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Abstract

One economic disincentive to investing in wind generation is that the average market value of wind energy
can be lower than that of other technologies. This is driven, in part, by the negative correlation between
wind availability and loads and market imperfections. We examine the use of energy storage to mitigate
this issue by shifting wind generation from periods with low prices to periods with higher prices. We show
that storage can significantly increase the value of wind generation and show the sensitivity of this value to
a number of parameters including storage device size, storage efficiency, and market competitiveness.
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1. Introduction

One economic disincentive to investing in wind generation is that the average value of wind energy can be
lower than other technologies. This is because real-time wind availability tends to be negatively correlated
with load whereas energy prices tend to be positively correlated with load. This issue is further exacerbated
with high wind penetrations. Since the exercise of market power by conventional generators is increasing
with the demand for conventional generation, the exercise of market power will be highest when wind
output is lowest, and vice versa. Green and Vasilakos (2009); Twomey and Neuhoff (2009) both examine
this issue in the UK market using supply function equilibrium (SFE) and Cournot models, respectively.
Green and Vasilakos (2009) show that depending upon the amount of wind available, the price of energy
could be depressed by more than £65/MWh due to this effect that wind has on the market. Their analysis
also shows that wind generators are subject to considerable risk due to the variability in wind availability
with wind revenues varying by up to £50/kW-year. Twomey and Neuhoff (2009) compare average energy
prices of wind and conventional generators, and show an average difference of more than £20/MWh in some
instances.

One way that this ‘price effect’ of wind could be mitigated is by coupling energy storage with wind
generation. A wind generator that owns a storage device could shift wind energy from periods with low
loads and low energy prices to periods with higher loads and prices. Similarly, wind generation could be
shifted away from periods in which high wind availability would suppress energy prices to periods in which
less wind energy is available. It bears mentioning that the coupling of wind generation and storage has
been studied in other contexts, but that this proposed use of storage to increase the market value of wind
energy is novel. Greenblatt et al. (2007); Swider (2007); Black and Strbac (2007); Abbey and Joos (2007);
Garćıa-González et al. (2008) examine the value of using energy storage to manage the variable and unpre-
dictable nature of wind availability in power systems. Most of this analysis has focused on more ‘engineering’
aspects of wind integration such as grid stability, load-balance, and system security. This analysis has shown
benefits from using energy storage as an alternative to other dispatchable generators as a means of man-
aging wind variability. Cavallo (1995); LCRA (2003); Denholm et al. (2005); DeCarolis and Keith (2006);
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Succar et al. (2006); Greenblatt et al. (2007); Denholm and Sioshansi (2009) consider the use of storage to
increase the utilization of transmission assets by wind farms. They demonstrate that co-locating a storage
device and wind generator on one side of a transmission line can allow the capacity of the transmission line
to be reduced, since storage can be used to ‘level’ the output of the combined wind farm and storage device.

This paper examines the potential benefits that energy storage could provide in increasing the market
value of wind generation in the ERCOT (Texas) market. Using a SFE model to represent the bidding
behavior of conventional generators, we show that the price of wind energy will tend to be below the average
price of energy, and that this difference grows with the penetration of wind into the market. We demonstrate
the benefits that coupling a storage device with wind will provide in increasing the value of wind energy
and discuss the sensitivity of this value to several of our model assumptions such as market competitiveness
and storage device efficiency. We finally show that coupling wind generation with storage in a market in
which energy prices respond to wind availability yields a greater combined value than having the assets
owned separately. The remainder of this paper is organized as follows: section 2 describes the SFE and
storage optimization models and data used in our analysis, section 3 summarizes our results while section 4
discusses their sensitivity to our model assumptions, and section 5 concludes.

2. Model

Our model assumes that the market consists of a set of strategic generators, who optimize their behavior
in the market, and a competitive fringe that consists of wind generators and non-strategic conventional
generators. The strategic generators are assumed to compete in the market by submitting supply functions,
which indicate the quantity of energy they are willing to supply at each given price. Klemperer and Meyer
(1989), which first develops the SFE model, assumes firms compete in supply functions because of uncertainty
in demand. Green and Newbery (1992) applies the SFE model to the British electricity market and notes
that the demand uncertainty assumption is equivalent to the fact that generators in spot markets must
commit to a fixed supply function for a period of time during which there are a number of settlements with
different and uncertain demand. For example, Sioshansi and Oren (2007); Hortaçsu and Puller (2008), which
empirically validate the SFE model in the ERCOT market, note that generators submit supply functions
that are fixed for an entire hour, during which the market settles at four 15-minute intervals. Because
the exact demand for spot energy in these four settlement periods is uncertain, this is equivalent to the
uncertainty assumption in Klemperer and Meyer (1989). Moreover, because wind availability is uncertain
(even hour-ahead), the presence of wind generators will add to the demand uncertainty that the strategic
firms face.

Equilibrium supply functions are obtained from the strategic firms’ profit-maximization problem. Firm
i’s profit maximization is given as:

max
p

πi(p, t) = p ·



D(p, t) −
∑

j 6=i

qj(p)



 − ci



D(p, t) −
∑

j 6=i

qj(p)



 ,

where p is the market price, D(p, t) is the market demand function at time t, qj(p) is firm j’s supply function,
and ci(·) is firm i’s cost function. Manipulating the first-order necessary condition (FONC) gives a set of
coupled differential equations characterizing an SFE. Firm i’s FONC becomes:

qi(p) = (p − c′i(qi(p)))



−
∂

∂p
D(p, t) +

∑

j 6=i

d

dp
qj(p)



 .

As discussed in Klemperer and Meyer (1989), one of the difficulties with the SFE model is that there is
typically not a unique equilibrium, and asymmetric SFE can be difficult to compute. Green (2008) shows
how to derive a unique equilibrium assuming the strategic firms are symmetric, in which case the differential
equation becomes:

qi(p) = (p − c′i(qi(p)))

(

−
∂

∂p
D(p, t) + (n̂ − 1)

d

dp
qi(p)

)

, (1)
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where n̂ is the inverse of the industry Herfindahl-Hirschman index (HHI). Because the HHI is computed
empirically based on the market shares of the strategic firms, n̂ is not restricted to take an integer value.

Following Sioshansi (2009) the ERCOT market is modeled based on the generator set, operating costs,
and loads from 2005, while wind penetration is scaled up by up to an additional 10 GW above the 2 GW of
wind that was operated in 2005. Based on Sioshansi (2010) and empirical evidence in Sioshansi and Oren
(2007) the market is assumed to have two strategic generating firms—TXU and Texas Genco—which are
roughly symmetric and for which equilibrium supply functions are derived. The remaining conventional
generators are assumed to behave competitively and offer their generation on the spot market at marginal
cost. The 2 GW of wind that was operating in 2005 is included in the generator portfolios of the firms it
was owned by in 2005, whereas the incremental wind is assumed to be owned by a separate entity. Thus,
our analysis of wind value focuses on the economic performance of this additional capacity.

Generation costs of conventional generators are computed using engineering estimates, with heat rate
and fuel cost data obtained from Ventyx and Platts. Nuclear generators are assumed to be operated as must-
run units by the system operator, and not bid strategically by the generators. Real-time wind availability
is based on modeled historical mesoscale data for 2005 provided by 3TIER. For wind generators that were
operating in 2005, wind availability is based on associating each wind farm with the location in the 3TIER
data that is geographically closest and using the modeled data.1 For the incremental wind generators, we
determine the locations based on the sites of planned wind farm installations through 2011 and assume
the incremental capacity is distributed in proportion to the planned capacities at these sites. These sites
are then associated with the 3TIER data based on geographic distance, and the output of the incremental
wind farms is scaled based on the assumed capacity. Hourly metered load data, as reported by ERCOT, is
combined with the marginal cost functions of the competitive fringe and nuclear output to yield the demand
function, D(p, t).

The computed equilibrium supply functions are combined with the actual load and the marginal cost
of the competitive fringe to determine a market price function, pt(q), which gives the price of energy as
a function of net energy sold by the incremental wind generator in hour t. For cases in which the wind
generator does not own a storage device, the wind generator is assumed to sell its entire output in each hour
unless the price of energy goes below the $19/MWh wind production tax credit for which wind generators
are eligible, in which case it would curtail its output. For cases in which the wind generator does own a
storage device, we use the model in Denholm and Sioshansi (2009) to maximize combined profits from the
wind farm and storage device. In order to give the formulation of the co-optimized model, we first define
notation for the the following parameters:2

• T : number of hours in planning horizon

• κ: power capacity of storage device (MW)

• h: hours of storage in storage device3

• η: roundtrip efficiency of storage device

• X : wind production tax credit ($/MWh)

• w̄t: wind generation available in hour t

We then define the following decision variables:

• lt: storage level of storage device at the end of hour t

1Alternatively, actual generation data from 2005 could be used for these wind farms. We opt not to use this approach, because
actual generation data is censored due to transmission-related wind curtailments, which, as discussed by Sioshansi and Hurlbut
(2009), were non-trivial.

2See Sioshansi et al. (2009) for a discussion of modeling storage devices.
3While some authors define ‘hours of storage’ as the number of hours the storage device can be discharged at maximum

capacity, we define it as the number of hours the device can be charged at maximum capacity.
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• st: energy put into storage in hour t

• dt: energy taken out of the storage in hour t

• wt: wind used in hour t

• σt: net energy sales in hour t

The formulation of the model is then given as:

max
T

∑

t=1

pt(σt) · σt + X · wt

s.t. lt = lt−1 + st − dt ∀ t = 1, . . . , T // storage level definition

σt + st − dt/η = wt ∀ t = 1, . . . , T // energy balance

wt ≤ w̄t ∀ t = 1, . . . , T // wind capacity

st ≤ κ ∀ t = 1, . . . , T // storage power capacity

dt ≤ ηκ ∀ t = 1, . . . , T // discharge power capacity

lt ≤ hκ ∀ t = 1, . . . , T // storage energy capacity

lt, st, dt, wt ≥ 0 ∀ t = 1, . . . , T // non-negativity

In the combined wind/storage case, we assume the wind generator optimizes the dispatch of its stor-
age device over the year one day at a time, using a rolling two-day planning horizon. As discussed in
Sioshansi et al. (2009), the two-day planning horizon is used to ensure that the storage device is not fully
discharged at the end of each day, which would be optimal behavior if a one-day planning horizon is used.
We further assume that the wind generator has perfect foresight of wind availability and the market price
function.

Because the equilibrium supply functions given by equation 1 will generally be nonlinear, the market
price function will be nonlinear as well. In order to reduce the complexity of the wind generator’s profit-
maximization problem, we approximate the market price function as a quadratic polynomial by ordinary
least-squares, as demonstrated in figure 1, which shows the approximation to be relatively good. The wind
generator’s profit-maximization problem is formulated using AMPL 11.21 and solved using ipopt 3.5.4.
Because the market price function is assumed to be quadratic, the profit-maximization problem will be
non-linear and non-convex. As such, our estimates may understate the value of energy storage, since we are
not guaranteed to find global optima, and our results should be viewed with this in mind.

−40 −20 0 20 40 60 80
0

20

40

60

80

100

120

Net Sales From Wind Generator (MWh)

E
ne

rg
y 

P
ric

e 
($

/M
W

h)

 

 

Actual Computed
Quadratic Approximation

Figure 1: Actual computed market price function and quadratic approximation for 1 January, 2005.
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3. Price of Wind and Value of Storage

Table 1 demonstrates the effect of energy prices responding to wind generation by summarizing the effect
of the incremental wind generator on the energy-weighted average price of wind generation and the average
load price, for the case in which the wind generator does not own a storage device. In order for the fixed
and responsive price cases to be comparable, the fixed prices are calculated from the market price function,
but assuming that prices do not respond to wind generation (i.e. assuming that prices are fixed at pt(0) in
each hour). The table shows that in all cases and even with fixed prices, the price of wind generation tends
to be lower than the overall average. With wind-responsive prices, introducing wind to the system depresses
energy prices—which is shown by a 5.7% decrease in the overall price of energy with 10 GW of added
wind. Because the price-depressing effect of wind is concentrated in hours in which there is wind available,
the price-suppressing effect is more pronounced for wind energy. For example, adding 10 GW of wind
reduces the price of wind by 13.1%. These results are consistent with the findings of Green and Vasilakos
(2009); Twomey and Neuhoff (2009). Figure 2 summarizes the effect that this price-suppression has on the
incremental wind generator’s profits by comparing profits in the fixed and responsive price cases. The figure
shows absolute profit losses between these two cases, and relative profit losses as a percentage of the profits
that would be earned with fixed prices. The results show that responsive prices can diminish the value of a
wind generator by close to 11%, translating into an annual loss of more than $350 million.

Table 1: Energy-weighted average selling price of wind generation and overall price of energy with fixed and wind-responsive
prices.

Wind Capacity (MW) Wind Price ($/MWh) Overall Price ($/MWh)

Fixed Prices 92.48 98.94

R
es

p
o
n
si

v
e

P
ri

ce
s

1000 91.41 98.44
2000 90.31 97.92
3000 89.19 97.39
4000 88.03 96.85
5000 86.84 96.30
6000 85.62 95.74
7000 84.36 95.16
8000 83.06 94.57
9000 81.73 93.96
10000 80.37 93.34
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Figure 2: Wind generator’s annual profit losses from wind-responsive prices, relative to profits from fixed prices.

Figure 3 summarizes the effect that adding a storage device will have on raising the selling price of wind
energy by allowing the wind generator to shift output to higher-priced periods and partially mitigate the
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price-suppressing effect of wind. The figure assumes a 10 GW wind generator that owns a storage device with
a power capacity of between 500 and 10000 MW, between 1 and 20 hours of storage, and a roundtrip device
efficiency of 0.8. As Sioshansi et al. (2009) note, depending on the underlying technology storage devices
can range between the sizes we consider here. They also note that 0.8 is a reasonable device efficiency, but
is at the upper end of storage technologies available today. We consider the effect of device efficiency further
in section 4. The figure also assumes a no-arbitrage restriction on the use of the storage device—which
restricts the wind generator to use the storage device solely for shifting of wind generation between periods.
This constraint is imposed in the wind generator’s profit-maximization problem by adding the constraint:

st ≤ w̄t ∀ t = 1, . . . , T.

We impose this constraint because we are interested in the use of storage to increase the value of wind
generation and not on the value of arbitrage (we do, however, relax this constraint in the sensitivity analysis
in section 4 to capture the added value of arbitrage).
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Figure 3: Average selling price of generation from a 10 GW wind operator with storage assuming wind-responsive prices and
no arbitrage.

The figure shows that energy storage can play a noticeable role in increasing the market price of wind
generation. The smallest-size storage device that we consider, a 500 MW device with one hour of storage,
increases the average selling price of wind by $0.22, which translates into a $3.8 million increase in annual
revenues from energy sales. The largest device, a 10 GW device with 20 hours of storage, increases the
selling price of wind by $5.16, resulting in a $74.4 million increase in annual revenues. The figure also shows
that the ability of storage to increase the selling price of wind generation reaches a saturation frontier, which
is roughly in the shape of a parabola going through device sizes of 5000 MW with 20 hours of storage, 6000
MW with 10 hours of storage, and 10000 MW with 6 hours of storage. Although the selling price of wind
and the resulting profits are increased with device sizes above this parabola, the incremental increases are
small compared to the gains from smaller device sizes.

Figure 4 summarizes the resulting effect of an eight-hour 500 MW storage device on the profits of the
wind operator, assuming the no-arbitrage restriction is still in place. The value of the storage device, which
is defined as the increase in the profits of the wind generator from owning the storage device, is given in
both absolute terms and as a percentage of the profit losses between the fixed and responsive price cases.
The fact that storage value is strictly increasing and non-diminishing in the capacity of the wind farm shows
that the wind generator does not ‘saturate’ the ability of the storage device to provide value. Moreover, the
figure shows that for smaller-sized wind farms, the increase in profits from generation shifting outweighs the
profit loss from wind-responsive prices.

Figure 5 summarizes the value of storage for a 10 GW wind operator with the same no-arbitrage condition,
showing a similar plateauing to that seen in figure 3. One natural question that arises from this analysis
is what size storage device can be justified based on the increase in the wind generator’s profits. This
type of analysis would require comparing the capital cost of the storage device to several year’s worth of
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Figure 4: Annual value of a 500 MW storage device with eight hours of storage assuming wind-responsive prices and no
arbitrage.

revenue streams from the storage device. In lieu of making assumptions about future market and wind
conditions, we opt to present a year-1 breakeven cost assuming an 11% capital charge rate (CCR), which
is meant to capture all of the various financing parameters (cf. Denholm and Sioshansi (2009)). Using this
CCR, the breakeven cost of the storage device is increased by roughly a factor of nine above the annual
value of the storage device given in figure 5. Although the resulting breakeven cost is below the cost of
most modern storage technologies—the highest breakeven cost for the 10 GW wind operator is $317/kW,
whereas Denholm and Sioshansi (2009) use a cost estimate of $750/kW for a compressed air energy storage
system (CAES)4—a storage system may be economic if it is intended for multiple uses, such as reducing
the transmission capacity requirements and shifting generation to higher-priced hours. On the other hand,
these multiple uses of the storage device may ‘compete’ with each other, resulting in subadditive value.
For instance, if storage is being used to level the output of a wind farm to reduce transmission capacity
requirements, this may interfere with the use of storage to reduce the price-suppression effect.
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Figure 5: Annual value of storage owned by a 10 GW wind operator assuming wind-responsive prices and no arbitrage.

4. Sensitivity of Storage Value to Model Assumptions

Because the value of storage and our results will be dependent on the assumptions underlying our model,
we repeat the analysis to determine their sensitivity to the efficiency of the storage device, the competitiveness

4It bears mentioning that because CAES is a hybrid storage device that uses natural gas when discharging stored energy,
it is not directly analogous to the analysis we have done here. Nevertheless, we use the cost of CAES as a benchmark because
CAES has one of the lowest capital costs of storage technologies presently available.
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of the market, and the ability of the wind generator to use the storage device for arbitrage.
Figure 6 summarizes the effect of the efficiency of the storage device on its value, by comparing the

value of lower-efficiency devices to an 80%-efficient device. The loss in value is given as a percentage of the
value of the 80%-efficient device, and assumes the wind generator has a 10 GW wind farm and that the
device has four hours of storage. The figure shows that storage value is highly sensitive to its efficiency. For
instance, reducing the efficiency of a 1000 MW device by 12.5% from 0.8 to 0.7 reduces the value of storage
by 39.2%. This sensitivity to the efficiency of the device is also observed in Sioshansi et al. (2009) in the
context of arbitrage value. They attribute the sensitivity to the fact that a more inefficient device must
charge more hours to discharge a given amount, and that these additional hours in which it must charge will
be more expensive. In our context a related phenomenon occurs: we still have that a less efficient device
must charge more hours for a given discharge, but we also have that when the price of energy is suppressed
by wind generation the alternative of putting wind into storage is less attractive, since more energy will be
lost due to efficiency losses. As Sioshansi et al. (2009) note, an efficiency of 80% is towards the upper-end of
modern storage devices, with pumped hydroelectric systems having efficiencies in the range of 65-85% and
large battery systems having efficiencies of around 65-75%.
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Figure 6: Loss in value of lower-efficiency storage device as compared to an 80%-efficient device assuming 10 GW of wind, four
hours of storage, wind-responsive prices, and no arbitrage.

Another sensitivity we consider is the competitiveness of the market in which the wind generator is
participating. Our analysis thus far has assumed a market with two strategic firms (because n̂ is computed
based on the actual market shares of the two firms, our analysis has used n̂ = 1.97), which will result in
abundant exercise of market power. The effect of this market power will be that energy prices will tend to
be much higher than marginal cost in periods in which generating loads are high, which will also tend to be
periods in which wind availability is low. In a more competitive setting, by contrast, market prices will be
closer to marginal cost, even when loads are high.

We repeat our analysis for a case in which the market has six symmetric strategic firms. We derive
the cost functions of the strategic firms from the same cost estimates for TXU and Texas Genco (i.e. we
use the same cost function for the strategic firms in this case as in the duopoly case), and use the same
demand function estimate, but assume that n̂ = 6 in deriving the SFE. Figure 7 summarizes the effect that
this more competitive market has on the value of wind generation and storage by showing the average price
of wind from a 10 GW generator. The more competitive market tends to suppress prices overall, because
the strategic firms have less opportunity to exercise market power, which will tend to reduce the value of
wind generation. On the other hand, as shown in figure 8, the value of storage is significantly higher in
the more competitive case, because there is added value in the wind generator being able to shift its wind
generation to periods with extremely high generating loads, which can significantly increase the market price
of its energy. Moreover, comparing figures 7 and 8 to figures 3 and 5 we see that in this more competitive
setting, the value of storage for the device sizes we have considered does not plateau. It is also interesting
to note that in this more competitive case, the year-1 breakeven cost of a 500 MW 20-hour storage device
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is $756.74/kW, which could make investment in a CAES device by a wind operator an economic decision,
assuming the $750/kW cost used in Denholm and Sioshansi (2009).
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Figure 7: Average selling price of generation from a 10 GW wind operator with storage assuming wind-responsive prices, no
arbitrage, and six symmetric strategic generating firms in the market.
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Figure 8: Annual value of storage owned by a 10 GW wind operator assuming wind-responsive prices, no arbitrage, and six
symmetric strategic generating firms in the market.

The final sensitivity analysis that we consider is the value of allowing the wind generator to use the
storage device both for storage of wind energy and for arbitrage. Figure 9 summarizes the arbitrage value of
a storage device owned by a 10 GW wind operator, where the value of arbitrage is defined as the increase in
profit when the no-arbitrage constraint is relaxed in the wind operator’s profit-maximization problem. The
figure shows that a wind generator can make use of the storage device for arbitrage, although the value of
this arbitrage is two orders of magnitude smaller than the value of using storage for wind shifting. Moreover,
the value of arbitrage has a similar plateauing effect to that seen before, in that for a 7 GW or larger storage
device there is no added value from increasing the hours of storage above eight. This plateauing effect may
be due to the assumption that the dispatch of storage is optimized using a rolling two-day planning horizon.
If storage use is being optimized over a longer period, such as a week or two, additional hours of storage can
allow for more with interday arbitrage.

Another question raised by the use of storage by a wind generator is whether there are any superad-
ditive profit gains from having the wind generator co-optimize the dispatch of the storage device with the
availability of wind, compared to a case in which storage is dispatched independently of wind. Figure 10
summarizes the value of co-optimization of wind and storage by a 10 GW wind generator. The figure shows
the increase in profit from joint ownership (above the sum of profits from independent operation of the wind
and storage), as a percentage of the sum of profits from independent operation. The figure shows that there
are some relatively modest profit gains from co-optimization.
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Figure 9: Annual arbitrage value of storage owned by a 10 GW wind operator assuming wind-responsive prices.
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Figure 10: Increase in profits from joint ownership of 10 GW of wind and storage, as a percentage of sum of profits from
individual ownership assuming wind-responsive prices and arbitrage.

Figure 11 demonstrates the benefit of joint ownership by comparing the dispatch of an eight-hour 2 GW
storage device in the joint storage ownership (JS) and individual storage ownership (IS) cases, assuming a
10 GW wind generator. As the figure shows, the benefit of joint ownership is that in periods of high wind
availability the dispatch of the storage device can be tailored to increase the price at which wind generation
is sold. For instance, in hours 2–3, 8–10, and 22–24 some of the available wind energy is put into storage
in the joint ownership case (which is reflected by the fact that the storage device is discharged less) so that
the remaining wind generation is sold at a higher price. Similarly, in hours 14–20 less energy is discharged
from the storage device in the joint ownership case. The difference in the value of storage under the joint
and individual storage cases is reflective of the fact that an independent storage owner will not have the
same incentives to use storage as the wind generator, however the fact that the profit difference between the
two cases is so small suggests that independent storage ownership may closely replicate the joint ownership
outcome from a societal standpoint, although the benefits may not be entirely captured by a wind operator
(Sioshansi (2010) discusses the issue of ownership structure as it relates to incentives to use storage more
generally).

5. Conclusions

In this paper we analyzed the use of storage as a means to increase the value of wind generation and the
profits of a wind generator. We demonstrated that because of diurnal load and wind availability patterns
and because the ability of strategic generators to exercise market power will be dependent on generating
loads and negatively correlated with wind availability, wind energy will tend to be less valuable on average
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Figure 11: Differences in operation of a 2000 MW storage device with 8 hours of storage under individual storage ownership
(IS) and joint storage ownership (JS) by a 10 GW wind operator.

than the overall value of energy. We also demonstrated that as more wind enters the market, the difference
between the overall value of energy and wind energy will grow, and the profitability of wind generators will
decrease. These effects on the value of wind generation can act to deter wind generators from entering the
market.

We showed that coupling energy storage with wind generation can increase the selling price of wind
and the profits of a wind generator. This increase in the price of wind both benefits wind generators (and
can help to further incent investment in wind capacity) and increases the social value of wind. The value
that storage can provide in this regard will tend to plateau, and there are tradeoffs between the energy and
power capacity of the storage device used. As Sioshansi et al. (2009) note, different generating technologies
will have different capital costs as a function of the power and energy capacity of the device. We also
examined the sensitivity of the value of storage to different assumptions of the model. Importantly, we
showed the storage device efficiency and competitiveness of the market will greatly influence the value of
storage. Although we did not present a detailed lifetime cash flow analysis, we showed that the year-1
breakeven cost of the storage device is below the capital cost of most storage technologies available today—
except in the case of the six-firm market setting. However, if energy storage can be put to multiple uses
by a wind generator, such as to reduce transmission capacity requirements and help manage variability in
output, the combined value of these uses may make storage an economic option for wind generators with
current technology costs.

Abbey, C., Joos, G., May/June 2007. Supercapacitor energy storage for wind energy applications. IEEE Transactions on
Industry Applications 43, 769–776.

Black, M., Strbac, G., March 2007. Value of bulk energy storage for managing wind power fluctuations. IEEE Transactions on
Energy Conversion 22, 197–205.

Cavallo, A. J., May 1995. High-capacity factor wind energy systems. Journal of Solar Energy Engineering 117, 137–143.
DeCarolis, J. F., Keith, D. W., March 2006. The economics of large-scale wind power in a carbon constrained world. Energy

Policy 34, 395–410.
Denholm, P., Kulcinski, G. L., Holloway, T., March 2005. Emissions and energy efficiency assessment of baseload wind energy

systems. Environmental Science and Technology 39, 1903–1911.
Denholm, P., Sioshansi, R., August 2009. The value of compressed air energy storage with wind in transmission-constrained

electric power systems. Energy Policy 37, 3149–3158.
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