

The Impact of Cap and **Trade Regulation on Congested Electricity Market Equilibrium** Tanachai Limpaitoon*, Yihsu Chen** and Shmuel Oren* *UC Berkeley **UC Merced

Presented at the Conference on The Economics of Energy Markets Toulouse, France june 15-16, 2011

Research on Regional GHG Regulation

- Study of Leakage (displacement of emissions to areas with less restrictive regulation) and on contract shuffling based on zonal models
- Study of enforcement strategies (Source based vs. Load based)
- Study of impact on local industry
- Study of impact on grid operations and power markets

Factors affecting the efficacy of GHG regulation and its impact on the electric power system

- **Transmission network** (Network congestion effects and congestion management approach)
- Specific form of GHG regulation (Carbon Tax, Cap & Trade, Renewable Portfolio Standard (RPS), RECs, GHG allowances)
- Demand response (Demand elasticity, Metering and load control technology, Rate regulation, Business models, PHEV/EV penetration & smart charging technology)
- Market structure (Resource ownership and market rules) and strategic behavior of participants
- Renewables integration (economic incentives and dispatch policies)

Example: Perverse Effect of Carbon Tax

Social Welfare = Consumer Surplus + Producers Profit + Congestion Rents + Tax

Downward, A. (2010). Carbon charges in electricity systems with strategic behavior and transmission. *The Energy Journal*, 31(4), 1–6.

Scope of this talk

- Describe an equilibrium model of an oligopoly electricity market in conjunction with a capand-trade policy to study the impact of such interactions.
- Demonstrate the potential impacts on market and environmental outcomes, and on the performance of the transmission system
 - For an IEEE 24-bus test network
 - For a reduced WECC 225-bus model of the Western Interconnect

Equilibrium Model

- Transmission flows obey direct-current (DC) load flow model (Kirchhoff law) and are constrained by thermal limits (capacity of lines)
- Cournot producers with quadratic cost functions compete to sell energy at different locations in an LMP-based market and make output decisions so as to maximize profits.
- Demand is elastic and represented by nodal demand functions
- ISO clears the market and controls import/exports through locational congestion markups so as to maximize social welfare while satisfying security limits
- ISO monitors CO2 permit compliance
- Endogenous CO2 permit market sets carbon prices. 6

Equilibrium Model with CO2 C&T

Electric Power Network

- N = the set of buses L = the set of transmission lines
- (MW = Megawatt)
- MW output of the plant at bus *i* q_i
- MW import/export at bus i r_i (import = +)
- $load_i$ MW fixed load at bus i
- Rating of transmission line *l* (MVA) K_{l}
- $PTDF_{l,i}$ of line *l* with respect to $D_{l,i}$ a unit injection at bus *i* and a unit withdrawal at the slack bus
- Plant *i*'s must-run limit (MW)
- $\frac{q_i}{\overline{q}_i}$ Plant *i*'s maximum capacity (MW)

 $q_i + r_i = load_i, \quad \forall i \in N$ $\sum_{i \in N} r_i + Losses = 0$ $-K_l \leq \sum_{i \in N} D_{l,i} r_i \leq K_l, \forall l \in L$ $q_i \leq q_i \leq \overline{q}_i$, $\forall i \in N$ $\leq K_{12}$

oad

Price-responsive demand

Consumers in each location *i* are represented by a linear inverse demand function:

$$P_i(q) = a_i - b_i q , \forall i \in N$$

- The inverse demand function at each bus is obtained from the results of a cost-minimizing power flow model.
- The price elasticity of demand is assumed to be -0.1 (Espey and Espey, 2004)

ISO Maximizes Social Welfare subject to Transmission Constraints and Enforces CO2 Cap

Equilibrium Model Mathematical Formulation (Linear Complementarity Problem)

KKT ISO:

 $\forall l \in L$

 $\forall l \in L$

ISO solves (redispatch problem)

$\max_{r_{i}:i\in\mathbb{N}} W = \sum_{i\in\mathbb{N}} \int_{0}^{r_{i}+q_{i}} P_{i}(\tau_{i})d\tau_{i} - C_{i}(q_{i})$ $P_{i}(x) = a_{i} - b_{i}x, \forall i \in \mathbb{N}$ s.t. $\sum_{i\in\mathbb{N}} r_{i} = 0$ (p) $\sum_{i\in\mathbb{N}} D_{l,i}r_{i} \leq K_{l}, \forall l \in L$ (λ_{l}^{+}) $-K_{l} \leq \sum_{i\in\mathbb{N}} D_{l,i}r_{i}, \forall l \in L$ (λ_{l}^{-})	$P_{i}(q_{i} + r_{i}) = p + \varphi_{i}, \forall i \in N$ $\varphi_{i} = \sum_{l \in L} \lambda_{l}^{+} D_{l,i} - \lambda_{l}^{-} D_{l,i}, \forall i \in N$ $\sum_{i \in N} r_{i} = 0$ $0 \leq \lambda_{l}^{-} \perp \sum_{i \in N} D_{l,i} r_{i} + K_{l} \geq 0,$ $0 \leq \lambda_{l}^{+} \perp - \sum_{i \in N} D_{l,i} r_{i} + K_{l} \geq 0,$
Each Firm g solves (profit maximization)	$ extbf{CO}_2$ Market equilibrium
$\max_{q_i:i\in N_g, p} \sum_{i\in N_g} (p + \varphi_i)q_i - C_i(q_i) - \mu e_i q_i$ s.t. $\underline{q}_i \leq q_i \leq \overline{q}_i, \ \forall i \in N_g$	$0 \le \mu \perp M - \sum_{i \in N} F_i(q_i) \le 0$
$\sum_{i\in N} q_i = \sum_{i\in N} (P_i)^{-1} (p + \varphi_i)$	$F_i(q) = e_i q \forall i \in N$

IEEE 24-Bus Test System – 3,405 MW Load

Fuel		CO,		Total
Туре	\$/Mbtu	(lbs/Mbtu)	# of units	MW
Oil	12	160	4	80
Gas	9.09	116	11	951
Coal	1.88	210	9	2174
Hydro	0	0	6	300
Nuclear	0	0	2	800

IEEE 24 Bus: Market Scenario

Scenario	Description
РС	Perfect competition
N+H+24T	Oligopolistic competition with 26 firms in total: Nuclear firm, Hydro firm + 24 thermal firms
N+H+2T	Oligopolistic competition with 4 firms in total: Nuclear firm, Hydro firm +2 thermal firms
NH+G+CO	Oligopolistic competition with 3 firms in total: one firm owns all nuclear and hydro facilities, second firm owns all gas facilities, third firm owns all coal and oil facilities.
NHG+CO	Duopoly: one firm owns nuclear, hydro, and gas Second firm owns all coal and oil facilities.
MP	Monopoly: all facilities belong to only one firm.

IEEE 24 Bus: Electricity Price

Ownership Structure

		PC	N+H+24	N+H+2	NH+G+CO	NHG+CO	MP
	Total CO ₂ Emission [tons]	1,060	1,205	942	833	765	370
	Energy Consumption [MWh]	2,160	1,924	1,702	1,599	1,452	1,086
ب	Avg. LMP [\$/MWh]	18	137	249	301	376	564
/su	CO ₂ Price [\$/ton]	0	66	0	0	0	0
L D	CO ₂ Emissions Rate [tons/MWh]	0.491	0.626	0.553	0.521	0.527	0.341
205	Congestion Rents [\$]	0	0	0	0	0	10,020
11 11	System Fuel Costs [\$]	38,750	67,401	36,379	62,991	32,834	24,906
2 CA	Total CO ₂ Emission [tons]	515	515	515	515	515	370
CO2 CA	Total CO₂ Emission [tons] Energy Consumption [MWh]	515 1,734	515 1,556	515 1,537	515 1,367	515 1,294	370 1,086
cO2 CA s/h	Total CO₂ Emission [tons] Energy Consumption [MWh] Avg. LMP [\$/MWh]	515 1,734 249	515 1,556 323	515 1,537 333	515 1,367 419	515 1,294 456	370 1,086 564
CO2 CA ons/h	Total CO ₂ Emission [tons] Energy Consumption [MWh] Avg. LMP [\$/MWh] CO ₂ Price [\$/ton]	515 1,734 249 444	515 1,556 323 432	515 1,537 333 238	515 1,367 419 405	515 1,294 456 317	370 1,086 564 0
CO2 CA 5 Tons/h	Total CO ₂ Emission [tons] Energy Consumption [MWh] Avg. LMP [\$/MWh] CO ₂ Price [\$/ton] CO ₂ Emissions Rate [tons/MWh]	515 1,734 249 444 0.297	515 1,556 323 432 0.331	515 1,537 333 238 0.335	515 1,367 419 405 0.377	515 1,294 456 317 0.398	370 1,086 564 0 0.341
CO2 CA 515 Tons/h	Total CO ₂ Emission [tons] Energy Consumption [MWh] Avg. LMP [\$/MWh] CO ₂ Price [\$/ton] CO ₂ Emissions Rate [tons/MWh] Congestion Rents [\$]	515 1,734 249 444 0.297 170,959	515 1,556 323 432 0.331 0	515 1,537 333 238 0.335 0	515 1,367 419 405 0.377 0	515 1,294 456 317 0.398 0	370 1,086 564 0 0.341 10,020
CO2 CA 515 Tons/h	Total CO ₂ Emission [tons] Energy Consumption [MWh] Avg. LMP [\$/MWh] CO ₂ Price [\$/ton] CO ₂ Emissions Rate [tons/MWh] Congestion Rents [\$] System Fuel Costs [\$]	515 1,734 249 444 0.297 170,959	515 1,556 323 432 0.331 0 63,629	515 1,537 333 238 0.335 0 56,158	515 1,367 419 405 0.377 0 49,113	515 1,294 456 317 0.398 0 27,877	370 1,086 564 0 0.341 10,020 24,906

WECC 225 Bus System

Resource Mix by Firm

HHI Index by capacity = 2,100 (Moderate Concentration)

Test Case Scenarios and Assumptions

• <u>Scenarios:</u>

- Perfect Competition vs Oligopoly Competition
 - 10 firms with 1 competitive fringe
- No CO₂ cap and CO₂ cap (20% reduction below Perfect Competition with No Cap and Transmission Constraints)
- With/without transmission constraints
- Assumptions:
 - Price-responsive linear demand function
 - with demand elasticity of -0.1 (Espey and Espey, 2004)
 - Price-responsive linear supply function for imports
 - with supply elasticity of 0.005 (Tsao et. al., Energy Policy [2011])
 - Simulated hour: the median load (Summer 2004)

Economic Results 225 Bus Case (With/Without Tr. Constr.) ¹⁹

	Perfect Competition				Oligopoly			
	No Cap		Сар		No Cap		Сар	
Total CO ₂ Emission [tons]	6,111		4,889		9,766		4,889	
Energy Consumption [MWh]	30,362		28,576		28,060		25,040	
Avg. LMP [\$/MWh]	59		94		97		154	
CO ₂ Price [\$/ton]	0		74		0		155	
CO ₂ rate [ton/MWh]	0.201		0.171		0.348		0.195	
Import CO ₂ rate [ton/MWh]	0.465		0.465		0.464		0.464	
In-State Fuel Costs (K\$)	347		245		663		215	
Social Surplus (K\$)	10,386		10,348		9,899		9,968	
Consumer Surplus (K\$)	8,945		7,905		7,839		6,320	
Producer Surplus (K\$)	1,243		1,701		2,038		2,804	
Congestion Revenues (K\$)	198		379	0	22		84	

Congestion VS No Congestion (With/Without Tr. Constr.) 20

	Perfect Competition				Oligopoly			
	No Cap		Сар		No Cap		Сар	
Total CO ₂ Emission [tons]	6,111	4,977	4,889	4,889	9,766	9,611	4,889	4,889
Energy Consumption [MWh]	30,362	30,471	28,576	30,286	28,060	28,184	25,040	25,170
Avg. LMP [\$/MWh]	59	53	94	56	97	95	154	151
CO ₂ Price [\$/ton]	0	0	74	8	0	0	155	151
CO ₂ rate [ton/MWh]	0.201	0.163	0.171	0.161	0.348	0.341	0.195	0.194
Import CO ₂ rate [ton/MWh]	0.465	0.464	0.465	0.464	0.464	0.464	0.464	0.464
In-State Fuel Costs (K\$)	347	235	245	225	663	651	215	216
Social Surplus (K\$)	10,386	10,511	10,348	10,510	9,899	9,923	9,968	9,988
Consumer Surplus (K\$)	8,945	9,135	7,905	9,033	7,839	7,906	6,320	6,400
Producer Surplus (K\$)	1,243	1,376	1,701	1,437	2,038	2,017	2,804	2,849
Congestion Revenues (K\$)	198	0	379	0	22	0	84	0

Comparison of Equilibrium Outputs between Transmission-Constrained and Unconstrained Electricity Markets

■ geothermal ■ renewable ■ wind ■ hydro ■ nuclear ■ biomass ■ gas ■ import

Implications of Simulation Studies

- We have demonstrated the need to consider the interaction of congestion and ownership structure (market power) in evaluating the impact of environmental policies on performance of the power system.
- Complex interaction may lead to unintended consequences that would not be revealed by simplified models.
 - A tight emission cap and ownership concentration of clean resources amplify market power effects.
 - In a transmission-constrained market, geographical concentration of clean resources can indirectly amplify market power via the permit market.
- Major Limitation of the Analysis:
 - One hour snapshot ignores intertemporal price smoothing in carbon market
 - Our carbon permit market targets only electricity and ignores the impact of other industry sectors participating in C&T on permit prices.

Questions?

