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Abstract 
 

The paper presents a partial equilibrium model of supply function competition when 
firms have private information about their uncertain costs. A linear Bayesian equilibrium 
is characterized and comparative static results are derived. As the market grows large the 
equilibrium becomes competitive and we obtain an approximation to how many 
competitors are needed to have a certain degree of competitiveness. Results are compared 
with the outcome of Cournot competition. It is found that with supply function 
competition, and in contrast to Cournot competition, competitiveness is affected by the 
parameters of the information structure. In particular, supply functions are steeper with 
more noise in the private signals or more correlation among the costs parameters. 
Furthermore, competition in supply functions aggregates the dispersed information of 
firms while Cournot competition does not. The implication is that with the former the 
only source of deadweight loss is market power while with the latter we have to add 
private information. 
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1. Introduction 
Competition in supply functions has been used to model several markets, in particular the 

spot market for electricity but also management consulting or airline reservation systems. 

The models considered typically do not allow for private information (exceptions are 

Hortaçsu and Puller (2006) and Kühn and Machado (2004)). In this paper we study 

supply function competition when firms have private information about costs and 

compare it with Cournot competition, a leading contender.  Private information on costs 

is a relevant situation. In many instances it is not realistic to assume that there is common 

knowledge on costs. Instead each firm has an estimate of its own costs and uses it, 

together with whatever public information is available, to make inferences about the costs 

of rivals. 

 

Our modeling strategy is to consider a linear-quadratic model coupled with an affine 

information structure that yields a linear Bayesian Supply Function Equilibrium. The 

characterization of a linear equilibrium with supply function competition when there is 

market power and private information needs some careful analysis in order to model the 

capacity of a firm to influence the market price at the same time that the firm learns from 

the price. Kyle (1989) pioneered this type of analysis in a financial market context. 

 

It is found that there is a unique linear Bayesian Supply Function Equilibrium. This 

equilibrium is privately revealing. That is, the private information of a firm and the price 

provide a sufficient statistic of the joint information in the market. This means in 

particular that the incentives to acquire information are preserved despite the fact that the 

price aggregates information. We do not examine possible nonlinear equilibria. Linear 

equilibria are tractable, in particular in the presence of private information, and have 

desirable properties like simplicity.  

 

In the linear equilibrium supply functions are upward sloping provided that the 

informative role of price does not overwhelm its traditional capacity as index of scarcity. 

This happens when costs shocks are not very correlated and information precision not too 
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low. In this case an increase in the correlation of cost parameters or in the noise in private 

signals makes supply functions steeper. The market looks less competitive in those 

circumstances as reflected in increased price-cost margins. Ignoring private cost 

information with supply function competition may therefore overestimate the slope of 

supply. This is not the case with Cournot competition, where the margin is not affected 

by the information parameters.  

 

The welfare evaluation of the LBSFE is in marked contrast with the Cournot equilibrium 

in the presence of private information.  The reason is that the LBSFE aggregates 

information and therefore there is only a deadweight loss due to market power but not 

due to private information. The result is that in a large market with supply function 

competition there is no efficiency loss (in the limit) and the order of magnitude of the 

deadweight loss is 21/ n  where n is the number of firms (and the size of the market as 

well). With Cournot competition we have to add a deadweight loss due to private 

information (on top of a larger deadweight loss due to market power). A large Cournot 

market does not aggregate information (i.e. a large Cournot market does not approach a 

full information competitive outcome) and in the limit there is a welfare loss due to 

private information.  

 

We characterize also the limit competitive economy with competition in supply functions 

and à la Cournot and the convergence rate to the limit as the economy grows large. We 

find that LBSFE prices converge in mean square to the full information competitive limit 

at the rate of 1/ n . Furthermore, the asymptotic variance is increasing in prior 

uncertainty, the noise in the signals, and decreasing with the correlation of cost 

parameters. With Cournot competition, the Bayesian Cournot price converges (in mean 

square) to the price-taking limit (which is not a full information equilibrium) also at the 

rate of 1/ n . In this case the asymptotic variance is also increasing in prior uncertainty, 

and decreasing with the correlation of cost parameters but the influence of the noise in 

the signals is ambiguous. 
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A potential application of the model is to competition in the electricity spot market. In 

quite a few spot markets firms submit supply schedules in a day-ahead pool market which 

is organized as a uniform price multiunit auction. In the British Pool, the first liberalized 

wholesale market, generators had to submit a single supply schedule for the entire day.  

The schedules are increasing since the Pool’s rules rank plants in order of increasing bids. 

Other wholesale markets have different rules (and the British Pool was replaced by 

NETA in 2001).
1
 In our modeling the supply functions are smooth (the old English pool 

was modeled like this by Green and Newbery (1992) and Green (1996, 1999)) while 

typically supplies are discrete. However the modeling of the auction with discrete 

supplies leads to existence problems of equilibrium in pure strategies (see von der Fher 

and Harbord (1993)). The linear supply function model has been widely used in 

electricity markets and new developments include cost asymmetries, capacity constraints, 

piecewise affine supply functions and non-negativity generation constraints (see Baldick, 

Grant, and Kahn (2004) and Rudkevich (2005)). 

 

There is a lively debate about the best way of modeling competition in the wholesale 

electricity market. The Cournot framework has been used in a variety of studies.2 The 

advantage of the Cournot model is that it is a robust model in which capacity constraints 

and fringe suppliers are easily incorporated. The Cournot model also provides the least 

competitive equilibria of all possible equilibria with supply function competition. A 

drawback is that the Cournot model tends to predict prices that are too high given 

realistic estimates of the demand elasticity.  However, including vertical relations and 

                                                 
1 In the day-ahead market in the Spanish pool generators submit supply functions which have to be 

nondecreasing and can include up to 25 price-quantity pairs for each production unit, as well as some other 

ancillary conditions. The demand side can bid in a similar way and the market operator constructs a merit 

order dispatch by ordering in the natural way supply and demand bids. The intersection of the demand and 

supply schedules determines the (uniform) price. Once the market closes the system operator solves 

congestion problems and market participants may adjust their positions in a sequence of intra-day markets, 

which have similar clearing procedures as in the day-ahead market. (See Crampes and Fabra (2005)). 
2 See, for example, Borenstein, and Bushnell (1999) for the US; Alba et al. (1999), Ramos et a. (1998), and 

Ocaña and Romero (1998) for Spain; and Andersson and Bergman (1995) for Scandinavia.  
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contracts in a Cournot setting provides good estimates (see Bushnell, Mansur, and 

Saravia (2005)). The supply function approach is more realistic but less robust. There is 

either non-existence of equilibrium in pure strategies if discrete supplies are taken into 

account or a plethora of equilibria in smooth models. Under some circumstances a unique 

equilibrium can be pinned down (Klemperer and Meyer (1989) and Green and Newbery 

(1992)).3  Baldick and Hogan (2006) justify to concentrate attention on linear supply 

function equilibria in a linear-quadratic model because other equilibria (in the range 

between the least competitive Cournot one and the most competitive) are unstable. 

Another potential advantage of the supply function approach, over either the Cournot or 

the pure auction approaches, is that it implies that firms bid in a consistent way over an 

extended time horizon.  

 

Hortaçsu and Puller (2006) study the Texas balancing market (the day-ahead market is 

resolved with bilateral contracts) and argue that there the relevant private information is 

not about costs but the contract positions of firms. (The authors also argue that to take a 

linear approximation to marginal costs in the Texas electricity market is reasonable.) 

Information on costs would be available by purchase to firms selling information and also 

because the balancing market takes place very close to the generation moment. However, 

private cost information related to plant availability may be relevant when there is a day-

ahead market organized as a pool where firms submit hourly or daily supply schedules. 

Even if there was a market for information on costs the solution of the model with private 

information would yield the value of information. Kühn and Machado (2004) introduce 

private information on retail sales by vertically integrated firms in the Spanish pool.  

 

The plan of the paper is as follows. Section 2 presents the supply function model with n 

strategic firms and characterizes linear Bayesian Supply Function equilibria. Section 3 

looks at the competitive limit of the market and the convergence to this limit as the 

                                                 
3  In supply function models with uncertainty with unbounded support, and  no private information, it is 

possible to show the existence of a unique equilibrium (in the linear-quadratic model this is a linear 

equilibrium, see Klemperer and Meyer (1989)). 
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market grows large. Section 4 considers the Cournot case. Some proofs are gathered in 

the appendix.  

 

2. A strategic supply function model 

 

Consider a market for a homogenous product with n consumers, each with quasilinear 

preferences and having the net benefit function  

 

U(x) - px with U(x) = αx - βx2/2, 

 

where α and β are positive parameters and x the consumption level. This gives rise to the 

inverse demand Pn(X) = α-βX/n where X is total output. In the electricity market the 

demand intercept α is a continuous function of time (load-duration characteristic) that 

yields the variation of demand over the time horizon considered. At any time there is a 

fixed α and the market clears. 

 

There are also n firms in the market. We are considering an n-replica market and X/n is 

the average or per capita output. We will denote the average of a variable by a tilde (for 

example,   ˜ x n = X/n). Firm i produces according to a quadratic cost function  

 

2
i i i i iC(x ; ) x x

2
λθ = θ +  

 

where θi is a random parameter and λ > 0. Total surplus is therefore given by TS = n 

U(X/n) -Σi C(xi;θi) and per capita surplus by TS/n = U(X/n) -(Σi C(xi;θi))/n.  

 

This replica market can also be interpreted as a market parameterized by the number of 

consumers and where firms can enter freely paying a positive fixed entry cost. Then the 

free entry number of firms is of the order of the number of consumers. A large market 

then is a market with a large number of consumers. We will consider in the paper the 

reduced-form replica market version instead of the free-entry version.  
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We assume that iθ  is normally distributed (with mean θ  > 0). The parameters iθ  are 

correlated with correlation coefficient ρ [ ]0,1∈ Firm i receives a signal i i is = θ + ε  and 

signals are of the same precision ( )2
i ~ N 0, εε σ . Error terms in the signals are 

uncorrelated among themselves and with the iθ parameters.  All random variables are 

thus normally distributed.  In the electricity example the random cost shock may be 

linked to plant availability because of technical issues or transport problems. The 

common component in the shock may be related to the prices of energy in international 

markets to which the supply contracts of firms are linked. 

 
Ex-ante, before uncertainty is realized, all firms face the same prospects. The vector of 

random variables (θ1, ..., θn) is jointly normally distributed with Eθi = θ , Var θi = σθ
2 , 

and Cov (θi, θj) =  ρσθ
2 , for j ≠ i, 0 ≤ ρ≤ 1.  It follows that the average parameter   

nθ ≡ ( θii=1
n∑ ) / n  is normally distributed with mean θ , Var ˜ θ n  = (1 + (n -1) ρ) σθ

2 /n, and 

cov ( ˜ θ n , θi) = Var ˜ θ n .  

 

Our information structure encompasses the cases of "common value" and of "private 

values." For ρ = 1 the θ parameters are perfectly correlated and we are in a common value 

model. When signals are perfect, 
i

2 0εσ =  for all i, and 0 < ρ < 1, we will say we are in a 

private values model. Agents receive idiosyncratic shocks, which are imperfectly 

correlated, and each agent observes his shock with no measurement error. When ρ = 0, 

the parameters are independent, and we are in an independent values model.  

 

It is not difficult to see that 

 

E (θi|si) = ξ si + (1- ξ )θ  and E(sj|si) = E(θj|si) = ξ ρsi + (1- ξ ρ)θ . 
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When signals are perfect, ξ = 1 and E(θi|si) = si , and E(θj|si) = ρsi + (1-�)θ . When they 

are not informative, ξ = 0 and E(θi|si) = E(θj|si) = θ .  

 

Under the normality assumption conditional expectations are affine. There are other 

families of conjugate prior and likelihood that also yield affine conditional expectations 

and allow for bounded supports of the distributions. (See Vives (1999)). 

 

Firms compete in supply functions. We will restrict attention to Linear Bayesian Supply 

Function Equilibria (LBSFE). As stated before, the characterization of linear equilibria 

with supply function competition when there is market power and private information 

needs some careful analysis in order to model the capacity of a firm to influence the 

market price at the same time that the firm learns from the price.  

 

The strategy for firm i is a price contingent schedule Xi(si, .). This is a map from the 

signal space to the space of supply functions. Given the strategies of firms Xj(sj, .),  j = 1, 

…, n, for given realizations of signals market clearing implies that  

 

p = n
n j jj=1

P ( X (s ,p))∑ . 

Let us assume that there is a unique market clearing price ( ) ( )( )1 1 n np X s , ,...,X s ,⋅ ⋅  for 

any realizations of the signals.
4
 Then profits for firm i, for any given realization of the 

signals, are given by  

 
( ) ( )( ) ( ) ( )( )i 1 1 n n i i i iX s , ,...,X s , pX s ,p C X s ,pπ ⋅ ⋅ = −  

 

where 
( ) ( )( )1 1 n np p X s , ,..., X s ,= ⋅ ⋅ . 

 

                                                 
4  If there is no market clearing price assume the market shuts down and if there are many then the one that 

maximizes volume is chosen. 
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This defines a game in supply functions and we want to characterize a Bayesian 

symmetric linear supply function equilibrium. Let us posit a candidate symmetric 

equilibrium for the game with n firms:  

 
( )n i n n i nX s , p b a s c p= − + . 

 

Average output is given by n n n n nx b a s c p= − + , where ( ) ( )n i n ii i
s s n n= = θ + ε∑ ∑ , 

and substituting in the inverse demand we obtain n n n n np x b a s c p= α − β = α −β + β − β  

and therefore  

 

( ) ( )1
n n n np 1 c b a s−= + β α − β + β  

 
where we posit that n1 c 0+ β > .  

 
Given the strategies of rivals Xn(sj, .),  j ≠ i, firm i faces a residual inverse demand 

 

( ) ( ) ( )n j i n n n n j ij i j i
p X s ,p x n 1 b c p a s x

n n n n n≠ ≠

β β β β β
= α − − = α − − + + −∑ ∑ . 

 

It follows that  
1

i n i
n 1p I 1 c x

n n

−β −⎛ ⎞= − + β⎜ ⎟
⎝ ⎠

 

where  
 

( )
1

n n ni j
j i

n 1I 1 c n 1 b a s
n n n

−

≠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

− β β= + β α − − + ∑ . 

 
Note that all the information provided by the price to firm i about the signals of others is 

subsumed in the intercept of residual demand iI . The information available to firm i is 

therefore { }is , p  or, equivalently,{ }i is , I . Firm i chooses ix  to maximize 
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( ) ( )( ) ( )
1

2 2
i i i i i i i i n i i i

n 1E s ,p x p E s ,p x x I 1 c x E s ,p x
2 n n 2

−⎛ ⎞λ β − λ⎛ ⎞π = − θ − = − + β − θ −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

 

The F.O.C. is 

 

( )
1

ni i i i i i
n 1I E s ,I 2 1 c x x 0

n n

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

β −− θ − +β − λ =  

or 

( ) ( )i i i
n

p E s , p x
n n 1 c

⎛ ⎞β
− θ = + λ⎜ ⎟⎜ ⎟+ β −⎝ ⎠

. 

 

The second order sufficient condition for a maximum is 
( ) n

2
n n 1 c

⎛ ⎞β
+ λ⎜ ⎟⎜ ⎟+ β −⎝ ⎠

> 0.  An 

equilibrium must fulfill also n1 c 0+ β > . 

 

The following proposition characterizes the linear equilibrium when ρ < 1. 
 

Proposition 1. In the n-firm market with ρ < 1 there is a unique symmetric Bayesian linear 

supply function equilibrium. It is given by ( )n i n n i nX s ,p b a s c p= − + , where  

( )
( )( ) ( )

( ) ( ) ( )

12

n 2 2
n

1 1
2 2 2

n
n

1
n n 1 c1

b 1
nK1 K 1 K n n 1 c

a
−

θ

ε θ

− −

ε ε ε

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

−ρ σ β= + λ
+β −σ + −ρ σ

σ ρ σ ρα σ θ β= + − + λ
−ρ β − ρ +β −

 

 
and nc is the largest solution to the quadratic equation 

 

( )
( )

( )
( )

( )
( )

( )

( )
( )

22 2
2
n n

2

n 1
n 1 1 c n 1 n 1 c

K 1 K 1 K 1

n n 0
K 1

εε ε

ε

λ − ρσρσ ρσ
λβ − + + β + λ + + − β − +

− ρ − ρ − ρ

ρσ
+ β + λ − =

β − ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠  
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where 
( )( )2 21 n 1

K
n

ε θ
⎛ ⎞⎜ ⎟
⎝ ⎠
σ + + − ρ σ

= .  In equilibrium we have that n1 c 0+ β > . 

 

Proof: The price equation 
( ) ( )1

n n n np 1 c b a s−= + β α −β + β  

can be rearranged to define 
( )n n

i i jj i
n

p 1 c b
h n s s

a ≠

+ β − α + β
≡ − =

β ∑ . 

 
The pair ( )is , p  is informationally equivalent to the pair ( )i is , h , hence 

 
( ) ( )i i i i iE s , p E s ,hθ = θ . 

 

Because of the assumed information structure we have 
 

( )

( )
( )

( ) ( )

2 2 2

i
2 2 2 2

i
2 2i

n 1

s ~ N , n 1
h n 1 n 1 n 1

θ θ θ

εθ θ θ

θ θ

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

σ σ − ρσθθ
θ σ σ + σ − ρσ
− θ − ρσ − ρσ Λ

 , 

 
where ( )( ) ( )( )2 2 2n 1 n 1 n 2εθ θΛ = − σ + σ + − − ρσ . 

 

We obtain 

( )( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )

2
i

i i i i i 2 2

2 2 2 2 2

i i2 2 2 2 2 2 2 2

hE s , h E s ,
n 1 1 n 1

1 1 n 1
s h .

1 1 n 1 1 1 n 1

ε

θ ε

θ θ ε θ ε

θ ε θ ε θ ε θ ε

σ⎡ ⎤
⎡θ ⎤ = θ = θ +⎢ ⎥⎣ ⎦ − σ + − ρ + σ⎣ ⎦

⎡ ⎤σ σ − ρ + − ρ + σ σ σ ρ⎣ ⎦ +
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤σ − ρ + σ σ + − ρ + σ σ − ρ + σ σ + − ρ + σ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 
 
We are looking strategies of the form ( )n i n n i nX s , p b a s c p= − + . Using the F.O.C. and 

the expression for ih  we obtain the following  
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( )( ) ( )( )
( )( ) ( )( )( )

( ) ( )( )( )
( )( ) ( )( )( )

( )( )
( )( ) ( )( )( ) ( ) ( )

2 2 22 2 2 2 2
n n

i2 2 2 2 2 2 2 2

2 2
n n

n n i n2 2 2 2
n

1 1 n 11 n b a
s

1 1 n 1 1 1 n 1

n 1 c a
1 p b a s c p

n n 1 c1 1 n 1

θ ε θε ε θ θ ε

ε θ ε θ ε θ ε θ

θ ε

ε θ ε θ

− ρ σ σ + + − ρ σσ σ + − ρ σ θ + σ σ ρ β − α β
− −

σ + − ρ σ σ + + − ρ σ σ + − ρ σ σ + + − ρ σ

⎛ ⎞σ σ ρ + β β ⎛ ⎞β⎜ ⎟+ − = + λ − +⎜ ⎟⎜ ⎟⎜ ⎟ + β −σ + − ρ σ σ + + − ρ σ ⎝ ⎠⎝ ⎠

 

 
We can use the method of undetermined coefficients and find n n na ,b ,c by solving the 

following system of equations 

 

( )
( )( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

2

n2 2
n

22 n
n

n n

2
n

n
n n

1
a

n n 1 c1

b
bnK 1 K n n 1 c n n 1 c

1 c
1 c

1 K n n 1 c n n 1 c

θ

ε θ

εε

ε

⎧ ⎛ ⎞⎪ ⎜ ⎟
⎪ ⎜ ⎟
⎪ ⎝ ⎠
⎪

⎛ ⎞ ⎛ ⎞⎪⎪ ⎜ ⎟ ⎜ ⎟⎨ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎪
⎛ ⎞⎪ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎩

−ρ σ β= + λ
+β −σ + −ρ σ

σ ρ β −ασ θ β β− − + λ = + λ
β −ρ +β − +β −

σ ρ +β β β− + λ = + λ
β −ρ +β − +β −

 

 
This characterizes linear equilibria. It can be checked that the largest root of the quadratic 

equation defining c is the only one compatible with the second order condition.♦ 

 

 
The price pn reveals the aggregate information˜ s n . The equilibrium is privately revealing 

(i.e. for firm i ( )is , p  or ( )i ns , s  is a sufficient statistic of the joint information in the 

market, see Allen (1981)). The incentives to collect information are preserved because for 

firm i the signal is  still helps in estimating iθ  even though pn reveals˜ s n . Note that with 

private values (perfect signals with 2
εσ = 0) the price reveals nθ  and therefore a Bayesian 

price-taking supply function equilibrium would coincide with the usual complete 

information competitive solution. 
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It is worth noting that the slope of supply c may be negative if costs shocks are correlated 

(ρ > 0) and signals not perfect ( 2
εσ  > 0). The price serves a dual role as index of scarcity 

and as conveyor of information. Indeed, a high price has a direct effect to increase the 

competitive supply of a firm, but also conveys news that costs are high. If ρ= 0 (or 2
εσ  = 

0) then the price conveys no information on costs and c > 0. As ρ 2
εσ  increases then the 

slope c decreases because of the informational component of the price (it is easily 

checked that c decreases in ρ 2
εσ  and increases in 2

θσ ; this follows from the fact that the 

largest root of the quadratic equation determining c decreases with 

( ) ( )( )( )
2

2 2

nM
1 1 n 1

ε

ε θ

ρσ
≡

− ρ σ + + − ρ σ
).  As ρ tends to 1, c becomes negative. There are 

particular parameter combinations for which the scarcity and informational effects 

balance and firms set a zero weight ( c 0= ) on public information. In this case firms do 

not condition on the price and the model reduces to the Cournot model where firms 

compete in quantities. However, in this particular case, when supply functions are 

allowed, not reacting to the price (public information) is optimal. However, for 

reasonable parameter values in the electricity example (i.e. low correlation of plants 

outages and/or good private precision on them) supply will be upward sloping, the 

scarcity effect dominating the information effect.  

 

It is interesting to note that increasing the noise in the private signal 2
εσ  or the correlation 

of the random cost parameters ρ makes the slope of supply steeper (decreases c). This 

result may help explain the fact that in the Texas balancing market small firms use 

steeper supply functions than those predicted by theory (Hortaçsu and Puller (2006)). 

Indeed, smaller firms may have signals of worse quality because of economies of scale in 

information gathering while private cost information has not been taken into account in 

the estimation.  

 

A conjecture to be checked is that the slope of supply becomes steeper also when 

decreasing the number of firms n (i.e. c increases with n).  
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A consequence is that the margin over expected marginal cost ( )( )i i iE s , p xθ + λ  will 

tend to be increasing in 2
εσ , ρ and decreasing in n. Indeed, from the F.O.C. we have that  

 

( )( ) ( )i i i i1
n

1p E s , p x x
n n 1 c−

⎛ ⎞
− θ + λ = ⎜ ⎟⎜ ⎟β + −⎝ ⎠

, 

 

where the slope of residual demand is ( )1
nn n 1 c−β + − . A similar relation holds for the 

margin over average expected marginal cost 

[ ] ( )( ) ( )n n
n i i i i i ni 1 i 1

1 1E MC E s ,p x E s ,p x
n n= =

= θ + λ = θ + λ∑ ∑ : 

 
[ ]

( )( )
n

n n

p E MC 1
p n n 1 c

−
=

+ β − η
 

 
where ( )n np / xη = β is the elasticity of demand. 

 
When ρ = 1 a fully revealing REE is not implementable. Indeed, if ρ = 1 and 2

εσ < ∞  

(common value) there is no linear equilibrium. The reason should be well understood: if 

the price reveals the common value then no firm has an incentive to put any weight on its 

signal (and the incentives to acquire information disappear as well). But if firms put no 

weight on their signals then the price can not contain any information on the costs 

parameters. However, if in addition the signals are pure noise (i.e. 2
εσ = ∞ ) then there is 

always a linear equilibrium. The equilibrium is given by 

 
( ) ( )n nX p c p= − θ  

 
where nc  is given implicitly by the positive root of 

 

( ) n
n

c 1
n n 1 c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

β + λ =
+β −

. 
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 To see this note that as 2
εσ → ∞ , ( )i i iE s , Iθ → θ , na 0→  and 

( )

1

n n
n

b c
n n 1 c

−
⎛ ⎞β

= −θ + λ = − θ⎜ ⎟⎜ ⎟+ β −⎝ ⎠
. 

 
Remark: The replica market considered can be the outcome of free entry in a market 

parameterized by size. Consider a market with m consumers (the size of the market) and 

inverse demand Pm(X) = α- βmX where βm = β/m. Suppose now that at a first stage firms 

decide whether to enter the market or not. If a firm decides to enter it pays a fixed cost F 

> 0. At a second stage each active firm i, upon observing its signal si, sets an output level. 

Given that n firms have entered, a Bayesian Supply Function equilibrium is realized. 

Given our assumptions, for any n there is a unique, and symmetric, equilibrium yielding 

expected profits Еπn = (
λ
2

+
β
n

) E (Xn(si, p))2 for each firm. A free entry equilibrium is a 

subgame-perfect equilibrium of the two-stage game. A subgame-perfect equilibrium 

requires that for any entry decisions at the first stage, a Bayesian-Nash equilibrium in 

supply functions obtains at the second stage. Given a market of size m, the free entry 

number of firms n*(m) is approximated by the solution to Eπn = F (provided F is not so 

large to prevent any entry). It can be checked that n*(m) is of the same order as m 

(similarly as in Vives (2002)). This means that the ratio of consumers to firms is bounded 

away from zero and infinity for any market size. We can reinterpret, therefore, the replica 

market as a free entry market parameterized by market size. 

 

Price-taking equilibrium 
In order to assess the welfare loss due to strategic behavior we characterize price-taking 
equilibria. Full (shared) information competitive equilibria are Pareto optimal and 
characterized by the equality of price and expected marginal cost (with full information): 
 

( )i i n ip E s ,s x= θ + λ . 

 

This allocation, provided that ρ < 1, is implemented by a price-taking LBSFE (denoted by 
a hat on the coefficients) which yields as F.O.C.: 
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( )i i ip E s , p x= θ + λ  

 

and where ( ) ( )1
n n n n

ˆˆ ˆp 1 c b a s−= + β α − β + β and the coefficients given by the system of 

equations 
( )

( )( )
( )

( )
( )

( )

2

n2 2

22
n

n

2
n

n

1
a

1

b
b

nK 1 K

1 c
1 c

1 K

θ

ε θ

εε

ε

⎧ − ρ σ
= λ⎪

σ + − ρ σ⎪
⎪ σ ρ β − ασ θ⎪− − λ = λ⎨ β − ρ⎪
⎪ ⎛ ⎞σ ρ + β⎪ − λ = λ⎜ ⎟⎜ ⎟⎪ β − ρ⎝ ⎠⎩

 

It follows that 
 

( )
( )( )

( ) ( )

2

n 2 2

12 2 2
1

n

1
â

1

b̂ 1
1 K 1 K nK

θ

ε θ

−

−ε ε ε

− ρ σ
=

λ σ + − ρ σ

⎛ ⎞ ⎛ ⎞σ ρ σ ρα σ θ
= + − λ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− ρ β − ρ⎝ ⎠ ⎝ ⎠

 

 

( )
( )( )

1 1 2

n 2

1 K
ĉ

1 K

− −
ε

ε

λ − ρ −β ρσ
=

σ ρ + − ρ
 

where 
( )( )2 21 n 1

K
n

ε θ
⎛ ⎞⎜ ⎟
⎝ ⎠
σ + + − ρ σ

= .  

 
 

3. The competitive limit and convergence properties 

 

3.1 The competitive limit 

The continuum economy counterpart of the finite markets considered in Section 2 is 

given by the inverse demand p x= α −β  where x  is average output. Firms are indexed in 

the unit interval (endowed with the Lebesgue measure).  
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We can derive the relationship of θi, si, and the average parameter jdjθ = θ∫ . The 

average parameter ˜ θ = θjdj∫  is normally distributed with mean θ  and variance ρσθ
2 .  

Indeed, E(θi| ˜ θ ) = ˜ θ , E( ˜ θ |θi) = E(θj|θi) = ρθi + (1-ρ)θ , E( ˜ θ |si) = E(θj|si) , and   

 

E(θi| ˜ θ , si) = (1- d) ˜ θ  + dsi , 

 

where d = [σθ
2 (1-ρ)]/[σθ

2 (1-ρ) + σε
2 ]. If signals are perfect, then d = 1 and E(θi| ˜ θ , si) = 

si. If signals are useless or correlation perfect (ρ= 1), then d = 0 and E(θi| ˜ θ , si) = ˜ θ .   If 

both signals and correlation are perfect, then E(θi| ˜ θ , si) = ˜ θ  = si  (a.s.). 

 

Observe that i is di di= θ + ε = θ∫ ∫ , since idiε∫  = 0 since we make the convention that the 

average of i.i.d. random variables with mean zero is zero.  
 

The following proposition characterizes the equilibrium. 
 
Proposition 2. Let [ )0,1ρ∈ . In the continuum economy with inverse demand p x= α −β , 

there is a unique LBSFE. It is given by 
 

( )i iX s ,p b as cp= − + , 

where 
( )

( )( ) ( )( )( )( )

( )( ) ( )

( )
( )( ) ( )( )

2

2 2 2 2

2

2 2

1 2 1 2

2 2

1 1a
1 1 / 1

b 1 a
1

1 1c a 1
1

θ

ε θ ε θ

ε

ε θ

− −
θ ε

ε θ

− ρ σ
= =

λ σ + − ρ σ λ + σ − ρ σ

σα α
= = − λ

β βσ + − ρ σ

λ − ρ σ −β σ
= = β + λ −

βσ + − ρ σ

 

 

Moreover, the equilibrium price is given by ( ) ( )1p 1 c b a−
= +β α −β +β θ  = λα + βθ

λ + β
. 
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Proof: 
In the continuum economy the F.O.C. is given by 
 

( )i i ip E s , p x= θ + λ . 

 
Assuming linear strategies ( )i iX s ,p b as cp= − +  and using the inverse demand function 

p x= α − β  and our convention is di = θ∫  we obtain an expression for the price 

 
( ) ( )1p 1 c b a−

= +β α −β +β θ . 

 

Given joint normality of the stochastic variables we obtain 
 

2 2 2
i

2 2 2 2
i

2 2 2 2

D
s ~ N , D
p D D DC D

θ θ θ

εθ θ θ

θ θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

θ σ σ ρσθ
θ σ σ + σ ρσ

ρσ ρσ ρσ+ θ
 

 

Where ( ) ( )1C 1 c b−
= +β α −β  and ( ) ( )1D 1 c a−

= +β β . Using the projection theorem for 

normal random variables we obtain 

 

( ) ( )( )
( )

( ) ( )( )
22 2

i i i2 22 2 2 2

1CE s ,p s p
1D 1 D 1

θε ε

εθε εθ θ

−ρ σσ σθ = − + +
−ρ σ + σ−ρ σ + σ −ρ σ + σ

. 

 

Recall that ( ) ( )i i iE s , ds 1 dθ θ = + − θ  where d = ( )
( )

2

2 2

1
1

θ

θ ε

− ρ σ
− ρ σ + σ

.  

 
Plugging in the F.O.C. of the limit economy we obtain  
 

( )( )
( )

( )( ) ( )( )
( )

( )

22 2

i2 2 2 2 2 2

i

1 1 cb s 1 p
a a1 1 1

b as cp

θε ε

ε ε εθ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−ρ σ +βσ σβ −α− − + − =
β βσ + −ρ σ σ + −ρ σ σ + −ρ σ

= λ − +
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and using the method of undetermined coefficients, we have the following system of 
equations 

( )
( )( )

( )( )

( )( )
( )

2

2 2

2

2 2

2

2 2

1
a

1

b b
a1

1 c
1 ca1

θ

ε θ

ε

ε θ

ε

ε θ

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩

−ρ σ
=

λ σ + −ρ σ

σ β −α− = λ
βσ + −ρ σ

+βσ− = λ
βσ + −ρ σ

 

 

The solution to the above system gives the result. 
 
As before the equilibrium supply function can be upward or downward sloping. It will be 

downward sloping when the reaction to private information is small (i.e. when we are 

close to the common value case, when prior uncertainty is low or noise in the signals is 

high). We have 1c a≤ ≤ λ , ( ) ( ) ( ) 11 1c a 1 a 1 a −− − ⎛ ⎞
⎜ ⎟
⎝ ⎠

= −β −λ = +β λ − β+ λ   and 

1 c a( ) 0+ β = β + λ >  provided that 1ρ <  Furthermore, [ ]E p αλ + βθ
=

β + λ
and 

[ ] 2
i iE E x

2
λ ⎡ ⎤π = ⎣ ⎦ .  

 
When signals are perfect (σε

2 = 0), we have that a = c = λ-1, b = 0, 1
i ix (p )−= λ − θ  and 

p =
α + βλ−1˜ θ 
1+ βλ−1 =

αλ + β˜ θ 
λ +β

. The equilibrium is just the usual complete information 

competitive equilibrium (note it is independent of ρ and therefore it is Pareto optimal. 

The equilibrium is also efficient when 2 0εσ > : it is price-taking and firms act with a 

sufficient statistic for the shared information in the economy. 

 

If  ρ = 0 or 2
εσ  = 0 then the price conveys no information on costs and c = 1/ λ , the slope 

of competitive supply ( ) [ ]1
i iX s ,p p−= λ − θ . As ( )( )2 2/ 1ε θσ − ρ σ  increases the slope c 
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decreases because of the informational component of price, when ( )( )2 2/ / 1ε θβ λ = σ − ρ σ  

we have that c = 0, and for larger values of ( )( )2 2/ 1ε θσ − ρ σ  it becomes negative. 

 

Firms are more cautious while responding to their private signals when they have market 

power. From the S.O.C. ( )( ) n2 n n 1 c 0⎛ ⎞⎜ ⎟
⎝ ⎠
λ + β +β − >  with market power we have that: 

 

( ) ( )( )( ) ( )( )n
n

1 1a a
1 1n n 1 c

ε ε

ε θ ε θ

τ τ
= < =

τ + τ − ρ λτ + τ − ρλ + β + β −
. 

 
This is because of the usual effect of market power: A firm takes into account the price 

impact coming from his production. Note that in principle a firm with market power 

would also be cautious because of the informational leakage from his action, but here the 

equilibrium is revealing.  

 
3.2  Convergence to price-taking behavior 

We examine next the convergence properties of the finite market as the economy 

grows. Before stating the convergence results we will recall measures of speed of 

convergence. We say that the sequence (of real numbers) bn is of the order nυ, with υ a 

real number, whenever n nn b k−υ ⎯⎯→ for some nonzero constant k. We say that the 

sequence of random variables { }ny  converges in mean square to zero at the rate 

1/ rn (or that yn is of the order 1/ rn ) if ( )2
nE y⎡ ⎤

⎣ ⎦ converges to zero at the rate  1/nr 

(i.e. ( )2
nE y⎡ ⎤

⎣ ⎦ is of the order  1/nr). Given that ( )2
nE y⎡ ⎤

⎣ ⎦
 = [ ]( )2

nE y  + [ ]nvar y , a 

sequence { }ny  such that [ ]nE y = 0 and [ ]nvar y is of the order of 1/n, converges to zero 

at the rate 1/ n .  

 
For example, if the random parameters (θ1, ..., θn) are i.i.d. with finite variance and mean 

θ , and we let nθ ≡ ( θii=1
n∑ ) / n , then nθ  - θ  converges (in mean square) to 0  at the rate 
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of  1/ n  because nE 0⎡ ⎤θ − θ =⎣ ⎦  and nvar ⎡ ⎤θ⎣ ⎦  = 2
θσ /n. In our case nθ  is normally 

distributed with mean θ  and Var ˜ θ n  = (1 + (n -1) ρ) σθ
2 /n. We have therefore that 

˜ θ n → ˜ θ  in mean square at the rate 1
n

 where θ  is normally distributed with mean θ  

and variance ρσθ
2 .   

 

A more refined measure of convergence speed for a given convergence rate is provided 

by the asymptotic variance. Suppose that { }ny is such that [ ]nE y = 0  and ( )2
nE y⎡ ⎤

⎣ ⎦ = 

[ ]nvar y converges to 0 at the rate 1/nr for some r > 0. Then the asymptotic variance is 

given by the constant AV = ( )r
n nlim n var y→∞ . A higher asymptotic variance means that 

the speed of convergence is slower. It is worth noting that if the sequence { }ny  is 

normally distributed then ( )r
nn y  converges in distribution to N(0, AV). Indeed, a 

normal random variable is characterized by mean and variance and we have that 

( ) [ ]r r
n nvar n y n var y⎡ ⎤ =⎣ ⎦  tends to AV as n tends to infinity. 

 
The equilibria of the finite markets tend to the equilibrium of the continuum economy as 

the market grows large. This justifies the use of the continuum model as an 

approximation to the large market with supply function competition. We characterize also 

the speed at which this convergence occurs. We consider, in turn, convergence to price 

taking and convergence to the continuum model as the economy is replicated.  

 

The following proposition characterizes the convergence of the LBSFE to a price-taking 

equilibrium as the market grows. 

 

Proposition 3. As the market grows large the market price pn (at the LBSFE) converges 

in mean square to the price-taking Bayesian price pn
c  at the rate of 1/n. (That is, E(pn - 

pn
c )

2
 tends to 0 at the rate of 1/n

2
.) The difference between (per capita) expected 
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deadweight loss at the LBSFE and at the Bayesian price-taking equilibrium ( c
nETS - 

ETSn)/n is of the order of 1/n2.  

 

Sketch of proof: The results follow because n n n n n n
ˆˆ ˆa a , b b ,  and c c− − −  are of the order 

of 1/n (from the expressions for na and nc  in Proposition 1, and c in Proposition 2 we 

obtain that an → a  and cn → c  at the rate 1/n) and both pn and pn
c  depend on ns . 

Basically, the departure from price taking (marginal cost) is of the order of 1/n and the 

deadweight loss is of the order of the square of it. (A complete proof of a similar result 

for Cournot competition –Proposition 6 - can be found in the Appendix.) 

 

 
Proposition 4. Let [ )0,1ρ∈ . As n tends to infinity the symmetric LBSFE of the n-replica 

market converges to the limit equilibrium: 
 
(i) pn − p→

n
0  in mean square  at the rate of 1

n
; 

(ii) ( )nn p p−  converges in distribution to ( )( )
2

2 2N 0, 1 θ ε

⎛ ⎞⎛ ⎞β
⎜ − ρ σ + σ ⎟⎜ ⎟⎜ ⎟β + λ⎝ ⎠⎝ ⎠

. 

 

Proof:  

We know that an → a  and cn → c  at the rate 1/n and that ˜ θ n → ˜ θ  in mean square at the 

rate 1
n

. We have also that 
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( )

( )

n
n n

n

2 n n
n n

n n

2 2
2 n n

n
n n

2
2 2n n

n n

a aVar p p Var s
1 c 1 c

a aaVar
1 c 1 c 1 c

a aaVar
1 c 1 c 1 c n

1 n 1a a2
1 c n 1 c

ε

θ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

β β− = − θ =
+β +β

= β θ − θ+ ε =
+β +β +β

σ= β θ − θ + =
+β +β +β

+ − ρ
= β σ −

+β +β

2
2 2

2 2
2 n

n

a a
1 c 1 c

a .
1 c n

θ θ

ε

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

ρσ + ρσ +
+β +β

σ+β
+β

 

 
It follows then that ( )n nlim Var p p 0→∞ − = , i.e. np  converges to p  in mean square. 

 
Furthermore, 

( )( )

( )( )

2 2 2
2 2 2 2

n n

2
2 2 2

a a alim Var n p p 1 c 1 c 1 c

a 1 .
1 c

→∞ εθ θ

εθ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

− = β σ − ρσ + σ =
+β +β +β

= β −ρ σ + σ
+β

 

 

Given that ( )( )n nlim E n p p 0→∞ − =  we obtain 

 

( ) ( )( )
2

d 2 2 2
n

an p p N 0, 1
1 c θ ε

⎛ ⎞⎛ ⎞
− ⎯⎯→ ⎜ β − ρ σ + σ ⎟⎜ ⎟⎜ ⎟+ β⎝ ⎠⎝ ⎠

. 

 

The term 
a

1 c
β
+β

 included in the variance of the limiting distribution can be simplified 

further if we use the results of Proposition 2 where we obtained that 

 

( )1c a 1 a= − −λ
β

. 

This implies that 
a a

1 c a a
β β β= =
+β β + λ β+ λ

. 
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This proves the proposition. 
 
 
Convergence to the equilibrium of the continuum economy happens at the rate 1/ n  at 

which the average error in the signals of the agents 1

n
εii=1

n∑  tends to zero. Convergence 

is faster when we are closer to a common value environment, with better signals, or 

closer to the case with less prior uncertainty. 

 

4. Cournot competition 

Consider the market exactly as before but now firm i sets a quantity contingent on its 

information { }is .5 The firm has no other source of information and, in particular, does 

not condition on the price. The expected profits of firm i conditional on receiving signal 

si and assuming firm j, j ≠ i, uses strategy Xj(⋅), are 

( ) ( ) ( )( ) 2
i i i n j j i i i ij i

E s x P X (s ) + x E s x
2≠

λ
π = − θ −∑ . 

 

 From the F.O.C. of the optimization of a firm we obtain 

( )( )i i i ip E s x x
n
β⎛ ⎞− θ + λ = ⎜ ⎟

⎝ ⎠
. 

 

A similar relation holds for the margin over average expected marginal cost 

[ ] ( )( ) ( )n n
n i i i i i ni 1 i 1

1 1E MC E s x E s x
n n= =

= θ + λ = θ + λ∑ ∑ : 

 
[ ]n

n

p E MC 1
p n

−
=

η
 

 

                                                 
5      See Vives (2002) for related results when cost parameters are i.i.d. 
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where ( )n np / xη = β is the elasticity of demand. The margins are augmented from the 

supply function equilibrium case since they correspond to the case of zero slope of supply 

( nc  = 0).  

 

The following proposition characterizes the Bayesian Cournot equilibrium and the 

Bayesian price-taking equilibrium (denoted by a superscript c for “competitive”). The 

proof is standard and is presented in the Appendix. 

 

Proposition 5. In the linear-normal model there is a unique Bayesian Cournot equilibrium 

and a unique Bayesian price-taking equilibrium. They are symmetric, and affine in the 

signals. Letting /( )ε θ εξ ≡ τ τ + τ  the strategies of the firms are given (respectively) by: 

 

Xn(si) = bn (α -θ )- an(si -θ ), where an = ,2 n 1
n n

ξ
β −+ λ + β ρξ

and bn = 
1

λ +β 1 + n
n

⎛ 
⎝ 

⎞ 
⎠ 

; 

c
nX (si) = bn

c (α -θ ) - an
c (si -θ ), where an

c
 = ,n 1

n n

ξ
β −

+ λ + β ρξ
and bn

c = 
1

λ +β
. 

 

Remark: From the F.O.C. of profit maximization it is immediate that in equilibrium 

expected profits for firm i are given by Eπn = (
λ
2

+
β
n

) E (Xn(si))2. 

 

Remark: In the case of independent values (i.e. ρ = 0 and τε = ∞ ) the formulae are valid 

for a general distribution of the uncertainty. 

 

When ρ = 0 we can see easily that in Cournot competition firms are more cautious when 

responding to their private information: Cournot SF
n na a<  whenever supply functions are 

upward sloping. 
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We show here that Bayesian Cournot equilibria converge to (Bayesian) price-taking 

equilibria as n tends to infinity. This justifies the use of the continuum model as an 

approximation to the large Cournot market. We characterize also the speed at which this 

convergence occurs.  

 

We consider, in turn, convergence to price taking and convergence to the continuum 

model as the economy is replicated. The following proposition characterizes the 

convergence of the Bayesian Cournot equilibrium to a price-taking equilibrium. It is 

worth noting that the price-taking equilibrium, either in the finite or limit economy, does 

not aggregate information except in the independent values case (see Vives (2002)). In 

any case as the market grows large there is no convergence to a full information 

equilibrium. The proof is in the Appendix. 

 

Proposition 6.  As the market grows large the market price pn (at the Bayesian Cournot 

equilibrium) converges in mean square to the price-taking Bayesian price pn
c  at the rate 

of 1/n. (That is, E(pn - pn
c )

2
 tends to 0 at the rate of 1/n

2
.) The difference between (per 

capita) expected deadweight loss at the market outcome and at the Bayesian price-taking 

equilibrium ( c
nETS - ETSn)/n is of the order of 1/n

2
.  

 

As the market grows large market power (in terms of the margin over marginal cost) 

dissipates at the rate of 1/n and the welfare loss with respect to the price-taking 

equilibrium at the rate of 1/n
2
. These are the same rates of convergence as in the Cournot 

oligopoly with no uncertainty.  

 

The following proposition characterizes convergence of the Bayesian Cournot equilibria 

to the price-taking equilibrium of the continuum economy as the market grows large.  

(The proof is in the Appendix.) 

 

Proposition 7. As the economy is replicated the Bayesian Cournot equilibrium converges 

to the equilibrium in the continuum limit economy: X(si) = b(α -θ )- a(si -θ ), where a = 
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ξ /(λ+ βρξ) and b = 1/(λ+ β). The Bayesian Cournot price pn converges (in mean square) 

to   p = α - β (b(α - θ ) - a( ˜ θ  - θ )) at the rate of 1/ n  and n (pn - p) converges in 

distribution to N(0, β
2
a

2
((1-ρ)σθ

2 + σε
2 )).  

 

Convergence is slower, according to the asymptotic variance β
2
a

2
((1-ρ)σθ

2 + σε
2 ), with 

larger σθ
2  or β and faster with larger ρ or λ. A larger ρ means that we are closer to a 

common value environment. As with supply function competition convergence is faster 

when we are closer to a common value environment or with less prior uncertainty. 

 

However, the effect of an increase in σε
2  is ambiguous: the direct effect is to slow down 

convergence but the indirect effect is to lower the response to information, which has the 

opposite effect.  In the supply function equilibrium only the first effect applies because 

changes in a are neutralized by changes in the slope of supply c.  

 

In summary, we have checked that the equilibria obtained in the continuum markets, be it 

with supply function or Cournot competition, are not an artifact but the limit of equilibria 

in finite economies. Furthermore, the convergence rate to the limit equilibrium is in both 

cases 1/ n   for prices, where n is the “size” of the market, and convergence is slower for 

higher prior uncertainty and faster when closer to a common value environment. Finally, 

convergence to price-taking is faster also in both cases, at the rate of 1/n for prices and 

1/n
2
 for the welfare loss (i.e. the deadweight loss with respect to price-taking). 
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Appendix 

Proof of Proposition 5: Drop the subscript n labeling the replica market and let β = 1.  We 

consider first the Bayesian Cournot equilibrium. We check that the candidate strategies 

form an equilibrium. The expected profits of firm i conditional on receiving signal si and 

assuming firm j, j ≠ i, uses strategy Xj(⋅), are 

  
i i i j j ii i i

j i

1 1E( s ) x E( s ) E(X (s ) s ) x
n n 2≠

⎛ ⎞λ⎛ ⎞π = α − θ − − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ . 

Then first order conditions (F.O.C.) yield 

i i i j ji i
j i

1 12 x (s ) E( s ) E(X (s ) s )
n 2 n ≠

λ⎛ ⎞+ = α − θ −⎜ ⎟
⎝ ⎠

∑ , for i = 1,..., n. 

Plugging in the candidate equilibrium strategy and using the formulae for the conditional 

expectations for E(θi |si ) and E(sj |si), 

 

E(θi|si) = ξ si + (1- ξ )θ  and E(sj|si) = E(θj|si) = ξ ρ si + (1- ξ ρ)θ , 

it is easily checked that they satisfy the F.O.C. (which are also sufficient in our model). 

To prove uniqueness (1) we show that the Bayesian Cournot equilibria of our game are in 

one-to-one correspondence with person-by -person optimization of an appropriately 

defined concave quadratic team function; (2) we note that  person-by-person optimization 

is equivalent in our context to the global optimization of the team function  (since the 

random term does not affect the coefficients of the quadratic terms and the team function 

is concave in actions, Radner (1962, Theorem 4)); and (3) we invoke the result by 

Radner,  which implies that  in our linear-quadratic model with the type of uncertainty 

considered and jointly normal random variables, the components of the unique Bayesian 

team decision function of the equivalent team problem are affine (Radner (1962, 



 29

Theorem 5)).  Based on the above three observations we conclude that the affine 

Bayesian Cournot equilibrium  is the unique equilibrium.
6  

Let us show (1) by displaying an appropriate team function G. A team decision rule 

(X1(s1), ..., Xn(sn)) is person-by-person optimal if it can not be improved by changing 

only one component Xi(.). (This just means that each agent maximizes the team objective 

conditional on his information and taking as given the strategies of the other agents.) Let  

( ) i i iG x (x) f (x )−= π + where 

  2
i i j j j k j

j i j i k j
k, j i

1 1f (x ) ( )x x x x
n 2 2n−

≠ ≠ ≠
≠

⎛ ⎞
⎜ ⎟
⎝ ⎠

λ= α −θ − + −∑ ∑ ∑ . 

This yields  

( ) 2
j j j i j

j j i j

1 1G x ( )x x x x
n 2 2n ≠

λ⎛ ⎞= α − θ − + −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ . 

We obtain the same outcome by solving either maxxi
E(πi si )  or maxxi

E(Gsi) since 

f i (x−i )  does not involve xi.  

A similar argument establishes the result for the Bayesian price-taking equilibrium. Then 

the F.O.C. for firm i is given by   

i i i j ji i
j

1x (s ) E( s ) E(X (s ) s )
n

λ = α − θ − ∑ , 

and the solution  is a (person-by-person) maximum of a team problem with an objective  

function which is precisely the ETS. ♦ 

 

In order to perform welfare comparisons we will need the following Lemma. 

                                                 
6 This method of showing uniqueness of Bayesian Cournot equilibrium in linear-quadratic models with 

normal distributions (or more in general, with affine information structures) has been used by Basar 

and Ho (1974) and Vives (1988). 
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Lemma.  The difference in (per capita) ETS between a price-taking regime R and another 

regime with strategies based on less information (that is, on a weakly coarser information 

partition) is given by   (ETSR - ETS)/n = (βE( ˜ x n - ˜ x n
R )2 + λ (ΣiE(xin - xin

R )2/n )/2. 

 

The result follows considering a Taylor series expansion of TS (stopping at the second 

term due to the quadratic nature of the payoff) around price-taking equilibria. The key to 

simplify the computations is to notice that at price-taking equilibria total surplus is 

maximized. Note that if the strategies and the information structure are symmetric then 

E(xin - xin
R  )2 is independent of i and therefore ΣiE(xin - xin

R )2/n = E(xin - xin
R )2.  

 

Proof of Proposition 6: Let yn = pn - pn
c  = ˜ x n

c - ˜ x n = ( bn
c - bn)(α - θ ) + (an - an

c )( ˜ s n  -

θ ). Recall that ( )2
nE y⎡ ⎤

⎣ ⎦
 = [ ]( )2

nE y  + [ ]nvar y . We have that [ ]nE y  = ( bn
c - bn ) (α -

θ )  because E ˜ s n  = θ . It is easily seen that (bn
c - bn) is of order 1/n (indeed, n(bn

c - bn)   

tends to 1/(1+λ)2 as n tends to infinity). Therefore [ ]( )2
nE y is of order 1/n2. 

Furthermore, [ ]nvar y = (an - an
c )2  var ˜ s n . We have that var ˜ s n  = ((1+(n-1) 

ρ) σθ
2 + σε

2 )/n, which is of the order  of a constant for ρ > 0 (or 1/n for ρ = 0), and that (an 

- an
c ) is of order 1/n (because n(an - an

c ) tends to 1))2)((( −λ+ρξλ+ρξ as n tends to 

infinity). Therefore the order of [ ]nvar y  is 1/n2 for ρ > 0 (or 1/n3 for ρ = 0). We 

conclude that in any case the order of yn = pn - pn
c  is 1/n. Consider (E TSn

c - ETSn)/n 

now. According to the Lemma above and given that equilibria are symmetric we have 

that (ETSn
c - ETSn)/n = (βE( ˜ x n- ˜ x n

c )2 + λ (E(xin -
c
inx  )2)/2. We have just shown E( ˜ x n-

˜ x n
c )2 to be of order 1/n2. We have that E(xin - c

inx )2 = (E(xin - c
inx ))2 + var (xin - c

inx ).  

Now, E(xin -
c
inx ) is of the same order as E( ˜ x n- ˜ x n

c ), 1/n, and Var (xin -
c
inx ) = ( an

c - an)
2 

( σθ
2 + σε

2 ), is of order 1/n2  because ( an
c - an) is of order 1/n. Therefore, E(xin -

c
inx )2 is of 

order  1/n2. We conclude that (ETSn
c - ETSn)/n is of the order of 1/n2. ♦    
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Proof of Proposition 7: For the first part, from Proposition 4 we have that  

n n nlim a lim a2 n 1
n n

→∞ →∞

ξ ξ
= = =

β − λ + βρξ+ λ + β ρξ
 

and 

n n n
1 1lim b lim b1 n

n

→∞ →∞= = =
+ λ + βλ + β

. 

Hence, 
( ) ( ) ( ) ( ) ( ) ( )n n i n n n i i ilim x s lim b a s b a s x s→∞ →∞

⎡ ⎤= α − θ − − θ = α − θ − − θ =⎣ ⎦ . 

 
For the second part of the proposition note that ˜ x n = bn(α - θ ) - an( ˜ s n  - θ ). We have that  

 

( ) ( )
( ) ( )

n n n np b a s

p b a

⎡ ⎤= α − β α − θ − − θ⎣ ⎦
⎡ ⎤= α − β α − θ − θ − θ⎣ ⎦

 

 
and E(pn - p) = β (b - bn)(α - θ )  since E ˜ s n  = E ˜ θ = θ . Note that (b - bn), and therefore 

E(pn - p) , tends to 0 as n tends to infinity. Since 

( ) ( ) ( ) 22
n n nvar p p E p p E p p− = − − −⎡ ⎤⎣ ⎦ to conclude that ( )2

n nlim E p p 0→∞ − =  it is 

sufficient to show that ( )n nlim var n p p→∞
⎡ ⎤−⎣ ⎦  = β2 a2 ((1-ρ)σθ

2 + σε
2 ). From which it 

follows that n (pn - p) converges in distribution to N(0, β2a2((1-ρ)σθ
2 + σε

2 )) because 

(pn - p) is normally distributed. We have that  

( )

( )( ) 2 2
2 2 2 2
n n

2 2
n n n

1 n 1
a 2a a a

n n
var n p p n var a s a .1

n

θ ε
θ θ

⎧ ⎫⎡ ⎤+ ρ − σ σ⎪ ⎪+ − ρσ + ρσ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭⎡ ⎤ ⎡ ⎤− = β − θ = β⎣ ⎦⎣ ⎦  

 

Using L’Hopital’s rule we obtain ( )n nlim var n p p→∞
⎡ ⎤− =⎣ ⎦  
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( )( ) ( )

( )

2 22 2
2 2n n

n n 2 2

2
n

2

2 2 2 2

1 n 1 1a a2a a 2 a
n n n n n n

lim 1
n

a 1 .

θ θε ε
θ

→∞

θ ε

⎧ ⎫⎡ ⎤+ ρ − σ ⎡ ⎤− ρ σσ σ∂ ∂⎪ ⎪+ + − − − ρσ⎢ ⎥⎨ ⎬⎢ ⎥∂ ∂⎢ ⎥ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭β =
−

⎡ ⎤= β − ρ σ + σ ♦⎣ ⎦
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