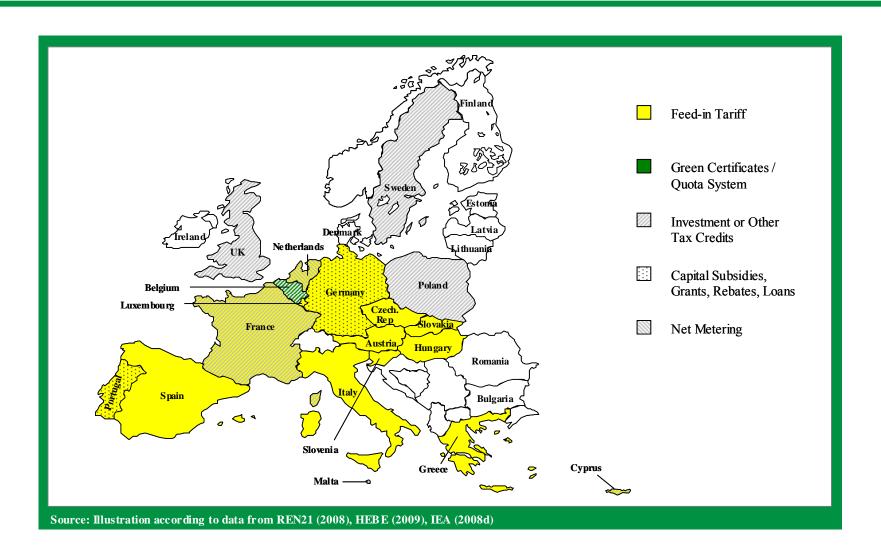


Feed-in Tariffs for Photovoltaics: Learning by Doing in Germany?

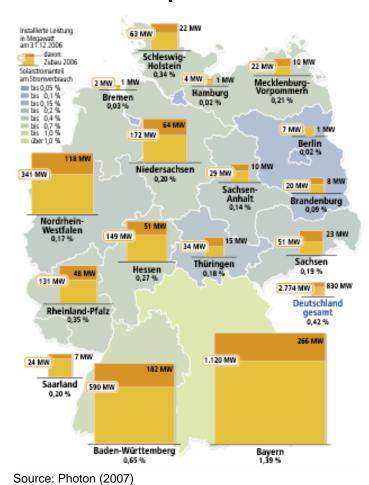
Conference on the "Economics of Energy Markets"

Toulouse, 29 January 2010


Robert Wand, Florian Leuthold

Chair of Energy Economics and Public Sector Management Workgroup for Economic and Infrastructure Policy

- 1. Introduction
- 2. The Model
- 3. Data and Parameterization
- 4. Base Case Results
- 5. Scenarios
- 6. Conclusions



Energy Policy Instruments for Photovoltaic Power Generation

Introduction and Motivation

Installed PV Capacities in Germany

Motivation

- Feed-in tariffs for 2009-2012
- Residential PV as costliest among the EEG-supported technologies
- Learning by doing (LBD) as expected benefit
- Recent studies:
 - Aggregated cost-benefit analyses for EEG (BMU, 2008)
 - PV-specific: orient to feed-in tariffs in the past (Frondel et al., 2008)

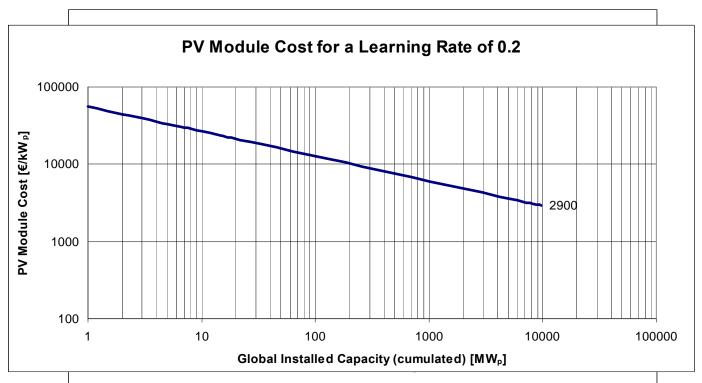
The German Renewable Energy Sources Act (EEG)

- Fixed feed-in tariff for 20 years
- Choice between feed-in tariff or bonus for self-supply

Remuneration scheme for small-scale rooftop systems

Year	Installed Capacity x in Previous Year	Degression Rate	Feed-in Tariff
2009	irrelevant	8%	0.4301 €/kWh
2010	<1000 MW 1000 MW ≤ x ≤ 1500 MW <1500 MW	7% 8% 9%	0.4 €/kWh 0.396 €/kWh 0.3914 €/kWh
2011	<1100 MW 1100 MW ≤ x ≤ 1700 MW <1700 MW	8% 9% 10%	Depends on tariff in previous year
$\begin{array}{c} < 1200 \text{ MW} \\ 1200 \text{ MW} \le x \le 1900 \text{ MW} \\ < 1900 \text{ MW} \end{array}$		8% 9% 10%	Depends on tariff in previous year

- 1. Introduction
- 2. The Model
- 3. Data and Parameterization
- 4. Base Case Results
- 5. Scenarios
- 6. Conclusions


Technological Change

Stages according to Schumpeter (1934):

Invention

Innovation

The Model - Scope and Design

- Partial cost-benefit model (does not consider PV's employment effects and security of energy supply)
- Model period: 2009 2030
- Grid-tied PV installations
- Residential PV-systems (<= 10 kWp)¹
 - Historic data available
 - Relatively homogeneous investment conditions and technology (mSi, pSi)
 - Costliest sector
 - Considerable market share of approximately 40% of total German installed capacity (Staiß, 2007)
- EEG-bonus for domestic use not included (higher capital costs owing to fluctuating household electricity prices)

¹ PV capacity is measured in kilo Watt peak (kWp), being defined as the power of a module under standard testing conditions (STC) of 1,000 Watt/m² of irradiance, at 25 degree centigrade cell junction temperature on a solar reference spectrum of air mass 1.5.

Objective Function

$$\max_{s_{t}} W = \sum_{t} \frac{q_{t} \cdot cap_{av} \left[\sum_{l=0}^{25} \frac{yield \cdot C_{ext}}{(1+r)^{l}} + CB_{t} - \left[\sum_{n=0}^{20} \frac{yield \cdot s_{t} \cdot p_{el,t}}{(1+r)^{n}} \right]_{t} \right]}{(1+r)^{t}}$$

$$s_t \ge 0$$

$$S_t = \frac{FIT_t - p_{el,t}}{p_{el,t}}$$

W	Welfare	CB_t	Consumer benefit in period t
Q_t	Demand in period t	S_t	Subsidy in period t (as surplus on electricity price)
cap_{av}	Average installation capacity	$p_{el,t}$	Electricity price in period t (net of taxes / charges)
C_{ext}	Avoided external cost	r	Social discount rate
yield	Annual electricity production per kWp	t	Period, year
l	PV system lifetime periods	n	Feed-in tariff periods
FIT_t	(Optimal) Feed-in tariff in period t		

Learning-by-Doing and Consumer Benefit

$$C_{t}^{Invest} = C_{0}^{Panel} \cdot \left(Q_{2007}^{G} \cdot \left[1 + g_{panel}\right]^{t}\right)^{-\beta_{panel}} + C_{0}^{BOS} \cdot \left(Q_{2007}^{D} + \sum_{1}^{t-1} q_{t} \cdot cap_{av}\right)^{-\beta_{BOS}}$$
Global learning (exogenous)

Regional learning (endogenous)

$$C_t^{Operation} = C_t^{Invest} \cdot \mathcal{G}$$

$$CB_{t} = \left[C_{t}^{Invest}(0) - C_{t}^{Invest}(FIT_{t})\right] + \sum_{l=0}^{25} \frac{C_{t}^{Operation}(0) - C_{t}^{Operation}(FIT_{t})}{(1+r)^{l}}$$

C_t^{Invest}	Welfare	eta_{Panel}	Learning coefficient PV panels (global learning)
$C_{\scriptscriptstyle t}^{\scriptscriptstyle Operation}$	Demand in period t	eta_{BOS}	Learning coefficient Balance of System components (regional learning)
Q_t	Demand in period t	$\mathcal{Q}^{\scriptscriptstyle G}_{\scriptscriptstyle 2007}$	Global installed PV capacity in 2007
G_{panel}	Global growth PV panel market (exogenous)	$Q^{\scriptscriptstyle D}_{\scriptscriptstyle 2007}$	Installed PV capacity in Germany in 2007
cap_{av}	Average installation capacity	${\cal G}$	O&M cost coefficient
0	No-policy case	FIT_t	Optimal policy of feed-in tariffs

Demand Specification

$$NPV_{t} = -C_{t}^{Invest} + \sum_{n=0}^{20} \frac{(1+s_{t}) \cdot p_{el,t} \cdot yield - C_{t}^{Operation}}{(1+i)^{n}} + \sum_{m=21}^{25} \frac{p_{el,(t+m)} \cdot yield - C_{t}^{Operation}}{(1+i)^{m}}$$

EEG remuneration periods

Post feed-in tariff periods

Demand specification according to Benthem et al. (2008):

$$q_t = \frac{u_t q_{\max}}{a_t + (q_{\max} - a_t) \cdot e^{-b^*NPV_t}} + diff_t$$

$$NPV_t \qquad \text{Net present value in period t}$$

$$diff_t = \gamma \cdot q_{t-1} \cdot \left(1 - \frac{q_{t-1}}{q_{\max}}\right)$$

$$C_t^{\text{Invest}} \qquad \text{Investment cost for residential solar system in period t}$$

$$C_t^{\text{Operation}} \qquad \text{Operation and maintenance cost (annuity)}$$

$$a_t \qquad \text{Parameter}$$

$$a_t = a_{t-1} \cdot \left(\frac{q_{t-1} + diff_{t-1}}{q_{t-1}}\right)$$

$$b \qquad \text{Parameter}$$

$$\gamma \qquad \text{Diffusion parameter}$$

$$diff \qquad \text{Diffusion term}$$

$$s_t \geq 0$$

$$q_{\max} \qquad \text{Maximum annual residential PV installations}$$

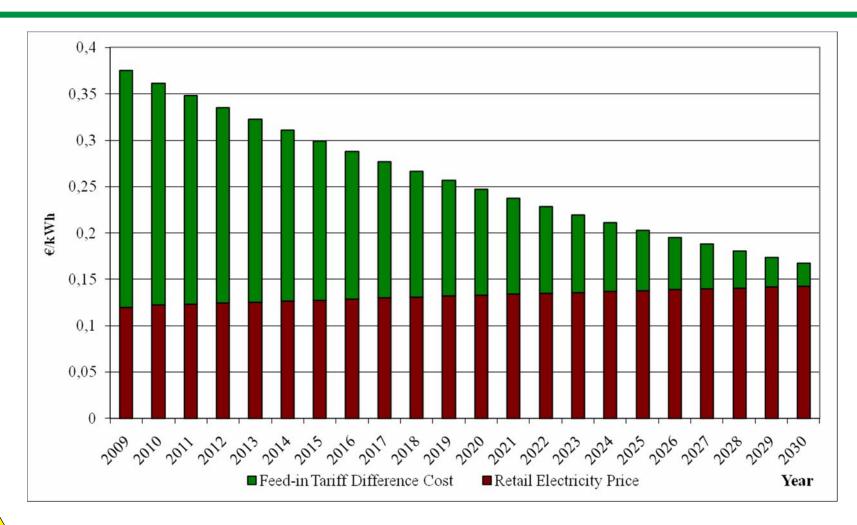
$$s_t \qquad \text{Subsidy}$$

$$NPV_t \geq 0$$

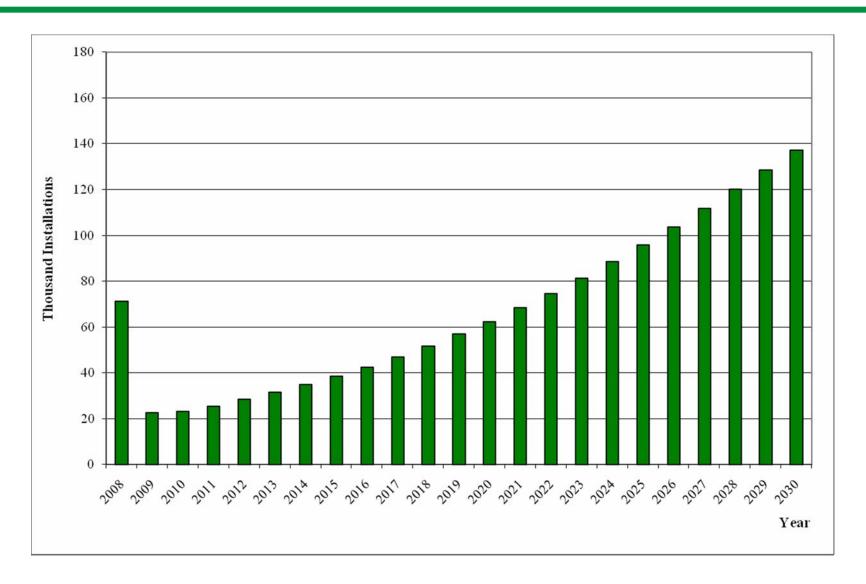
$$i \qquad \text{Investor's discount rate for PV investment}$$

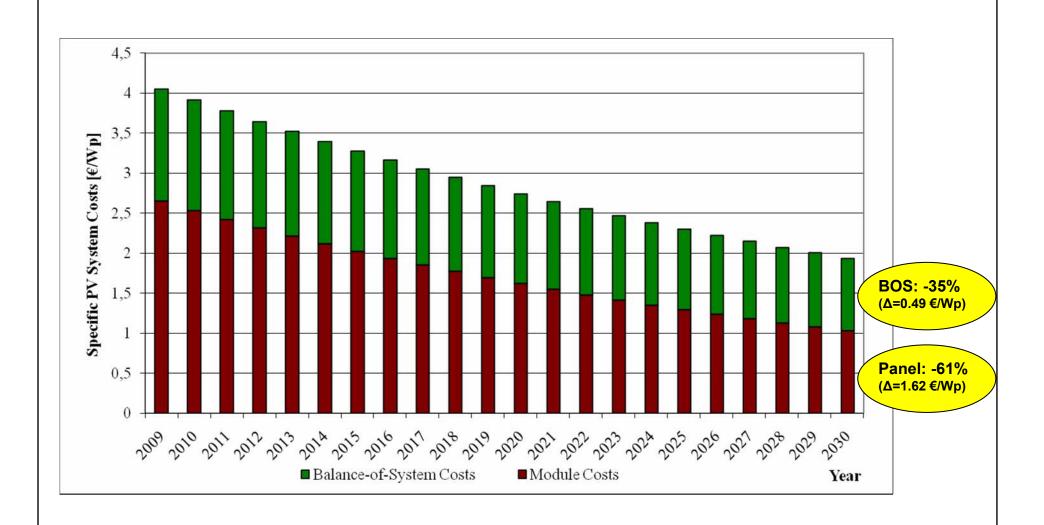
- 1. Introduction
- 2. The Model
- 3. Data and Parameterization
- 4. Base Case Results
- 5. Scenarios
- 6. Conclusions

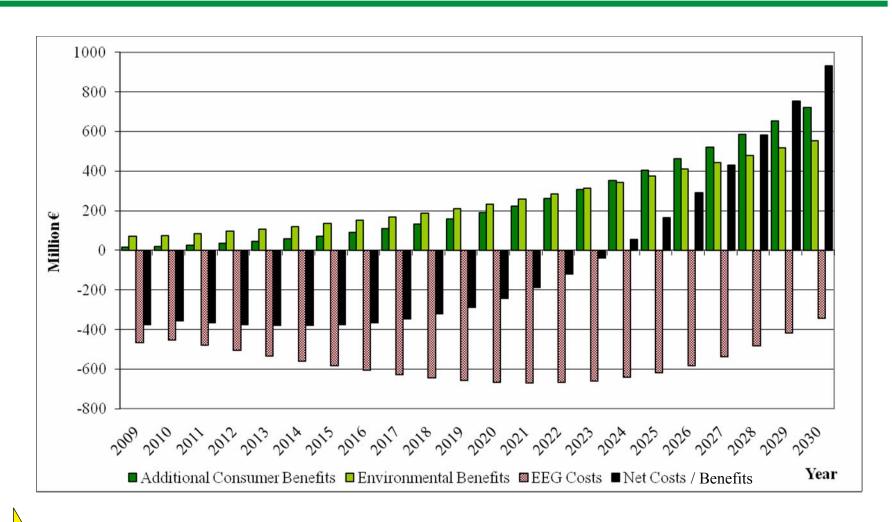
Data and Parameterization


	Parameter	Denotation	Value Unit	Data Source
69	Learning coefficient PV panels	βPenel .	0.322	Own calculations, using a LR of 0.2
	Learning coefficient BOS	Beog	0.234	Own calculations, using a LR of 0.15
	Investment cost for first production unit PV panels	$C_0^{\it Panel}$	57.2 € ^\Vp	Based on above LR and current module prices, PVN change (2009b)
	Investment cost for first production unit BOS	C_0^{BOS}	=.9 €^Vp	Based on above LR. PVNchange (2009a), Photon (2008a)
	Cumulated residential PV capacity in in 200	$Q^{\scriptscriptstyle D}_{\scriptscriptstyle 2007}$	1196 MWp	Own calculation, based on BSW Solar (2009) and Transmission System Operator data
	Cumulated global crystal silicon PV capacity in 200	Q^G_{2007}	10500 MWp	IEA (2008), Staiß (200 ⁻)
Market Data	German demandin 200"	92007	52.234 Thousand	Own calculations, BSW Solar (2009)
et D	German demandin 2008	92008	-1.2 Thousand	Own estimation, BSW Solar (2009)
ark	Maximum annual German market size	<i>q</i> ^{mex}	2" Thousand	Own calculations. Kaltschmitt et al. (2002). Kaltschmitt and Fischedick (1995)
Ms	Retail electricity price in 2008 (net of taxes and charges)	$p_{\scriptscriptstyle 2008}^{\scriptscriptstyle el}$	0.12 €kWh	Nitsch (2008), price path B
	Average growth global PV panel production 2009-2030	2.Pamel	15 %p.a.	EPIA and Greenpeace (2008). Roland Berger Strategy Consultants (2007). Frost & Sullivan (2006)
unt	Social discount rate	r	3 ° op.a.	Evans and Sezer (2005)
Discount Factors	Investor-specific discount rate (opportunity cost)	1	4.8 ° op.a.	Deutsche Bundesbank (2009)
nd	Demand function parameter	a ₀	14.215	Own calculations, based on Transmission System Operator data
Demand	Demand function parameter	b	0.384	Own calculations, based on Transmission System Operator data
De	Diffusion parameter	γ	0.135	Own calculations, based on Transmission System Operator data
E.O.	Specific external cost	Cext	0.034 €kWh	Krewitt and Schlomann (2006), Dones et al. (2005), Klobasa et al. (2009)
16	Specific electricity yield	yıeld	0.95 MWh/kWp	Solar en er gie-Förder ver ein Deutschland (2009). Staffhorst (2006)
	O&M cost coefficient	9	0.015	Staffhorst (2006), Dürschner (2009)
P	Average PV system capacity	cap_{2008}^{av}	5.46 kWp	Own calculations, based on Transmission System Operator data

- 1. Introduction
- 2. The Model
- 3. Data and Parameterization
- 4. Base Case Results
- 5. Scenarios
- 6. Conclusions


Feed-in Tariffs (Base Case)


Feed-in tariff in 2009: 0.375 €/kWh → reduction against 2008: 19.8% → 12.8% below EEG level


Demand (Base Case)

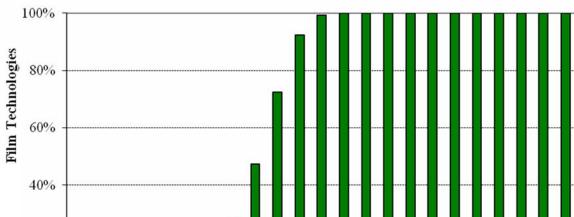
PV System Costs (Base Case)

Social Costs and Benefits (Base Case)

- 1. Introduction
- 2. The Model
- 3. Data and Parameterization
- 4. Base Case Results
- 5. Scenarios
- 6. Conclusions

Scenario Description (I/II)

• Scenario 1: "Economic Growth"


Input Parameter	Scenario 1	Base Case (BAU)
Investor-specific discount rate i	5.8% p.a.	4.8% p.a.
Retail electricity price pel,t	Growth rate of 3% p.a.	Nitsch (2008), price path B (moderate)
Annual market growth for crystalline PV panels <i>g</i> Panel	20% p.a.	15% p.a.
Avoided external cost Cext	0.05 € /kWh	0.034 € /kWh

Scenario Description (II/II)

- Scenario 2: "A Bright Future for PV"
 - Favorable environment for PV as a fledgling technology (cost competitiveness in high solar irradiation regions)
 - Thin-film technologies penetrate into the market for residential PV installations

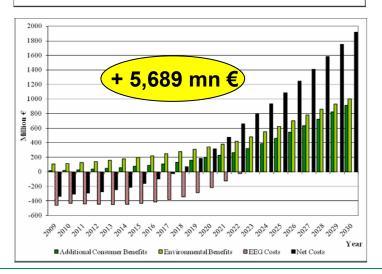
 Higher progress ratio for thin-film technologies (PR=0.7)

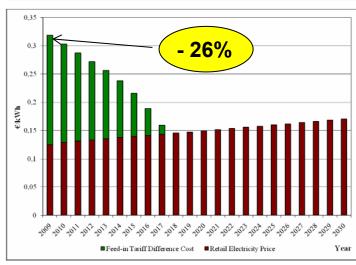
Lower discount rate
 (3% p.a.) and increased
 external costs
 (cf. scenario 1)

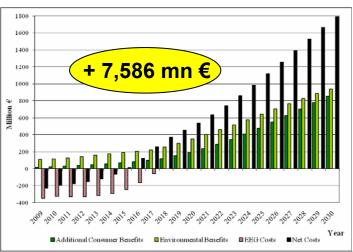
Adjusted learning curve:

$$C_{t}^{Invest} = (1 - ms_{t}) \left\{ C_{0}^{Panel} \cdot \left(Q_{2007}^{G} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right]^{t} \right\}^{-\beta_{Panel}} + ms_{t} \left\{ C_{0 thin}^{Panel} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right\}^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right\}^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[1 + \frac{1}{8} \right]_{Panel}^{20\%} \right)^{t} \right)^{t} \right)^{-\beta_{Panel}} + C_{0}^{Bos} \cdot \left(Q_{2007}^{G, thin} \cdot \left[Q_{2007}^{G, thin} \cdot \left$$

Scenario Results


Scenario 1 ("Economic Growth")


Feed-in Tariffs


Benefits

Social Costs and

Scenario 2 ("Bright Future")

- 1. Introduction
- 2. The Model
- 3. Data and Parameterization
- 4. Base Case Results
- 5. Scenarios
- 6. Conclusions

Results show that the EEG's current feed-in tariffs for residential PV are too high

Results (contd.)

- PV's welfare effect strongly depends on the chosen scenario
- In the positive scenarios, residential PV reaches grid-parity until 2030
- Sensitivity Analysis:
 - Welfare effects are primarily influenced by
 - Learning effects
 - Discount rates
 - Demand is primarily influenced by
 - Demand parameter calibration

Conclusions

- Residential PV's current promotion scheme in Germany according to the EEG should be reconsidered
- Induced regional learning effects in PV equipment production are limited
- Employment effects and aspects of security of energy supply have not been taken into account
- Real options approach: accumulation of knowledge and value of PV as strategic technology deployment?

Thank you very much for your attention!

Questions or comments are highly appreciated.

Robert Wand: rw@wip.tu-berlin.de

Florian Leuthold: florian.leuthold@tu-dresden.de

Chair of Energy Economics and Public Sector Management Workgroup for Economic and Infrastructure Policy

References (Selected)

- Benthem, Arthur van, Kenneth Gillingham and James Sweeney (2008): Learning-by-Doing and the Optimal Solar Policy in California. *Energy Journal*, Vol. 29, No. 3, pp. 131-151.
- BMU (2008): Erneuerbare Energien in Zahlen: Nationale und internationale Entwicklung.
 Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Report, June 2008. Retrieved 15/03/2009 from http://www.erneuerbare-energien.de/files/erneuerbare_energien/downloads/application/pdf/broschuere_ee_zahlen.pdf
- Frondel, Manuel, Nolan Ritter and Christoph M. Schmidt (2008): Germany's Solar Cell Promotion: Dark Clouds on the Horizon. *Ruhr Economic Papers*, No. 40, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Essen.
- Hirschl, Bernd (2008): Erneuerbare Energien-Politik. Eine Multi-Level Policy-Analyse mit Fokus auf den deutschen Strommarkt. Wiesbaden, Verlag für Sozialwissenschaften.
- IEA International Energy Agency / Wissing, Lothar (2007): National Survey Reports of PV Power Applications in Germany 2007. Jülich.
- Klobasa, Marian, Frank Sensfuß and Mario Ragwitz (2009): CO2-Minderung im Stromsektor durch den Einsatz erneuerbarer Energien im Jahr 2006 und 2007. Report, Fraunhofer Institute for Systems and Innovation Research, Karlsruhe.
- Krewitt, Wolfram, Michael Nast and Joachim Nitsch (2005): *Energiewirtschaftliche Perspektiven der Fotovoltaik*. DLR Deutsches Zentrum für Luft- und Raumfahrt e.V., Kurzfassung, Stuttgart.
- Lindenberger, Dietmar, Michael Bartels, Frieder Borggrefe, David Bothe, Ralf Wissen, Bernhard Hillebrand, Hans Georg Buttermann, Michaele Bleuel (2008): Studie Energiewirtschaftliches Gesamtkonzept 2030. Report, 03/31/2008, Institute of Energy Economics at the University of Cologne (EWI) and Energy Environment and Forecast Analysis GmbH (EEFA), Cologne and Berlin.
- Schumpeter, Joseph A. (1934): The Theory of Economic Development: An Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle. Harvard University Press, Cambridge, MA,USA.
- Staffhorst, Martin (2006): The Way to Competitiveness of PV An Experience Curve and Break-even Analysis. Dissertation, University of Kassel. Kassel University Press.

