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Abstract

We study dynamic duopolistic competition between hydro and ther-
mal generators under demand uncertainty. Producers compete in quan-
tities and each is constrained: the thermal generator by capacity and
the hydro generator by water availability. Two versions of the model
are analysed: an infinite-horizon game with a fixed thermal capacity
and a finite-horizon game in which the thermal generator can make
investments in capacity.

In the infinite-horizon game, we find the Feedback equilibrium by
using collocation methods to approximate the hydro generator’s value
function. The thermal generator’s equilibrium strategy is decreasing
in the water level, hence there is a strategic withholding of water by
the hydro generator. Comparing the Feedback equilibrium to the ef-
ficient one, we find that the thermal capacity and water availability
constraints bind less frequently under the duopoly than is efficient.
However, for a large range of possible thermal production capacities
and water flow levels, the outcome under duopoly is near the efficient
outcome in terms of the level of prices.

We analyse the choice of capacity by the thermal producer using
a two-period variant of the model. We characterize both the closed-
loop and S-adapted open-loop equilibria for this game. We find that
investment is higher under closed-loop information.
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1 Introduction

It is common to find alternative electricity generation technologies coexist-
ing in a market. In many jurisdictions, electricity is generated from a mix
of thermal (coal, oil, gas), nuclear, and hydro generation plants. Of these
technologies, one special characteristic of hydroelectric power generation is
that it is constrained by the availability of water, which varies over time.
Consequently, an interesting situation from the point of view of the dynam-
ics of competition is when a hydroelectric generator coexists with a thermal
generator.1 Hydroelectric generation can be characterized by low marginal
cost when operating, but subject to the availability of water to drive the
turbines. In contrast, thermal generation units have more flexibility in the
sense that their inputs (gas, coal, etc.) are not subject to the same con-
straints as water in a reservoir, however the marginal cost of generation is
higher.

Another common feature of deregulated electricity markets is price volatil-
ity. One reason for the relatively high volatility of electricity prices is the in-
ability to store electricity at a scale that would enable speculation to smooth
prices. However, the ability to store water behind a hydro dam does allow
for some degree of price smoothing. A hydro operator may benefit from
withholding water in periods with low prices in order to have more available
for use in periods with high prices. In a perfectly competitive market, it
is likely that the hydro operators would choose their water release in an
efficient way. However, in most jurisdictions, hydroelectric generators tend
to be rather large producers, in which case there is no guarantee that water
will be released efficiently. We investigate this issue by analysing the equilib-
rium of a dynamic game between a hydro producer and a thermal producer.
Comparing this equilibrium to the efficient outcome then allows us to discuss
the potential for inefficient water use in an imperfectly competitive market
for electricity.

A second issue that we address in this paper is that of investment in
new generation capacity in the presence of a large hydro competitor. In
many jurisdictions, following deregulation and in combination with demand
growth, we expect to see investment in new generation capacity. Given
regulatory and environmental hurdles and substantial fixed costs, new hydro
development is often not an option. In this case, new capacity is commonly

1In some jurisdictions, hydroelectric power generation is the dominant source of elec-
tricity. It accounts for 80% of generation in New Zealand, 97% in Brazil, 90% in Quebec,
and 98% in Norway (Crampes and Moreaux (2001)). In other jurisdictions, such as On-
tario and Western US, it is a significant source of electricity, but not as dominant.
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provided by thermal plants. Since the incentive to invest in new capacity
depends on the expected distribution of future prices, the extent to which
incumbent hydro generation affects the distribution of prices will have an
effect on investment in thermal capacity.

Although there has been much recent interest in models of electricity
markets, there has not been much analysis of the implications for market
performance when one of the producers has significant hydroelectric genera-
tion capability. Exceptions include Crampes and Moreaux [3], Bushnell [1],
Scott and Read [14].

The paper closest to what we do here is Crampes and Moreaux [3] who
model a Cournot duopoly in which a hydro producer uses a fixed stock of
water over two periods facing competition from a thermal producer and a
known, deterministic demand. They address the question of how the avail-
able water is used over the two periods under a variety of market structures,
finding that under duopoly, hydro production is tilted towards the second
period relative to what is efficient. I.e., there is a strategic incentive to with-
hold water in the first period. We find a similar effect in the infinite horizon
version of our model. However, we also examine the possibility of a binding
constraint on thermal production. This allows us to discuss implications of
the model for investment in thermal generation capacity.

Bushnell [1] examines a Cournot oligopoly with fringe producers in which
each producer controls both hydro and thermal generation facilities. Both
hydro and thermal units face capacity constraints and the producers must
decide how to allocate the available water over a number of periods. He
solves the model with parameters calibrated to the western United States
electricity market and finds that the dynamic allocation of water under
imperfectly competitive conditions is not the efficient one. In particular,
firms tend to allocate more water to off-peak periods than is efficient.

Scott and Read [14] develop a Cournot model of mixed hydro/thermal
generation that is calibrated to the New Zealand wholesale electricity mar-
ket, which is dominated by hydro generation. They focus on the effect of
forward contracting, concluding that high levels of contracting are necessary
to approach an efficient outcome. In addition, they do not find that hydro
producers strategically withhold water in any significant way.

There is a recent literature examining capacity investment in electricity
markets including Garcia and Shen [5], Garcia and Stacchetti [6], Bushnell
and Ishii [2], Murphy and Smeers [12].

We turn next to a description of the basic aspects of the model. We then
examine the Feedback equilibrium for the infinite horizon dynamic game be-
tween the hydroelectric and thermal generators holding the capacity of the

3



thermal generator fixed. We solve this game using collocation methods to
find numerical solutions to the game which we then analyse using simula-
tions of the equilibrium outcomes. Finally, we turn our attention to the
investment choices of the thermal generator using an alternative two-period
version of the model. We are able to find closed-form solutions for both the
S-adapted open-loop and closed-loop equilibria.

2 The model

Consumers of electricity have no control over price, with their behaviour
in any period t = 0, 1, 2, ..., T summarized by the following inverse demand
function:

Pt = Dt − β(ht + qt), β > 0. (1)

The demand intercept, Dt, is stochastic, which provides an incentive to use
water in a manner that smooths price fluctuations. The particular distri-
bution of Dt will be specified as we discuss each particular version of the
model.

There are two types of technologies in the industry: a hydroelectric
generator owns generation units that use water held behind dams to spin the
electric generators and a thermal electric generator owns thermal units that
burn fossil fuel. Thermal generation costs are given by C(q) = c1q+(c2/2)q2.

The marginal cost of production for hydro units is zero. The hydro
producer is not involved in capacity investments, and doesn’t expand the
production capacity by any means.2 The hydro producer’s electricity gener-
ation, ht, is determined by at one-to-one relation with the amount of water
it releases from its reservoir. Its output is constrained by the amount of
water available for release, Wt. The transition equation governing the level
of water in the reservoir is

Wt+1 = (1− γ)(Wt − ht) + ω, (2)

where Wt is the level of the reservoir at the beginning of period t, γ is a
parameter that determines the rate of evaporation in the reservoir over an
interval of time, and ω is the rate of inflow into the reservoir over an interval

2Construction of a new river dam, depending on the production capacity, to produce
electricity can take up to fifteen years. e.g., the Three Gorges Dam in China, the largest
dam on earth, was completed in about 14 years. Also because of environmental and several
other reasons (e.g., irrigation, recreational), it may not be possible to expand the available
production capacity of the hydro player. Marginal cost of production is generally assumed
to be zero, since the water turning the turbines is commonly free.
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of time. For and infinite time horizon, this specification implies a “natural”
steady-state water level in the absence of hydroelectric generation of ω/γ.

Producers choose their outputs simultaneously in each period and both
producers discount future payoffs at a common rate, δ, which is also the
social rate of discount.

3 Infinite horizon

In this section we present an infinite horizon version of the model in order
to analyse the stationary distribution of hydro and thermal production. We
assume here that the stochastic component of demand in (1) is normally
distributed, i.e., Dt ∼ N(µ, σ2), with a variance small enough to render the
probability of non-positive demand very small.

We next describe the game played by the duopoly, after which we de-
scribe the efficient solution. Following that, we analyse the differences in
the two market structures by way of numerical solutions.

3.1 Duopoly

Each player, the hydro producer and the thermal producer, are assumed
to maximize the discounted present value of profits, where each discounts
the future using the common discount factor δ ∈ (0, 1). We focus on the
case in which producers use Feedback strategies, which are functions of the
current state (Wt, Dt) only.3 Denote the strategies of the two producers by
σH(Dt,Wt) and σT (Dt,Wt). We assume that both producers observe Wt

and Dt before making decisions in period t.The Feedback equilibrium is a
Nash equilibrium in Feedback strategies.

Given the hydro producer’s strategy, σH(Dt,Wt), the problem for the
thermal producer is then

max
{qt}

E

∞∑
t=0

δt
[
(Dt − β(σH(Dt,Wt) + qt))qt − c1qt − (c2/2)qt2

]
(3)

subject to
0 ≤ qt ≤ K,

The thermal producer’s problem is simplified by the fact that the thermal
producer does not influence the future state through its actions. Since its

3This rules out other equilibria, typically collusive ones, which emerge when strategies
are allowed to be functions of all previous play.
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production decision does not affect its continuation payoff, thermal produc-
tion is governed by its “static” best response function for an interior solution.
Incorporating the capacity and non-negativity constraints, we have

σT (Dt,Wt) = max
[
0,min

[
Dt − c1 − βσH(Dt,Wt)

2β + c2
,K

]]
(4)

Given the thermal producer’s strategy, σT (Dt,Wt), the problem faced
by the hydro producer is to

max
{ht}

E

∞∑
t=0

δt
[
(Dt − β(ht + σT (Dt,Wt)))ht

]
(5)

subject to
0 ≤ ht ≤Wt

and
Wt+1 = (1− γ)(Wt − ht) + ω,

The hydro producer’s best response is determined by the solution to a dy-
namic optimization problem. The Bellman equation for the hydro producer’s
problem is

V (Dt,Wt) = max
ht∈[0,Wt]

{
(Dt − β(ht + σT (Dt,Wt)))ht + δEtV (Dt+1,Wt+1)

}
(6)

subject to (2). The value of ht that solves the maximization problem in
(6) is the hydro producer’s best response to qt = σT (Dt,Wt) which yields
σH(Dt,Wt).

Define ψ(ht) as the derivative of the payoff in the maximization problem
in (6), i.e.,

ψ(ht) = Dt−2βht−βσT (Dt,Wt)−δ(1−γ)EtVW (Dt+1, (1−γ)(Wt−ht)+w).
(7)

Let b0t and bWt be the Lagrange multipliers on the non-negativity and water
availability constraints for the maximization problem in (6). The necessary
conditions for optimal hydro output are

ψ(ht) + b0t − bWt = 0 (8)

bWt(Wt − ht) = 0, bWt ≥ 0, (Wt − ht) ≥ 0 (9)

and
b0tht = 0, b0t ≥ 0, ht ≥ 0. (10)
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We can illustrate the strategic effect by expanding the EtVW (Dt+1,Wt+1)
term in (7). Evaluating (6) at t+1 and differentiating with respect to Wt+1

yields

EtVW (Dt+1,Wt+1) = Et

[
(ψ(ht+1) + b0t+1 − bWt+1)σH

W (Dt+1,Wt+1)

− βσt
W (Dt+1,Wt+1)σH(Dt+1,Wt+1)

+ bWt+1 + δ(1− γ)Et+1VW (Dt+2,Wt+2)
]

(11)

Using (8) we have

EtVW (Dt+1,Wt+1) = Et

[
−βσt

W (Dt+1,Wt+1)σH(Dt+1,Wt+1)

+ bWt+1 + δ(1− γ)Et+1VW (Dt+2,Wt+2)
]

(12)

Applying the same process for VW (DT+2,Wt+2), VW (DT+3,Wt+3), ...
yields

EtVW (Dt+1,Wt+1) = Et

[
−β

∞∑
i=0

δi(1− γ)iht+1+iσ
T
W (Dt+1+i,Wt+1+i)

+
∞∑
i=0

δi(1− γ)ibWt+1+i

]
. (13)

The strategic effect works through the influence of hydro output on future
thermal output via future water availability. Since σT

W (D,W ) < 0 (which
occurs in all cases we examine below) the difference between the hydro pro-
ducer’s output in the Feedback equilibrium versus the open loop equilibrium
is negative: the hydro producer reduces output relative to the open loop
equilibrium strategy. This results in more water available future periods
and hence lower thermal output.

In order to describe the Feedback equilibrium strategies more carefully,
we need to find the value function for the hydro producer, which we do using
numerical approximation techniques. Rather than approximate the value
function itself, we solve the problem by approximating EtV (Dt+1,Wt+1),
which has the benefit of allowing us to approximate a function of one state
variable only (Wt+1) since the future demand shock is integrated out.4

4This is a consequence of the assumption that the demand states are i.i.d. If we were
to allow any serial correlation in this process, the expected value function would be a
function of two state variables as well.
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3.1.1 Numerical algorithm: duopoly

We approximate the hydro producer’s expected value function using the
collocation method5. In particular,

EtV (Dt+1,Wt+1) ≈
n∑

i=1

diφi(Wt+1) ≡ Ṽ (Wt+1) (14)

where the φi are known basis functions. Collocation proceeds by determin-
ing the di, i = 1, ...n, in order for the approximation to hold exactly at
n collocation nodes, W 1

+,W
2
+, ...,W

n
+. The algorithm we use to solve the

problem is described as follows:

0. Choose a starting approximation of Ṽ 0(Wt+1), i.e., starting values
d0

i , i = 1, 2, ..., n.

1. Given the current approximation, Ṽ k(Wt+1) compute the value func-
tion at the collocation nodes, W 1

+,W
2
+, ...,W

n
+. In order to do this,

we determine the Nash Equilibrium quantities for each producer. At
every node i, conditional on the demand state, D+:

a) Use a root-finding algorithm to solve ψ(h,RT (h)) = 0 if a root
exists in (0,W i

+). If not, determine whether h = 0 or h = W i
+ is

appropriate. Here RT (h) is the thermal producers best-response
to h, i.e., equation (4) using h in place of σH .

b) Given the value found for h, compute q from (4).

Use these quantities to compute V k(D+,W
i
+). This step yields the

value in the next period as a function of the demand state for each
W i

+.

2. Integrate the new value function numerically over demand states to
update Ṽ (W k+1

t ), i.e. find new values d1
i , i = 1, ..., n.

3. If convergence achieved, stop. Else, return to step 1.

3.2 Efficient solution

We wish to compare the outcome under duopoly to what is efficient. To
this end, we solve the problem faced by a social planner choosing thermal

5See Judd [11]
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and hydro generation with the objective of maximizing the expected present
value of the stream of consumer surplus less generation costs:

max
{ht,qt}

∞∑
t=0

δt

(
Dt(ht + qt)−

β

2
(ht + qt)2 − c1qt −

c2
2
qt

2

)
(15)

subject to
Wt+1 = (1− γ)(Wt − ht) + ω,

0 ≤ ht ≤Wt,

0 ≤ qt ≤ K,

and
Dt+1 ∼ N(µ, σ2).

The planner’s value function then satisfies the Bellman equation:

V P (Dt,Wt) = max
ht,qt

Dt(ht+qt)−
β

2
(ht+qt)2−c1qt−

c2
2
qt

2+δEtV
P (Dt+1,Wt+1)

(16)
subject to the constraints.

The necessary conditions for the maximization problem are

Dt − β(ht + qt)− δ(1− γ)
∂[EtV

P (Dt+1,Wt+1)]
∂Wt+1

− bW + b0 = 0 (17)

and
Dt − β(ht + qt)− c1 − c2qt − aK + a0 = 0 (18)

where bW and b0 are the Lagrange multipliers on hydro production’s capacity
and non-negativity constraints and aK and a0 are the multipliers on thermal
production’s capacity and non-negativity constraints. Equations (17) and
(18) imply

aK − a0 + c1 + c2qt = δ(1− γ)∂[EtV
P (Dt+1,Wt+1)]
∂Wt+1

+ bW − b0 (19)

which for an interior solution simplifies to

δ(1− γ)∂[EtV
P (Dt+1,Wt+1)]
∂Wt+1

= c1 + c2qt, (20)

the marginal value of water is equalized with the marginal cost of thermal
production.

The numerical algorithm used to solve the planner’s problem is simi-
lar to that described for the duopoly, using collocation to approximate the
planner’s expected value function.
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3.3 The effects of water flow

We now present solutions for some particular cases of the model’s parame-
ters. For all examples below, we maintain some of the parameter values at
specific values: c1 = 0, c2 = 1.0, δ = 0.9, γ = 0.3, µ = 10.0, β = 1.0, σ =
1.0. We present results for alternative values of ω, each of which has “large”
thermal capacity (K = 4.0).

A useful benchmark to keep in mind is what the equilibrium of an un-
constrained situation would be. For a static Cournot game with production
costs as given for these two producers and a demand intercept of 10, the
hydro producer would produce 4 units and the thermal producer 2 units.

In all the examples below, Chebyshev polynomials are used for the φi

functions and n varies by example and market structure.6

3.3.1 Example: Low inflow

We start with ω = 1.0. This level of water inflow is “low” in the sense that
1.0 units of water per period is substantially less than the hydro producer
would choose to produce if it were unconstrained. Hence, in this example, we
expect hydro production to be frequently constrained by water availability.

We present the solution as a series of plots over a range of Dt and Wt

values. We choose a range for the plots with the range of Dt given by ±
2.5 standard deviations around the mean, while the range of Wt is between
zero and the “natural” steady state water level, ω/γ, which is equal to 10/3
in this case. Production of hydro and thermal producers under each market
structure are presented in Figure 1. For low water levels, ht increases one for
one with the available water and does not vary with the demand state. In
this region, the constraint that ht ≤ Wt binds and the only water available
in the next period is due to the inflow, ω. We see that water availability
is less constraining in the duopoly than in the efficient solution. The hydro
producer restricts its output relative to the efficient level, and hence the
water availability constraint is not binding for a larger area of the state
space.

Figure 1 demonstrates that there are three “regimes” characterizing the
optimal thermal output. For low water levels and high demand states, ther-
mal output is constrained by capacity. For somewhat higher water levels, the
capacity constraint no longer binds, but hydro output is still constrained by
Wt, so thermal output falls quickly as water levels increase. Finally for values

6The computations are done with C++ and make use of routines for Chebyshev ap-
proximation, numerical integration, and root finding from the Gnu Scientific Library. [4]
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Low inflow Medium inflow High Inflow
Duopoly Efficient Duopoly Efficient Duopoly Efficient

E(h) 1.00 1.00 3.78 4.00 4.00 5.00
E(q) 3.00 3.96 2.07 2.99 2.00 2.50
E(p) 6.00 5.04 4.14 3.00 4.00 2.50
st.dev.(p) 0.67 0.92 0.44 0.51 0.40 0.49
skew(p) 0.02 0.34 0.23 0.25 0.00 0.13
% h = W 0.994 0.997 0.039 0.988 0.000 0.969
% q = K 0.001 0.840 0.000 0.022 0.000 0.001
EΠT 137.0 122.1 65.3 46.6 60.7 32.7
EΠH 60.1 50.5 158.6 120.5 162.0 125.4
E(Welfare) 277.8 295.7 397.4 413.3 405.0 440.9

Table 1: Simulated Descriptive Statistics

of the state in which hydro production is not constrained, optimal thermal
output decreases less quickly with water levels. Except for the points where
the thermal strategy exhibits a kink, σT

W < 0, so the strategic effect works to
decrease hydro production as discussed above. Comparing the duopoly with
the efficient case, thermal output is lower in equilibrium than is efficient for
all values of the state. This is the consequence of market power. For this
lower water inflow case, since hydro production is frequently constrained, it
is efficient to use more thermal production to take up the slack. However,
the thermal producer uses its market power to restrict output, keeping price
higher.

The first column of Table 1 provides some descriptive statistics for the
values of the outcome when equilibrium strategies are played. They are
created by generating 100 simulations of the model over 1,000 periods each.7

The values in Table 1 are averages over the 100 runs. For this low water
inflow case, the hydro producer is almost always producing at capacity (the
reservoir is drained each period) which is also what is efficient. The thermal
producer produces less than what is efficient, resulting in an inefficiently
high average price. The thermal producer almost never produces at capacity
(it does so less than 1% of the time), whereas the planner would have the
thermal producer at capacity 84% of the time.

7An initial run of 100 periods precedes the 5,000 period sample to minimize any effects
of starting values. We use 1/2 of the natural steady state water level as a starting value.
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3.3.2 Example: Medium inflow

In order to relax the constraint on hydro production we now present another
example in which all parameter values except the inflow of water, ω, are
as above. We now set ω = 4.0 which is the hydro producer’s Cournot
equilibrium output in a “static” version of this game with demand at the
mean level of the demand disturbance. This guarantees that there is enough
water in any period for the hydro producer to produce the same output as
it would in the “static” game with no uncertainty.

Now the hydro producer chooses output that drains its reservoir only
4% of the time, whereas the planner would have it do so 99% of the time.
This reduction of output by the hydro producer, along with the thermal
producer’s inefficiently low output now results in a larger price gap between
the duopoly and efficient outcomes. The duopoly price falls compared to
the low inflow case, but not by as much as is efficient.8

3.3.3 Example: High inflow

A third possibility that we examine is the case where the flow of water
is sufficient that it is rarely constraining. For this scenario, we choose an
inflow of water that is equal to 2.5 standard deviations above the mean
hydro production in the “static” game discussed above. For these parameter
values, this translates into a value of ω = 5.0.

Not surprisingly, the duopoly equilibrium now results in outcomes that
are what occurs in the static Cournot game. Neither producer operates at
capacity, so we just have an interior solution that replicates the Cournot
outcome. This is not efficient, since the planner would like to use more of
the low cost output, having the hydro producer at capacity in almost all
periods.

3.4 Effects of Thermal Capacity

In order to analyse how thermal generation capacity, K, affects the equilib-
rium outcomes under the two market structures we examine the “medium
inflow” case of section 3.3.2 allowing for different levels of K. We solve the
model for 20 different capacities ranging between zero and four units. For
each solution, we simulate the model over 5,000 periods as we did above.
We plot some of the resulting statistics in Figures 2 and 3.

8The duopoly price is 19% higher than the efficient one in the low inflow case and 38%
higher in the medium inflow case.
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The top row of Figure 2 plots the average outputs of each producer by
market structure. At low levels of thermal capacity, the thermal producer is
essentially always operating at capacity, which is efficient. At large levels of
capacity (roughly speaking, larger than 2 — the average Cournot output),
the thermal producer reduces output below capacity more frequently, result-
ing in inefficiently low output at higher capacities. In contrast, the hydro
producer’s average output is below capacity for any level K, although the
size of the difference to the efficient level is not large.

The bottom left graph in Figure 2 demonstrates that price is very close
to the efficient level until thermal capacity reaches approximately 2.0. After
this point, price levels off and slowly falls to the Cournot price of 4.0, whereas
the planner has price falling until thermal capacity is beyond 3.0. The
implications for price volatility are demonstrated in the bottom right graph
in Figure 2. The duopoly results in prices that are less volatile than is
efficient. While this result is as expected9 it is notable that the gap between
price volatility is largest for intermediate values of K.

We plot payoffs in Figure 3: profits for each producer and social welfare
generated. Each payoff is very close to the efficient one for thermal capacities
less than 2.0. From the above discussion we know that this is because the
thermal constraint frequently binds under both market structures and the
hydro producer does not reduce output greatly under duopoly.

An interesting question to now address is what thermal capacity would
be chosen? Consider allowing the thermal producer to make a one time
investment in capacity before time 0. Looking at the thermal payoff (solid
line) graph in Figure 3, unless the marginal cost of capacity is very low, the
thermal producer would choose a capacity below 2.0. As this is in the region
where the equilibrium is near efficiency, we can suggest that conditional on
the level of capacity chosen, the equilibrium in the dynamic duopoly game
is “close” to the efficient one. Of course the planner may wish to choose
a higher level of capacity, so an interesting extension of this game would
be to examine optimal versus actual capacity choices. We do not do that
with this infinite horizon game, but rather discuss this issue in detail using
a finite-horizon version of the model in the next section.

9Thille [15] demonstrates that firms with market power will “over-smooth” demand
fluctuations when demand is linear.
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4 A Two-Period Model with Capacity Choice

In this section, we examine a two-period version of the model described in
section 2. In period 0, inverse demand is known to be P0(Q) = D−Q, with
D a constant. Inverse demand in period 1 is random:

P1(Q) =
{
D + δ −Q with probability u
D − δ −Q with probability d

(21)

with u+ d = 1.
There is a constant inflow of water into the reservoir in each period, which

we denote ω. We assume no evaporation so the amount of water available
in period 1 is W1 = W0 + ω − h0 with W0 the initial level of water in the
reservoir. We assume that W0 is large enough so that the hydro producer
is unconstrained in either of the period 1 scenarios and low enough that
the efficient solution is constrained. The hydro producer must choose three
actions in this game: period 0 production and period 1 production in each
of the two demand states. We denote a vector of hydro producer actions as
(h0, h1u, h1d).

Production costs for the thermal producer are as above: c1qt + c2/2qt2.
We now allow for the thermal producer to invest in capacity in period 0.
An investment of I0 units of capacity costs the thermal producer e1/2I2

0 .
Investment is irreversible: I0 ≥ 0 and capacity does not depreciate. The
thermal producer begins the game withK0 units of capacity, so in period one
has K1 = K0 + I0 units of capacity available. Actions taken by the thermal
producer consist of investment and production in period 0 and production
in each of the period 1 demand states: (I0, q0, q1u, q1d). We are interested
in a case where K0 is large enough so that the capacity constraint does not
always bind, but low enough that the thermal producer has an incentive to
invest in increasing capacity. In particular, we present equilibria that have
q1u = K1, and q1d < K1. The specific parameter values that satisfy this
assumption will be presented below in Assumptions 1 and 2.

It will be useful in the presentation of the results to let qc
u and qc

d denote
the Cournot equilibrium thermal outputs in the first period game when no
constraints bind and qc

0 the corresponding quantity in period 0, i.e.,

qc
0 ≡

D − 2c1
3 + 2c2

, qc
d ≡

D − δ − 2c1
3 + 2c2

, qc
u ≡

D + δ − 2c1
3 + 2c2

. (22)

The timing of the game is as follows. In the first period players choose
production quantities simultaneously and independently to maximize their
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own profits. At the same period, thermal player who makes capacity invest-
ment under uncertainty understands that there are two possible demand
states at the next stage and investment in this period will become available
for production in the following period. In the second period, players make
their optimal production decisions conditional on the demand state that
reveals, and no investments will take place since it is the final stage.

We analyse this game by computing three outcomes. For the non-
cooperative game between producers we compute both the open-loop and
closed-loop equilibria. This allows us to demonstrate the strategic effects
of thermal capacity choice. In addition, we compute the efficient solution
in order to examine the degree of inefficiency under the duopoly market
structure.

4.1 S-adapted open-loop equilibrium

In this subsection, we wish to compute the equilibrium outcome when the
thermal producer does not choose its investment level strategically. If there
were no uncertainty, the appropriate equilibrium concept would be the open-
loop Nash equilibrium. However, we want the producers to be able to
respond to the future demand state, in which case the appropriate solu-
tion concept is the S-adapted open-loop equilibrium. Here we assume that
players have S-adapted information. This equilibrium concept first intro-
duced by Zaccour [16] and Haurie, Zaccour and Smeers [9]. It is extended
and employed for large-scale oligopolies by Haurie and Moresino [10], Genc,
Reynolds and Sen [7], and Genc and Sen [8]. In this equilibrium, players
condition their decisions on time period, demand state and initial capacity
levels. Players choose their profit maximizing strategies given the rivals’
strategies. This equilibrium concept is a half way between closed loop and
open loop equilibrium paradigms (see, e.g., Genc, Reynolds and Sen [7] and
Pineau and Murto [13]).

In terms of our model, strategies can depend explicitly on the demand
state, but not on the level of thermal capacity. An S-adapted strategy for the
hydro producer is σH = (h0, h1u, h1d), where h1u is period one production in
the high demand state and h1d is period one production in the low demand
state. The thermal producer’s strategy is σT = (I0, q0, q1u, q1d).

The hydro producer chooses its strategy to solve

max
σH

E0

∑
t∈{0,1u,1d}

(Dt − (ht + qt))ht (23)
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subject to
0 ≤ ht ≤Wt.

E0 denotes the expectation taken with respect to information available at
time 0. As mentioned above, we assume that W0 is sufficiently large that
the constraint will not be binding.

The thermal producer faces the problem:

max
σT

E0

∑
t∈{0,1u,1d}

[
(Dt − (ht + qt))qt − c1qt −

c2
2
qt

2 − e1
2
I2
0

]
(24)

subject to
0 ≤ qt ≤ Kt,

K1 = K0 + I0.

For the equilibrium to involve a binding thermal capacity constraint in
the high-demand period 1 state only, we make the following assumption
regarding the initial level of capacity:

Assumption 1.

K0 ∈
[
qc
d −

2uδ
2e1 + u(3 + 2c2)

, qc
u

]
.

The following proposition summarizes the equilibrium strategies for this
game:

Proposition 1. For W0 sufficiently large that the hydro producer is not con-
strained, and under Assumption 1, the S-adapted open-loop Nash equilibrium
strategies are:

I0 =
u(D + δ − 2c1 −K0(3 + 2c2))

2e1 + u(3 + 2c2)
(25)

(q0, h0) =

{ (
qc
0,

D(1+c2)+c1
3+2c2

)
if qc

0 < K0(
K0,

D−K0
2

)
otherwise.

(26)

(q1u, h1u) =
(
K0 + I0,

D + δ −K0 − I0
2

)
(27)

(q1d, h1d) =
(
qc
d,

(D − δ)(1 + c2) + c1
3 + 2c2

)
(28)
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Proof. Since there is enough water available that the hydro constraints do
not bind, the hydro producer plays its “static” best response in each period.
Specifically h0 = D−q0

2 , h1u = D+δ−q1u

2 , and h1d = D−δ−q1d
2 .

The period 0 thermal production choice has no bearing on the payoffs of
any of other thermal actions, so which case obtains in (26) is of no conse-
quence to the equilibrium investment and period 1 outputs. The Lagrangian
function for the thermal producer’s problem is

LT = E0

∑
t∈{0,1u,1d}

[
(Dt − (ht + qt))qt − c1qt −

c2
2
qt

2
]
− e1

2
I2
0

+
∑

t∈{0,1u,1d}

[at(Kt − qt)] (29)

where at ≥ 0 are the Lagrange multipliers on the capacity constraints10.
The KKT conditions for the thermal producer’s problem are then

∂LT

∂qt
qt = 0,

∂LT

∂at
at = 0 and

∂LT

∂I0
I0 = 0,

for t = 0, 1u, 1d.
Given the assumptions regarding K0, it clear that a1u > a1d = 0. It

follows that q1u = K0 + I0, and q1d = D−δ−h1d−c1
2+c2

. Also at t = 0, since we
assume interior solution, a0 = 0 holds, hence q0 = D−h0−c1

2+c2
.

Next we solve the best response functions for the equilibrium points.
By substituting one player’s response functions into other’s functions we
obtain that q1d = (D−δ)−2c1

3+2c2
and h1d = (D−δ)(1+c2)+c1

3+2c2
. Since q1u = K0 + I0,

h1u = D+δ−K0−I0
2 . At time 0, either q0 = D−2c1

3+2c2
or q0 = K0 and the hydro

producer plays its best response.
For optimal investment outcomes we note that the period one capacity

constraints only bind when demand is high, so investment only has an im-
pact in that state. We then obtain a1u = u[D+ δ− 2q1u− h1u− c2q1u− c1].
Using the equilibrium q1u and h1u from above and noting that the opti-
mal investment choice satisfies I0 = a1u

e1
, we get the equilibrium I0 of the

proposition.
Comparing the equilibrium thermal quantities with the assumed pattern

of binding constraints gives the bounds in Assumption 1.

We will discuss the equilibrium investment of Proposition 1 more once
we have computed the investment in the closed-loop equilibrium.

10The non-negativity constraints do not bind for the situations we are interested in, so
we suppress their multipliers to simplify the presentation.
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4.2 Closed-loop equilibrium

In the S-adapted open-loop equilibrium, the thermal producer does not take
into account the influence that its investment choice has on the hydro pro-
ducer’s output choice in period one. This was a consequence of the S-adapted
information structure. We now allow for a closed-loop information structure.

For the equilibrium to involve a binding thermal capacity constraint in
the high-demand period 1 state only, we make the following assumption
regarding the initial level of capacity:

Assumption 2.

K0 ∈
[
qc
d

(
1− u

2e1

)
− uδ

e1
, qc

u

(
1− u

2e1

)]
Solving for the equilibrium quantities we get

Proposition 2. For W0 sufficiently large that the hydro producer is not con-
strained, and under Assumption 2, the closed-loop Nash equilibrium strate-
gies are:

IM
0 =

u[D + δ −K0(2 + 2c2)− 2c1]
2(e1 + u(1 + c2))

(30)

(q0, h0) =

{ (
qc
0,

D(1+c2)+c1
3+2c2

)
if qc

0 < K0(
K0,

D−K0
2

)
otherwise.

(31)

(q1u, h1u) =
(
K0 + IM

0 ,
D + δ −K0 − IM

0

2

)
(32)

(q1d, h1d) =
(
D − δ − 2c1

3 + 2c2
,
(D − δ)(1 + c2) + c1

3 + 2c2

)
(33)

Proof. The only difference in the proof of this proposition and that of Propo-
sition 1 is in the determination of investment. The best responses by both
players in period one are the same as they are in the S-adapted open-loop
game. Hence, conditional on K1, outputs in period one are the same. How-
ever, investment in capacity by the thermal producer, and hence K1, may
differ.

Under Assumption 2, investment only provides benefits in stage 1u. Let
πT

1u(K1) be the profit to the thermal investor in period 1u when it has
capacity of K1 = K0 + I0. Optimal investment must satisfy

−e1I0 + u
∂πT

1u

∂K1

∂K1

∂I0
= 0, (34)
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or

−e1I0 + u
[
D + δ − h1u(K1)− 2K1 − h′1u(K1)− c1 − c2K1

]
= 0. (35)

When q1u = K1, we know that h1u(K1) = D+δ−K1
2 is the hydro produc-

ers best response. Substituting this for h1u(K1) and K1 = K0 + I0 and
simplifying we have

IM
0 =

u[D + δ −K0(2 + 2c2)− 2c1]
2(e1 + u(1 + c2))

(36)

Comparing the equilibrium thermal quantities with the assumed pattern
of binding constraints gives the bounds in Assumption 2.

The only difference in behaviour between the open- and closed-loop
games is that under closed-loop information, the thermal producer considers
the influence of its investment choice on h1u. From Proposition 2, we know
that ∂h1u/∂I

M
0 = −1/2 in the closed-loop game, which leads to higher equi-

librium investment, i.e., the strategic effect associated with investment in
thermal capacity results in “aggressive” behaviour by the thermal producer.
We summarize this result in:

Corollary 1. For K0 satisfying both Assumptions 1 and 2, the closed-loop
equilibrium investment is larger than the S-adapted open-loop equilibrium
investment.

Since total output in period 1u is increasing in I0, we have price lower in
period 1u in the closed-loop equilibrium than in the open-loop equilibrium.
Prices in periods 0 and 1d are the same under both equilibria. It is important
to note that even though prices are lower, this does not mean that the
closed-loop equilibrium is more efficient. The increased output comes about
through inefficient investment. Since the hydro producer is not operating at
capacity, clearly it would be efficient to increase output by increasing hydro
production. In the closed-loop equilibrium however, the increased output
comes about through increased thermal production that is made possible
through a costly investment.

Whether or not the thermal producer chooses a capacity that is greater
or less than the efficient level investment depends on two conflicting forces.
First, since the hydro producer is restricting output, increasing thermal
capacity can be efficient in that it reduces the loss due to the exercise of
market power. Second, since the hydro producer has lower production costs
and is not constrained, if output is to be increased, it is efficient for it to
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be done by the hydro producer, not by the thermal producer increasing
capacity. Either of these forces might dominate, as seen by the following
proposition:

Proposition 3. Equilibrium capacity investment by the thermal producer
may be either higher or lower than is efficient.

Proof. By way of proof, we simply look at two limiting cases W0 → 0 and
W0 →∞. As W0 → 0, hydro production goes to zero, and the thermal pro-
ducer has a monopoly. Thermal monopoly output and investment is clearly
lower than what would be efficient. At the other extreme, as W0 → ∞,
equilibrium investment under duopoly is as we have described in Proposi-
tions 1 and 2, i.e., positive. In this case, the efficient level of investment
is clearly zero since hydro production can meet all contingencies, hence we
have over-investment relative to the efficient level.

5 Conclusion

We have studied dynamic competition between thermal and hydroelectric
producers under uncertainty. In an infinite horizon game between the two
producers, we have demonstrated that the hydro producer has a strategic
incentive to withhold water. However, we demonstrate that when capacities
are “tight”, the duopoly outcome is not far from the efficient one. Exam-
ination of the payoffs to the thermal producer at various capacity levels
suggests if capacity were to be chosen by the thermal player, it would not
choose a capacity so that it is rarely constrained. This results in a welfare
loss lower than that under unconstrained Cournot duopoly. We investigate
the investment question further using a two-period version of the model. We
show that the thermal also has a strategic motive when choosing to invest
in increased capacity: over-investing in the closed-loop versus the open-loop
equilibrium.
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Figure 1: Production: Left column - duopoly, Right - planner
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