Relaxing Competition Through Speculation - Committing to a Negative Supply Slope

Pär Holmberg, Bert Willems

Toulouse, 15 June 2011
Introduction

- Trade of commodity derivatives is widespread
 - Firms manage risks
 - Market aggregate information
- Derivatives could be used as a commitment device by firms
 - By speculating firms might affect outcome of the product market
 - Will commodity derivatives markets be beneficial for competition?
- We test the competitive effect of speculation
 - We do not restrict the model to Cournot and Bertrand strategies, but allow for general supply functions
 (as in Klemperer & Meyer 1989, Green & Newbery, 1992)
What we find

1. Firms will use financial derivatives to commit to a **downward sloping** supply function
 - Produce more when prices are low
 - The residual demand function of competitors becomes less elastic
 - Competitors will set higher prices
 - This is therefore profitable
 - As demand uncertainty increases, less likely to bid a downward sloping function

2. Firms can **speculate** to commit to a downward sloping supply function
 - Sell forward contracts to commit to produce a lot
 - Buy call options with high strike price = right to buy back output when prices are high
- Introduction
- Intuition
- Model
- Analysis
- Conclusion
Why do firms commit?

A. Upward sloping supply function

- Total Demand
- Competitor’s residual demand
- Firm’s supply
- Marginal Revenue

B. Downward sloping supply function

- Total Demand
- Competitor’s residual demand
- Firm’s supply
- Marginal Revenue

Firm sells same amount at higher price
Why do firms commit?

- Our results has parallels with results in delegation games
 - Shareholders decide whether managers use Betrand or Cournot strategies
 - Playing Cournot is a dominant strategy (Singh and Vives, 1984)
 - Unless demand is very uncertain (Reisinger and Ressner, 2009)
How do firms commit?

- With forward contracts a firm can commit to produce more in equilibrium

 E.g. Wolak 2000, Bushnell et al. 2008

- Mechanism
 - Contract quantity is sunk
 - Firms maximize profit on the remainder of demand
 - Price is lower
 - Production is higher
How do firms commit?

- How to commit to a downward sloping supply function?
- When price is low, we would like to commit to be aggressive, sell a lot forward
- When price is high, we would like to commit not to be aggressive, sell little forward
How do firms commit?

- **Make contract position a function of the price**
 - Large for low prices
 - Small for high price

- **Can be achieved by**
 - selling forward contracts
 - buying call options

- **Buying a call option gives the right to buy back quantity if spot price is high**

- **“Bear call Spread”**
- Introduction
- Intuition
- Model
- Analysis
- Conclusion
Set up

Two stage oligopoly
1. Firms simultaneously sell a portfolio of contracts to consumers
2. Firms bid simultaneously a supply function in the spot market

Assumptions
- Consumers arbitrage perfectly between spot and contract market
- Demand is stochastic and is realized after firms bid in the spot market
- Firms observe each other’s contract positions after stage 1
- Firms have no production costs, no capacity constraints

Set up

Firm i’s strategies

1. Firm i sells contracts $X_i(p)$
2. Firm i decides how much it sells in spot market $Q_i(p) - X_i(p)$

Equilibrium prices

1. No arbitrage condition
2. Market clearing
 \[\sum_{i} Q_i(p) = D(p) + \varepsilon \]
- Introduction
- Intuition
- Model
- Analysis
- Conclusion
2nd Stage: Spot Market Equilibrium

- We show that SFE equilibria are ex-post optimal, as in Klemperer & Meyer, 1989
- For each shock firm i chooses a point where its marginal revenue in the spot market is equal to marginal cost (=0).

\[\forall i: \quad p \cdot \left(\frac{\partial Q_{-i}(p)}{\partial p} - \frac{\partial D(p)}{\partial p} \right) = Q_i(p) - X_i(p) \]

- Slope of the residual demand function
- Net sales in the spot market
1st Stage: Contracting Equilibrium

- Firm 1 maximizes expected profit

\[\max_{X_1(p)} \int_0^p p \cdot Q_1(p) \cdot dF(\epsilon(p)) \]

- Subject to the 2nd stage Nash equilibrium

\[
\begin{align*}
\frac{\partial Q_1(p)}{\partial p} &= \frac{\partial D(p)}{\partial p} + \frac{Q_2(p) - X_2(p)}{p} \\
\frac{\partial Q_2(p)}{\partial p} &= \frac{\partial D(p)}{\partial p} + \frac{Q_1(p) - X_1(p)}{p} \\
D(p) + \epsilon(p) &= Q_1(p) + Q_2(p)
\end{align*}
\]

Klemperer Meyer Equations

Market Equilibrium

- For each firm we have an optimal control problem with state variables \(Q_1, Q_2, \) and \(\epsilon \)
If the inverse hazard rates are not too steep, \(\frac{d}{d\varepsilon} \left(\frac{1-F(\varepsilon)}{f(\varepsilon)} \right) \leq 1 \)

then the Nash equilibrium is symmetric and given by: *

\[
\begin{align*}
\frac{1-F(\varepsilon(p))}{f(\varepsilon(p))} &= Q + p \frac{dQ(p)}{p} \\
\frac{dQ(p)}{dp} &= \frac{dD(p)}{dp} + \frac{Q(p) - X(p)}{p} \\
D(p) + \varepsilon(p) &= 2Q(p)
\end{align*}
\]

*) 2 x partial integration + elimination of constraints \(\rightarrow \) point-wise optimize optimization
Example with Analytical solution

- Linear demand
- 2nd order Pareto distributed demand shocks
 \[\frac{1-F(\varepsilon)}{f(\varepsilon)} = \alpha \varepsilon + \beta \]
 \[\beta > 0, \; \alpha < \frac{1}{2} \]
Introduction

Intuition

Model

Analysis

Conclusion
Conclusion

- **Anti-competitive effect of speculation** financial markets
 - Firms speculate in order to adjust the slope of their supply function and to soften competition
 - Price might even be above the monopoly price!
 - Effect is largest when the number of firms is large and demand uncertainty is small
 - Close to delivery, demand uncertainty is small and options are more likely to be abused
 - Regulate risk taking by firms

- In practice we expect the bidding strategy to be less pronounced as this **strategy is risky**

- Results for **other commitment devices** are likely to be similar.
 - Cf. Zöttl (2010), strategic firms invest mainly in base-load, but not in peak capacity to commit to steep bid functions.