Pass-Through of Emissions Costs in Electricity Markets

Natalia Fabra Universidad Carlos III de Madrid and CEPR Mar Reguant Stanford GBS and NBER

17 January 2013, Toulouse

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Cap and Trade programs to reduce emissions.

- Efficiency vs. distributional concerns.
- ▶ Pass-through, important measure to assess such concerns.

(ロ)、(型)、(E)、(E)、 E) のQの

Cap and Trade programs to reduce emissions.

- Efficiency *vs.* distributional concerns.
- ▶ Pass-through, important measure to assess such concerns.

Goal 1: Quantify pass-through of emissions costs.

• Cap and Trade programs to reduce emissions.

- Efficiency vs. distributional concerns.
- ▶ Pass-through, important measure to assess such concerns.

Goal 1: Quantify pass-through of emissions costs.

 Pass-through: demand response, market power and cost internalization

Cap and Trade programs to reduce emissions.

- Efficiency vs. distributional concerns.
- Pass-through, important measure to assess such concerns.

Goal 1: Quantify pass-through of emissions costs.

 Pass-through: demand response, market power and cost internalization

Goal 2: Disentangle determinants of pass-through.

Pass-through, market power, and cost internalization

• German Federal Cartel Office sent a *warning letter* to RWE:

The Bundeskartellamt does not object to up to a 25% pass-through... any amount exceeding this figure would constitute an abuse of market dominance.

Opportunity costs are in principle taken into account... However, this requires that the emission permits allocated free of charge are actually available for sale.

Incomplete pass-through and competitive behavior

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Incomplete pass-through and market power

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Incomplete pass-through and partial internalization

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

This paper

Quantify and disentangle determinants of pass-through.

- Reduced-form evidence
- Structural decomposition of the pass-through
 - emissions costs internalization
 - the role of demand response
 - the role of market power
 - technology substitution

This paper

Quantify and disentangle determinants of pass-through.

- Reduced-form evidence
- Structural decomposition of the pass-through
 - emissions costs internalization
 - the role of demand response
 - the role of market power
 - technology substitution

In the context of...

- EU's Emissions Trading Scheme (2005-2007)
- Spanish electricity market

Reduced form evidence on the Pass-through

- Identify pass-though rate from observed electricity price responses to CO₂ prices changes.
- Two pass-through measures:
 - ► Cost pass-through: effect of 1€ increase in the marginal cost of price-setting unit.

▶ Price pass-through: effect of $1 \in$ increase in the CO₂ price.

Pass-through regressions

Price pass-through regression:

$$p_{th} = \rho \tau_t + X_{th} \beta_0 + Z_{th}^S \beta_1 + Z_{th}^D \beta_2 + \omega_{th} \delta + \epsilon_{th}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Pass-through regressions

Price pass-through regression:

$$p_{th} = \rho \tau_t + X_{th} \beta_0 + Z_{th}^S \beta_1 + Z_{th}^D \beta_2 + \omega_{th} \delta + \epsilon_{th}$$

Cost pass-through regression:

$$p_{th} = \rho^{c} \tau_{t} e_{jt} + X_{th} \beta_{0} + Z_{th}^{S} \beta_{1} + Z_{th}^{D} \beta_{2} + \omega_{th} \delta + \epsilon_{th}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Marginal emissions costs instrumented with carbon price.

Pass-through regressions

Price pass-through regression:

$$p_{th} = \rho \tau_t + X_{th} \beta_0 + Z_{th}^S \beta_1 + Z_{th}^D \beta_2 + \omega_{th} \delta + \epsilon_{th}$$

Cost pass-through regression:

$$p_{th} = \rho^{c} \tau_{t} e_{jt} + X_{th} \beta_{0} + Z_{th}^{S} \beta_{1} + Z_{th}^{D} \beta_{2} + \omega_{th} \delta + \epsilon_{th}$$

- Marginal emissions costs instrumented with carbon price.
- Regressions with dummy on whether gas or coal marginal.

Technology switching?

Technology switching

(ロ)、(型)、(E)、(E)、 E) の(の)

Reduced-form estimates: main results

- Estimated *price pass-through* is 41% to 57%.
- Estimated cost pass-through is 82%.
- When we condition on the technology of the marginal unit, cost pass-through is...

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- ▶ 63% when coal sets the price.
- ▶ 93% when gas sets the price.
- Suggestive evidence of coal substitution by gas.

Structural decomposition of the pass-through

Firm *i*'s profits:

$$\pi_i(\mathbf{p};\varepsilon,\mathbf{u}) = p\left(D_i^R(\mathbf{p};\varepsilon,\mathbf{u}_{-i}) - Q_i^D\right) - C(Q_i^S;\mathbf{u}_i) - \tau e_i Q_i^S$$

where D_i^R : residual demand; Q_i^D : retail sales; Q_i^S : output.

Structural decomposition of the pass-through

Firm *i*'s profits:

$$\pi_i(\boldsymbol{p};\boldsymbol{\varepsilon},\boldsymbol{u}) = \boldsymbol{p}\left(D_i^R(\boldsymbol{p};\boldsymbol{\varepsilon},\boldsymbol{u}_{-i}) - Q_i^D\right) - C(Q_i^S;\boldsymbol{u}_i) - \tau \boldsymbol{e}_i Q_i^S$$

where D_i^R : residual demand; Q_i^D : retail sales; Q_i^S : output.

Profit maximization:

$$p = c_i + \tau e_i + \left|\frac{\partial D_i^R}{\partial p}\right|^{-1} \left(Q_i^S - Q_i^D\right)$$

Structural decomposition of the pass-through

Firm *i*'s profits:

$$\pi_i(\boldsymbol{p};\boldsymbol{\varepsilon},\boldsymbol{u}) = \boldsymbol{p}\left(D_i^R(\boldsymbol{p};\boldsymbol{\varepsilon},\boldsymbol{u}_{-i}) - Q_i^D\right) - C(Q_i^S;\boldsymbol{u}_i) - \tau \boldsymbol{e}_i Q_i^S$$

where D_i^R : residual demand; Q_i^D : retail sales; Q_i^S : output.

Profit maximization:

$$p = c_i + \tau e_i + \left|\frac{\partial D_i^R}{\partial p}\right|^{-1} \left(Q_i^S - Q_i^D\right)$$

▶ We estimate this equation when firm *i* sets market price:

$$b_{ijth} = \alpha_{ij} + \beta_i c_{jt} + \gamma_i \tau_t e_{ij} + \left| \frac{\partial \widehat{D^R}_{ith}}{\partial p_{th}} \right|^{-1} Q_{ith} + \epsilon_{ijth}$$

Do firms fully internalize the permit price?

Why would they not?

- Transaction costs in emissions markets?
- Expectations of future allocations based on current emissions?

- Behavioral biases?
- Financial market imperfections and liquidity constraints?

Do firms fully internalize the permit price?

	All	Firm 1	Firm 2	Firm 3	Firm 4
(1) No FE	1.059	1.034	1.063	1.237	1.099
	(0.065)	(0.065)	(0.051)	(0.055)	(0.077)
(2) Unit FE	1.000	0.961	0.874	1.078	1.044
	(0.023)	(0.025)	(0.040)	(0.034)	(0.083)
(3) Unit FE + season	0.981	0.949	0.855	1.033	1.023
	(0.019)	(0.026)	(0.034)	(0.021)	(0.077)
(4) Spec.3 + RD excluded	0.963	0.948	1.022	0.991	0.830
	(0.031)	(0.023)	(0.033)	(0.053)	(0.094)
(5) Spec.4 + Markup (IV)	0.966	0.967	1.029	0.732	0.871
	(0.042)	(0.041)	(0.037)	(0.074)	(0.092)
Obs.	16,190	5,244	3,211	5,689	2,046

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Simulating pass-through channels

 Compute marginal pass-through from bidding equations by perturbing the cost of CO₂ and re-computing optimal bids.

Table 1 : Simulated Bids and	Pass-through Counterfactuals
l Inelastic Demand	II Demand Response
Only MC Change	Only MC Change
III. Inelastic Demand	IV. Demand Response
MC + Markup Change	MC + Markup Change

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Inelastic demand and only MC change

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Pass-through channels: results

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 ____のへぐ

Conclusions

- We explore the impact of emissions permits on firms' decisions and market outcomes: quantify and decompose the pass-through rate.
- Cost pass-through around 100% on average with inelastic demand, but heterogeneity due to technology switching.
- Demand elasticity decreases pass-through around 10-20% in the short-run.
- Electricity prices increase around 50% given technology mix.
- Results consistent with full internalization of emission costs.

► Windfalls from: free permits and price pass-through.

Thank You!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Cost pass-through: results

	(1)	(2)	(3)	(4)	(5)	(6)
$e_{jt}\tau_t \ (\rho^{c,Coal})$	1.114 (0.119)	0.591 (0.199)	0.665 (0.447)	0.664 (0.439)	0.658 (0.446)	0.637 (0.412)
$e_{jt}\tau_t \ (\rho^{c,CCGT})$	1.998 (0.067)	1.025 (0.126)	0.780 (0.276)	0.862 (0.272)	0.881 (0.277)	0.933 (0.254)
Obs.	27,530	27,530	16,902	16,902	16,902	16,902
Year-Month FE RD Excluded MonthXTemp FE MonthXWind FE Month-Hour FE	N N N N	Y N N N	Y Y N N N	Y Y N N	Y Y Y N	Y Y Y Y Y

Pass-through channels: the role of demand elasticity

		Cost Pass-through		Price pass-through	
		Inelastic	Elastic	Inelastic	Elastic
Competitive	Mean	1.034	0.842	0.706	0.561
	Median St.Dev.	1.000 (0.226)	1.000 (1.021)	0.716 (0.286)	0.580 (0.642)
Only MC Change	Mean Median St.Dev.	1.080 1.000 (0.335)	0.774 1.000 (0.747)	0.695 0.739 (0.275)	0.484 0.416 (0.466)
MC + Markup Change	Mean Median St.Dev.	1.099 1.000 (1.504)	0.778 1.000 (1.588)	0.697 0.715 (0.751)	0.479 0.415 (0.807)

Table 2 : Pass-through (PT) Results

Notes: Sample from January 2005 to March 2006. Period with Royal-Decree 3/2006 is excluded. Standard deviation of passthrough distribution in parenthesis. Interquantile range in brackets.Competitive counterfactual replaces original marginal bids of thermal plants with engineering cost estimates.