236	AE = All Electric	
CPP CPR	236 387		d Discount (Low Inc

PowerCentsDC Pricing Options

- Hourly pricing plan
 - Hourly energy prices based day-ahead PJM prices
 - Hourly pricing curve made more extreme
 - High price periods upweighted slightly
- Treatment received by customers
 - All types of customers notified day before via automated phone call, email, or text page
 - CPP and CPR customers notified day before CPP event occurs
 CPP event days during summer called when forecast of high temperature for day is above 90 degrees
 - CPP event days during winter called when forecast of low temperature for day is below 18 degrees
 - Hourly pricing customers receive notification of high price (HP) warning hour
 - Hours when day-ahead price for energy is above 23 cents/KWh (> \$230/MWh) during summer months (between 1/3 to 1/4 of CPP price)
 - Hours when day-ahead price for energy is above 15 cents/KWH (> 150/MWh) during winter months

Dataset Used in Analysis

- Hourly consumption for 1,245 customers over period July 21, 2008 to March 17, 2009
 - Summer period is July 21 to October 31
 - Winter period is November 1 to March 17
- ln(Q(i,h)) = Natural logarithm of consumption for location i during hour of sample h in KWh
- Hour(h) = Indicator for hour-of-sample h, h=1,...,24xD where D is number of days in sample period
 - Controls for temperature and system conditions differences across hours of sample

Dataset Used in Analysis

- Treat(i,j) = Indicator for whether customer i is in treatment group j (j=CPP, CPR, and HP)
- CCP(h) = Indicator for whether hour of sample h is a critical peak hour
- HP(h) = Indicator for whether hour of sample h is a high price warning period
- THERM(i) = Indicator for whether customer i has a smart thermostat

$$\label{eq:product} \begin{split} & \textbf{Measuring Treatment Effect}\\ \bullet & \textbf{Average treatment effect for CPP event and HP event}\\ & - & \ln(Q(i,h)) = \alpha(CPP_PER(i,h)) + \beta(HP_PER(i,h)) + \lambda_h + \delta_i + \epsilon_{ih}\\ & - & \delta_i = \text{location-specific fixed effect (controls for persistent differences in consumption across locations)}\\ & - & \lambda_h = \text{hour-of-sample fixed effects (controls for persistent differences in consumption across hours in sample)}\\ & & \epsilon_{ih} = \text{unobservable mean zero stochastic disturbance}\\ & & \textbf{CPP_PER(i,h) = CPP(h)*Treat(i,CPP or CPR)}\\ & & & \textbf{HP_PER(i,h) = HP(h)*Treat(i,HP)}\\ & & & \textbf{Other variables added to other models}\\ & & & & - CPP_PER(i,h)*THERM(i)\\ & & & & + HP_PER(i,h)*THERM(i)\\ & & & & & \text{Different treatment effect for CPP versus CPR treatment by customer type} \end{split}$$

Parameter HP PER	Estimate -0.03003	Std. Error 0.01110	t Value -2.70
CPP PER	-0.09087	0.00731	-12.43
Parameter	Estimate	Std. Error	t Value
HP_PER	-0.03010	0.01110	-2.71
CPP R	-0.13030	0.00939	-13.88
CIT K			
CPR_R	-0.05315	0.00923	-5.76
CPR_R Parameter	Estimate	Std. Error	t Value
CPR_R Parameter HP PER			
CPR_R Parameter HP PER CPP R	Estimate -0.04788 -0.10636	Std. Error 0.01262 0.01034	t Value -3.80 -10.29
Parameter HP PER CPP R CPR R	Estimate -0.04788 -0.10636 -0.05021	Std. Error 0.01262 0.01034 0.01059	t Value -3.80 -10.29 -4.74
Parameter HP PER CPP R CPP R HP PER*THERM	Estimate -0.04788 -0.10636 -0.05021 -0.01799	Std. Error 0.01262 0.01034 0.01059 0.01285	t Value -3.80 -10.29 -4.74 -1.40
Parameter HP PER CPP R CPR R	Estimate -0.04788 -0.10636 -0.05021	Std. Error 0.01262 0.01034 0.01059	t Value -3.80 -10.29 -4.74

Parameter	Estimate	Std. Error	t Value
HP PER	-0.02574	0.01312	-1.96
CPP PER	-0.08892	0.00810	-10.98
Parameter HP PER	Estimate -0.02576	Std. Error 0.01312	t Value -1.96
CPP R	-0.02576	0.01312	-1.96
CPP R CPR R	-0.05349	0.01031	-12.13
Parameter	Estimate	Std. Error	t Value
	-0.05149	0.01488	-3.46
HP_PER			-8.54
HP_PER CPP R	-0.09653	0.01131	=0.34
CPP R CPR R	-0.09653 -0.04819	0.01131 0.01169	-4.12
CPP R CPR R HP*THERM	-0.09653 -0.04819 -0.03819	0.01169 0.02679	-4.12 -1.42
CPP R CPR R	-0.09653 -0.04819	0.01169	-4.12

Parameter	Estimate	Std. Error	t Value
HP PER	-0.17501	0.02350	-7.45
CPP PER	-0.16162	0.01433	-11.28
Parameter	Estimate	Std. Error	t Value
HP PER	-0.17514	0.02350	-7.45
CPP AE	-0.24578	0.01841	-13.35
CPR AE	-0.08462	0.01781	-4.75
Parameter HP PER	Estimate -0.16161	Std. Error 0.02657	t Value -6.08
CPP AE	-0.17026	0.02248	-7.57
CPR AE	-0.07833	0.02071	-3.78
HP*THERM	-0.05260	0.04824	-1.09
	-0.19146	0.03269	-5.86
CPP_AE*THERM CPR_AE*THERM	-0.01949	0.03266	

Results Summer Sample, Group AE

HP PER -0.05787 0.02686 -2.1
HP PER -0.05787 0.02686 -2.1
CPP PER -0.12629 0.01439 -8.7

Parameter	Estimate	Std Error	t Volue
UPR_AE	-0.03044	0.01/88	-2.04
CPR AE	-0.03644	0.01788	-2.04
CPP AE	-0.22356	0.01841	-12.14

Estimate	Std. Error	t value
-0.05069	0.03054	-1.66
-0.13325	0.02240	-5.95
-0.01901	0.02073	-0.92
-0.02749	0.05417	-0.51
-0.23122	0.03265	-7.08
-0.05452	0.03284	-1.66
	-0.05069 -0.13325 -0.01901 -0.02749 -0.23122	-0.05069 0.03054 -0.13325 0.02240 -0.01901 0.02073 -0.02749 0.05417 -0.23122 0.03265

HP, CPP, and CPR all show a negative treatment effect that is similar in absolute value to corresponding treatment effect for R customers CPP treatment effect more than five time CPR treatment effect HP treatment effect is ¼ of CPP treatment effect Smart thermostat increases magnitude of all treatment effects

Parameter	Estimate	Std. Error	t Value
CPP PER CPP PER*THERM	-0.1204 -0.0227	0.06173 0.01595	-1.96
CIT TER THERM	-0.0227	0.01393	-1.30
:	Summer S	ample	
Parameter	Estimate	Std. Error	t Value
CPP_PER	-0.14308	0.10514	-1.36
CPP PER*THERM	-0.05561	0.05523	-1.01
v	Vinter San		
			t Value
Parameter CPP PER	Estimate -0.07944	Std. Error 0.04695	t Value -1.69
Parameter	Estimate	Std. Error	

Preliminary Answers to Research Questions

- Price responsiveness
 - Both R and AE customers reduce their consumption in response to CPP and HP hours
 - Effect (% reduction in consumption from CPP or HP event) larger for AE customers relative to R customers in both summer and winter
 - $-\ \ For \ R$ customers effect primarily confined to summer periods
- RAD customers (Low Income)
 - RAD-R and RAD-AE customers reduce their consumption in response to CPP event
 - Treatment effects are larger than CPR treatment effect for R and AE customers
- Difficult to see evidence of "cost-of-taking action" for hourly pricing
 - Hourly pricing effect is between 1/3 to ¼ of size of CPP effect consistent with HP warning being for energy prices that are 1/3 to ¼ the size of CPP energy price
 - For AE customers large full-sample and winter HP warning effect

Preliminary Answers to Research Questions

- Strong evidence in favor of option-to-quit effect
 - For both R and AE customers CPR effects is 1/2 to 1/4 of CPP effect
 - For RAD customers not possible to examine this hypothesis because only CPR treatment was applied to RAD-R and RAD-AE
- Smart thermostat significantly enhances treatment effect
 - Almost doubles effect for CPP treatment for AE customers
 - Also increases treatment effects for for R customers
 - Increases treatment effect for RAD-R and RAD-AE customers, but results not very precisely estimated

Conclusions

- Default hourly-pricing may not be that difficult for consumers to respond to
 - High day-ahead wholesale price hours tend to cluster together, similar to CPP periods
 Cost of taking action does not seem substantial
 - Further work required to provide more definitive conclusion
- Default CPR tariff inferior to default CPP tariff
 - Loss in price-responsiveness could be large
 - "Option-to-quit" produces substantially smaller treatment effect
 - Further argument for default pass-through of hourly price or CPP default
- Smart thermostats significantly enhance price responsiveness of all customers
 - Air-conditioning and electric heating intensive areas may benefit most
- Low-income consumers can achieve significant price responsiveness

 Almost double treatment effect of RAD-AE customers on CPR relative to R and AE customers on CPR
 - Low income consumers can achieve significant economic benefits from dynamic pricing

Questions/Comments For more information: http://wolak.stanford.edu/~wolak