Global Climate Games: How Pricing and a Green Fund Foster Cooperation

Peter Cramton, University of Maryland Steven Stoft, Global Energy Policy Center

14 June 2011

For details see www.cramton.umd.edu/papers/climate www.global-energy.org/lib/1101

Price Carbon

Kyoto and Copenhagen failed

Design global negotiations to promote cooperation

Roadmap to Global Cooperation

- 1. Avoid cap-or-tax fight
- 2. Global Public-Goods Game uncooperative
- **3.** Global Cap-and-Trade Game uncooperative
- 4. Global Quantity- and Price-Target Games
 - Symmetric world both cooperative
 - Asymmetric price \rightarrow cooperative
 - With poor countries uncooperative
- 5. With Green-Fund cooperative and cheap

Pricing Is Not Taxing

International Commitment to a Cap

- Does NOT mean nations must have caps
- International Commitment to a Price
 - Does NOT mean nations must have carbon taxes

Cap & Trade = Carbon Pricing

- That's why we like it
- There are many ways to make this work

THE INTERNATIONAL CAP-AND-TRADE GAME

International ≠ National

National cap-and-trade game works

- \Box Government \rightarrow cooperation
- $\Box \operatorname{Price} \qquad \rightarrow \operatorname{Efficiency}$
- International cap-and-trade game

Coal-burning countries act like

Coal-burning power plants without a government

Two International Games

- Public-Goods Game:
 - Each country chooses its abatement, A_i
- Cap-and-trade Game
 - \Box Each country chooses its target, T_i
 - \Box Sells carbon credits for P × ($A_i T_i$)
 - P = marginal cost of each country j
- Countries acts in their self interest

The Public Goods Game

Suppose

- 4 countries benefit \$5/ton
 4 countries benefit \$20/ton
 The world benefits \$100/ton
 Four set domestic price = \$5 and four set domestic price = \$20
 Optimal price is \$100
- Some abatement, but much too little

Payoff = Net-Benefit

$$NB_{j} = b_{j} A - c_{j} A_{j}^{2} + P (A_{j} - T_{j})$$

Climate benefit = b_j × (Total abatement)

Abatement cost = c_j × (country abatement)²

□ Carbon Trade Revenue = $P \times (A_j - T_j)$

Only under cap-and-trade

Cap & Trade Can Beat Public Goods

Game #1	Public Goods		Cap and Trade			
Country	A _j	Р	Тj	A _j	P*	
1	0.5	\$1	0.38	0.75	\$1.5	
2	0.5	\$2	0.75	0.38	\$1.5	
Total	1.0		1.13	1.13		

Country 1: $b_j = 1$, $c_j = 1$ Country 2: $b_j = 2$, $c_j = 2$

Or Not

Game # 2	Public Goods		Cap and Trade			
Country	A _j	Р	T _j	A _j	P*	
1	0.17	\$1	- 0.08	0.25	\$1.5	
2	1.00	\$2	1.08	0.75	\$1.5	
Total	1.17		1.00	1.00		

- Country 1: $b_j = 1$, $c_j = 3$
- Country 2: $b_j = 2$, $c_j = 1$
- □ Negative Target → Cap > BAU emissions

How to Cheat

In Cap-Trade Game #1

- □ Country 1 has public good price = \$1.00
- □ But, the global P* = \$1.50
- So Country 1 would like to abate less, but still sell as many carbon credits, so
 - \Box Subsidize carbon $\rightarrow \Delta A_i$ less abatement

 \Box Increase T_j by ΔA_j

Country 2 will do the same in reverse

Cap and Trade with Price Cheating

Game #3	Public Goods		Cap and Trade w/ Cheating			
Country	A _j	Р	T _j	s _j	Aj	P*
1	0.5	\$1	0.33	0.67	0.5	\$1.67
2	0.5	\$2	0.67	-0.33	0.5	\$1.67
Total	1.0		1.00		1.0	

Country 1: $b_j = 1$, $c_j = 1$ Country 2: $b_j = 2$, $c_j = 2$ NB₁: 0.75 \rightarrow 1.03 NB₂: 1.50 \rightarrow 1.22
 The "nice" country loses

Cap and Trade Conclusions

National carbon prices & subsidies

must be monitored to prevent cheating under cap and trade, just as under any carbon pricing scheme

With linear climate benefits:

□ P* = (1/N) (optimal price), N = # of countries

Just as bad with diminishing benefits

THE GLOBAL QUANTITY-TARGET, AND PRICE-TARGET GAMES

Global-Target Games

- *N* identical countries in the world
 The **quantity**-target game
 - \Box Each country names a target Q^{T}_{j}
 - $\square Q^T = \text{maximum (weakest) } Q^T_j$
 - $\Box \text{ National caps} = Q^T / N$

The price-target game

- \Box Each country names a target P_{i}^{T}
- $\square P^T = \text{minimum (weakest) } P^T_{j}$
- □ National carbon prices $= P^T$
- Currency = Global index of major currencies (USD, euro, ...)

Identical Countries → Identical Games

- □ Every P^T matches some Q^T that would cause global price P^T
- \Box Vote for P^T or its matching Q^T
- The same holds in each identical country

- □ If you vote for a high P and win,
 - then you will cause all countries to set a high price, and all their high prices benefit you
- □ That's *N*-times better than with public goods
- So you set an N-times higher price, and that's optimal
- So voting for Q also works optimally

Trouble in Paradise

- Country 1: Temperate w/ renewable resources
- Country 2: Hot with only coal
- The Q-target game gives the same P, so the same abatement happens either way
- But with a Q-target,
 - Country 2 must pay country 1 a lot of money (to buy carbon credits = fancy paper)
- Country 2 (rightly) won't play this game

Price Is Better

- With a price target, the same abatements happen, but no country pays any other
- Price determines roughly how much "effort" you put into abatement
- Quantity determines who's good and who's guilty; the bad guys pay; no one likes to be told they're bad, and especially if they must pay

Pricing Needs Help

Poor countries

Have a lower cost/ton of abatement

- ➔ a greater social cost of abatement
- Have a higher discount rate
 - → less benefit from future climate
- \Box Poor countries will vote for a low global P^T
- And the lowest price wins

LINK THE GREEN FUND TO PRICE

Keep the Green Fund Simple

Green Fund Payment Received =

$$\mathbf{G} \boldsymbol{\cdot} \Delta \mathbf{E}_{\mathbf{j}} \boldsymbol{\cdot} \mathbf{P}^{\mathsf{T}}$$

- ΔE_j = (World emission) (Country emission) on a per-capita basis.
- □ G = the strength of the Green Fund

Green-Fund Game Payoff Function:

$$NB_{j} = b_{j} A - c_{j} A_{j}^{2} + G \cdot \Delta E_{j} \cdot P^{T}$$

Green-Fund Game

Example Game with Three Countries
 "U.S." = High, "China" = Average, "India" = Low emissions / capita
 So China neither pays nor is paid Green Funds
 India wants a low global price
 As with other games, Self interest and no cheating

Green-Fund Game Rules

- 1. China picks G
- 2. Then, all three vote for P^T
- 3. All get the Net-Benefit payoff

Strategy

China will raise India's vote for P^T by picking G>0, but not too high because the U.S. would vote for a lower P^T than India

Without the Green Fund

Country	рор	е	Voted P	P *	A _j %
	billions	ton/cap.	\$/ton	\$/ton	%
U.S.	0.3	18	\$31	\$10	6.7%
China	1.2	5	\$31	\$10	6.7%
India	1.0	1.1	\$10	\$10	9.1%

The Green-Fund Game

Country	рор	е	Voted P	A _j %	A _j Cost	G. F. Benefit
	billions	ton/cap.	\$/ton	%	¢/ca	pita/day
U.S.	0.3	18	\$26	18%	11.5 ¢	-4 ¢
China	1.2	5	\$31	18%	3.2 ¢	0.0¢
India	1.0	1.1	\$26	24%	1.0 ¢	1.2 ¢
World	2.5	5	\$26	18%	3.3 ¢	0.0¢

Poorest countries gain even ignoring climate benefits!

The Green-Fund Game vs. Cap and Trade

Game	Global price, P	P as a % optimal	A as a % optimal
Green-Fund Game	\$26.40	93%	93%
Global Cap and Trade	\$9.51	33%	33%
Optimal Outcome	\$28.52		

Cap-and-trade has individual caps, no Green Fund, and same physical world

Green-Fund Game Mechanisms

- The Green-Fund is also a climate incentive
 Reduce your E/capita and pay less / get more
 This works equally on every country
- Green Pay reduced as you miss the P target
 Incentive for payees; Assurance for payers
- Let near-average E/capita country vote for G
 Then pick the median vote for G
- Trading carbon-revenue credits could make compliance more agreeable

Conclusion

- □ Ignore numerology 80% by 2050
- A cap is no stronger unless it's price is higher
- Assigning caps = assigning blame
- Equal pricing = equal effort
- Green Fund is a huge incentive, but for what?
 must be linked to performance
 - not to Green projects = bait for corruption
- Design for cooperation to get strong policies

Price Carbon