

Relaxing Competition Through Speculation

_

Committing to a Negative Supply Slope

Pär Holmberg, Bert Willems

Toulouse, 15 June 2011

Introduction

- Trade of commodity derivatives is widespread
 - Firms manage risks
 - Market aggregate information
- Derivatives could be used as a commitment device by firms
 - By speculating firms might affect outcome of the product market
 - Will commodity derivatives markets be beneficial for competition?
- We test the competitive effect of speculation
 - We do not restrict the model to Cournot and Bertrand strategies, but allow for general supply functions
 (as in Klemperer & Meyer 1989, Green & Newbery, 1992)

What we find

- 1. Firms will use financial derivatives to commit to a **downward sloping** supply function
 - Produce more when prices are low
 - ◆ The residual demand function of competitors becomes less elastic
 - Competitors will set higher prices
 - This is therefore profitable
 - As demand uncertainty increases, less likely to bid a downward sloping function
- 2. Firms can **speculate** to commit to a downward sloping supply function
 - Sell forward contracts to commit to produce a lot
 - Buy call options with high strike price = right to buy back output when prices are high

- Introduction
- Intuition
- Model
- Analysis
- Conclusion

Why do firms commit?

A. Upward sloping supply function

B. Downward sloping supply function

Firm sells same amount at higher price

Why do firms commit?

- Our results has parallels with results in delegation games
 - Shareholders decide whether managers use Betrand or Cournot strategies
 - Playing Cournot is a dominant strategy (Singh and Vives, 1984)
 - Unless demand is very uncertain (Reisinger and Ressner, 2009)

How do firms commit?

With forward contracts a firm can commit to produce more in equilibrium

E.g. Wolak 2000, Bushnell et al. 2008

- Mechanism
 - Contract quantity is sunk
 - Firms maximize profit on the remainder of demand
 - Price is lower
 - Production is higher

How do firms commit?

- How to commit to a downward sloping supply function?
- When price is low, we would like to commit to be aggressive, sell a lot forward
- When price is high, we would like to commit not to be aggressive, sell little forward

How do firms commit?

- Make contract position a function of the price
 - Large for low prices
 - Small for high price
- Can be achieved by
 - selling forward contracts
 - buying call options
- Buying a call option gives the right to buy back quantity if spot price is high
- "Bear call Spread"

- Introduction
- Intuition
- Model
- Analysis
- Conclusion

Set up

Two stage oligopoly

- 1. Firms simultaneously sell a portfolio of contracts to consumers
- 2. Firms bid simultaneously a supply function in the spot market

Assumptions

- Consumers arbitrage perfectly between spot and contract market
- Demand is stochastic and is realized after firms bid in the spot market
- Firms observe each other's contract positions after stage 1
- Firms have no production costs, no capacity constraints
- Extension of Allaz & Vila (1993), Chao & Wilson (2005)

Set up

Firm i's strategies

- 1. Firm i sells contracts $X_i(p)$
- Firm i decides how much it sells in spot market
 Q_i(p) X_i(p)

Equilibrium prices

- 1. No arbitrage condition
- 2. Market clearing

$$\sum_{i} Q_{i}(p) = D(p) + \varepsilon$$

- Introduction
- Intuition
- Model
- Analysis
- Conclusion

2nd Stage: Spot Market Equilibrium

- We show that SFE equilibria are ex-post optimal, as in Klemperer& Meyer, 1989
- For each shock firm *i* chooses a point where its marginal revenue in the spot market is equal to marginal cost (=0).

1st Stage: Contracting Equilibrium

Firm 1 maximizes expected profit

$$\max_{X_1(p)} \int_0^{\overline{p}} p \cdot Q_1(p) \cdot dF(\varepsilon(p))$$

Subject to the 2nd stage Nash equilibrium

$$\begin{cases} \frac{\partial Q_1(p)}{\partial p} = \frac{\partial D(p)}{\partial p} + \frac{Q_2(p) - X_2(p)}{p} \\ \frac{\partial Q_2(p)}{\partial p} = \frac{\partial D(p)}{\partial p} + \frac{Q_1(p) - X_1(p)}{p} \\ D(p) + \varepsilon(p) = Q_1(p) + Q_2(p) \end{cases}$$

Klemperer Meyer Equations

Market Equilibrium

For each firm we have an optimal control problem with state variables Q_1 , Q_2 , and ε

1st stage equilibrium

If the inverse hazard rates are not to steep, $\frac{d}{d\epsilon} \left(\frac{1 - F(\epsilon)}{f(\epsilon)} \right) \le 1$

then the Nash equilibrium is symmetric and given by: *

1st Stage equilibrium

 $^{*)}$ 2 x partial integration + elimination of constraints \rightarrow point-wise optimize optimization

Example with Analytical solution

- Linear demand
- 2nd order Pareto distributed demand shocks $\frac{1-F(\epsilon)}{f(\epsilon)} = \alpha \epsilon + \beta$ $\beta > 0, \ \alpha < \frac{1}{2}$

- Introduction
- Intuition
- Model
- Analysis
- Conclusion

Conclusion

- Anti-competitive effect of speculation financial markets
 - Firms speculate in order to adjust the slope of their supply function and to soften competition
 - Price might even be above the monopoly price!
 - ♦ Effect is largest when the number of firms is large and demand uncertainty is small
 - Close to delivery, demand uncertainty is small and options are more likely to be abused
 - Regulate risk taking by firms
- In practice we expect the bidding strategy to be less pronounced as this **strategy is risky**
- Results for **other commitment devices** are likely to be similar.
 - Cf. Zöttl (2010), strategic firms invest mainly in base-load, but not in peak capacity to commit to steep bid functions.

