
Modeling and Computing Two-settlement Oligopolistic Equilibrium

in a Congested Electricity Network

Jian Yao, Ilan Adler, Shmuel S. Oren
Department of IEOR, University of California at Berkeley, Berkeley, CA 94720

{jyao, adler, oren}@ieor.berkeley.edu

Abstract

A model of two-settlement electricity markets is introduced, which accounts for flow con-

gestion, demand uncertainty, system contingencies and market power. We formulate the sub-

game perfect Nash equilibrium for this model as an equilibrium problem with equilibrium con-

straints (EPEC), in which each firm solves a mathematical program with equilibrium constraints

(MPEC). The model assumes linear demand functions, quadratic generation cost functions and

a lossless DC network, resulting in equilibrium constraints as a parametric linear complementar-

ity problem (LCP). We introduce an iterative procedure for solving this EPEC through repeated

application of an MPEC algorithm. This MPEC algorithm is based on solving quadratic pro-

gramming sub-problems and on parametric LCP pivoting. Numerical examples demonstrate the

effectiveness of the MPEC and EPEC algorithms and the tractability of the model for realistic

size power systems.

1 Introduction

Electricity restructuring aims at creating new competitive environments that provide long-term

consumer benefits. A major obstacle to this goal is market power, both vertical and horizon-

tal. Vertical market power in electricity markets has been substantially mitigated through the

unbundling of the generation, transmission and distribution sectors, and through “open access” to

transmission grids. However, horizontal and locational market power remains an important issue

to policy makers due to the non-storability of electricity, the lack of demand elasticity, high market

concentration and limited transmission capacities.

Among the many proposed and implemented economic means of mitigating horizontal market

power is a two-settlement approach where forward contracts and real-time balancing transactions
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are settled at different prices. Both theoretical analysis and empirical evidences in [1, 2, 8, 14, 26, 30]

have suggested that forward contracting decreases the incentives of sellers to manipulate spot

market prices since, under two settlements, the volume of trading that can be affected by spot

prices is reduced. Allaz [1] assumes a two-period market and demonstrates that, if all producers

have access to a forward market, it leads to a prisoners’ dilemma type of game among them.

Allaz and Vila [2] show that, as the number of forward trading periods increases, producers lose

their ability to raise energy prices above their marginal cost. Kamat and Oren [22] analyze two-

settlement markets over two- and three-node networks, and extend the results in [1, 2] to a system

with uncertain transmission capacities in the spot market.

Recent work in [37] and [38] further extends the above results to more realistic multi-node and

multi-zone networks. Yao, Oren and Adler [37] consider flow constraints, system contingencies and

demand uncertainties in the spot market. Their numerical tests show that, like in the simple cases,

generation firms have incentives to engage in forward contracting, which increases social surplus

and reduces spot prices. Yao et al. [38] consider two alternative mechanisms for capping prices.

They observe that a forward cap, which may be induced by free entry of new generation capacity,

increases firms’ incentives for forward contracting, whereas a regulatory spot price cap reduces such

incentives.

In this paper, we continue the study of two-settlement electricity systems. Our objective here is

two-fold. First, we introduce a new model of Cournot equilibrium in two-settlement markets which

overcomes some shortcomings of the formulations in [37, 38]. As before, the model is formulated

as an equilibrium problem with equilibrium constraints (EPEC) where each generation firm solves

a mathematical problem with equilibrium constraints (MPEC, [23]) parameterized by the other

firms’ forward commitments. The model assumes linear demand functions, quadratic generation

cost functions and a lossless DC network, resulting in the preceding equilibrium constraints in

the form of a parametric linear complementarity problem (LCP, [6]). When applied to realistic

size systems, this EPEC model presents a computational challenge. Therefore, the second goal

of this paper is to study the computational aspect of our EPEC model and, by exploiting the

problem structure, present in detail the solution approach for the EPEC and MPECs arising in our

formulation.

Solving an EPEC problem amounts to solving simultaneously a set of MPEC problems, each
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parameterized by the other MPECs’ decision variables (see [29] for more discussions on related

topics). One solution approach is to derive the optimality conditions for the regularization scheme

of the MPECs (see [9, 32, 33]), then either solve the nonlinear complementarity conditions of the

EPEC as a whole [19, 34] or iteratively solve the nonlinear complementarity conditions of individual

MPECs [19, 34].

The second approach which we will follow in this research is to iteratively solve MPECs us-

ing MPEC-based algorithms. There has been a growing literature on MPEC algorithms. The

monograph by Luo, Pang and Ralph [23] present a comprehensive study of MPEC problems and

provides first- and second-order optimality conditions; it also describes some iterative algorithms,

such as the penalty interior point algorithm (PIPA) and the piecewise sequential quadratic pro-

gramming (PSQP, see also [21]) algorithm. More recent advances in MPEC algorithms can be

found, for example, in [5, 7, 11, 12, 13, 20, 31]. Fukushima, Luo and Pang [11] present a sequential

quadratic programming approach, through a reformulation of the complementarity condition as

a system of semismooth equations by means of Fischer-Burmcister functionals. This algorithm

shares several common features with the PIPA in terms of computational steps and convergence

properties; however, it differs from the PIPA in the way of updating the penalty parameters and

determining the step sizes. Chen and Fukushima [5] consider MPECs whose lower constraints are

a parametric P-matrix LCP. They smooth out the complementarity constraints through the use

of Fischer-Burmcister functionals, from which the state variables are viewed as implicit functions

of the decision variables. The MPECs can thus be solved by a sequence of well-behaved, though

non-convex, nonlinear programs. Fukushima and Tseng [12] propose an ε-active set algorithm for

solving MPECs with linear complementarity constraints and establish convergence to B-stationary

points under the uniform linear independence constraint qualification on the feasible set. This algo-

rithm generates a sequence of variable value sets such that the objective value is almost decreasing,

while maintaining the ε-feasibility of the complementarity constraints.

The remainder of this paper is organized as follows. The next section introduces the EPEC

model of two-settlement markets. In Section 3, we give a compact representation of the computa-

tional problem underlying our model. Section 4 proposes the MPEC and EPEC algorithms. We

perform a number of numerical tests in Section 5. Finally, we explore some economic implications

of our test cases and draw conclusions.
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2 The Model

We view two-settlement markets as a two-period Nash-Cournot game: the forward market (period

zero) and the spot market (period one) and we characterize the equilibrium of this game as a

sub-game perfect Nash equilibrium (SPNE, [10]).

In period zero, rational firms enter into forward contracts, forming rational expectations regard-

ing the forward commitments of their rivals and the period-one equilibrium outcomes. Period-one

is a subgame with two stages. In stage one, Nature picks a state defined by a realization of the

uncertain demand and system contingencies. In stage two, the firms whose information sets include

the state of nature and all forward commitments, compete in a Nash-Cournot manner while the

Independent System Operator (ISO) transmits electricity and sets congestion prices so as to max-

imize social surplus across the entire system. The dynamics of this model is illustrated in figure 1,

where the solid lines represent time progress and the dashed lines denote rational expectations.

From a mathematical perspective, the model is formulated as an EPEC, which comprises a set

of MPECs that characterize the decisions of the individual firms. In each MPEC, the upper level

is the firm’s profit-maximization problem in the forward market, and the lower level, shared by all

MPECs, consists of the period-one equilibrium conditions.

The following summarizes main features of our model that will be elaborated in the rest of this

section.

• We consider a lossless DC approximation of an electricity network where flows on transmission

lines are constrained by thermal capacities and random line outages.

• The demand side is price taking with elastic demand functions subject to random shocks (in

the form of quantity shifts) at each node.

• The supply side consists of Cournot producers with multiple generators at various nodes that

are subject to random outages, who sell energy to a Pool at uniform locational marginal prices

(LMPs) set by the ISO.

• Generator outages, transmission line outages and demand shocks are represented in terms of

system contingent states that have known probabilities in the forward market and are realized

before the spot market commences.
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Figure 1: The model dynamics

• The forward market is organized at zonal hubs as financial contracts traded at uniform market

clearing prices and settled at spot hub settlement prices based on the nodal LMPs.

• In the spot market, producers engage in a Nash-Cournot competition (i.e., setting quantities)

while the ISO who maintains feasibility of the transmission constraints behaves a la Bertrand

by setting nodal price premiums or equivalently congestion charges between nodes.

• The market is efficient, i.e., risk neutral speculators will arbitrage away any difference between

the forward hub prices and expected spot hub settlement prices.

2.1 Period-one: the Spot Market

Electricity restructuring in different markets has been following different blueprints. In the US, one

prevailing design is the so-called centrally-dispatched market. This type of market usually consists

of a pool run by an ISO that serves as a broker, or auctioneer, for wholesale spot electricity market

transactions. The ISO leases the transmission system from transmission owners and controls flows

so as to maintain feasibility of the network by redispatching generators and simultaneously setting

nodal price premiums and implied congestion charges for bilateral energy transactions.

In this paper, we consider a centrally-dispatched wholesale spot market with demand uncer-

tainty, flow constraints and system contingencies. The network underlying the spot market consists

of a set N of nodes, and a set L of transmission lines. There is a set G of generation firms competing
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in the market, each operating the units at a subset of locations Ng ⊆ N . We assume that at most

one generation firm operates at a node and, if necessary, we can introduce artificial nodes to meet

this assumption. We also assume, for convenience, that there is elastic demand at each node so

that pure generation nodes are represented by a demand function intersecting the quantity axis at

a very small value.

2.1.1 The ISO’s Decision Making.

In each state c ∈ C, the ISO controls the import/export rc
i at each node i ∈ N (using the convention

that positive quantities represent imports) and sets the corresponding locational marginal prices.

These quantities must satisfy the network feasibility constraints, that is, the resulting power flows

should not exceed the thermal limits Kc
l of the transmission lines in both directions. The transmis-

sion network is modeled in terms of lossless DC (i.e. linear) approximation of Kirchhoff’s laws (see

[4]). Specifically, flows on lines can be calculated using power transfer distribution factor (PTDF)

Dc
l,i which specifies the proportion of flow on a line l ∈ L resulting from an injection of one-unit

electricity at a node i ∈ N and a corresponding one-unit withdrawal at some fixed reference node

(also known as the slack bus). Moreover, because electricity is not economically storable, the load

and generation must be balanced at all times so the sum of all import and export quantities must

add up to zero.

The ISO’s objective is to maximize social welfare of the entire system. That is the aggregated

area under the nodal inverse demand functions (IDFs) P c
i (·), which represent the total consumer

willingness-to-pay, less the sum of all generation costs Ci(·). Mathematically, the ISO solves the

following problem parametric on the firms’ production decisions ({qc
i }i∈N ):

max
rc
i :i∈N

∑

i∈N

(∫ rc
i +qc

i

0
P c

i (τi)dτi − Ci(qc
i )

)

subject to:
∑

i∈N

rc
i = 0 (1)

∑

i∈N

Dc
l,ir

c
i ≥ −Kc

l , l ∈ L (2)

∑

i∈N

Dc
l,ir

c
i ≤ Kc

l , l ∈ L (3)
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In the above formulation, we have excluded the non-negativity constraints rc
i + qc

i ≥ 0, i ∈ N , by

implicitly assuming an interior solution with respect to these constraints. The numerical results

in Section 5 validate this simplification but that may not be true in general. Let pc, λc
l− and

λc
l+ be the Lagrange multipliers corresponding to (1)-(3), the first order necessary conditions (the

Karush-Kuhn-Tucker, KKT conditions) for the ISO’s problem are:

P c
i (qc

i + rc
i )− pc − ϕc

i i ∈ N

ϕc
i =

∑

l∈L

(λc
l+Dc

l,i − λc
l−Dc

l,i), i ∈ N

∑

i∈N

rc
i = 0

0 ≤ λc
l− ⊥

∑

i∈N

Dc
l,ir

c
i + Kc

l ≥ 0, l ∈ L

0 ≤ λc
l+ ⊥ Kc

l −
∑

i∈N

Dc
l,ir

c
i ≥ 0, l ∈ L

The first KKT condition herein implies that

qc
i + rc

i = (P c
i )−1 (pc + ϕc

i ) , i ∈ N

and consequently, due to (1),

∑

i∈N

qc
i =

∑

i∈N

(P c
i )−1 (pc + ϕc

i ) (4)

This equation represents the aggregate demand function in the network relating the total con-

sumption quantity to the reference node price pc and the nodal price premiums {ϕc
i}i∈N which

determine the relative nodal prices. The corresponding congestion charges for transmission from

node i ∈ N to node j ∈ N that will prevent arbitrage between nodal energy transactions and

bilateral transactions among nodes must be ϕc
j − ϕc

i .

2.1.2 The Firms’ Decision Making.

In the spot market, each firm g ∈ G determines the outputs from its units at Ng. A variety of

modeling approaches have been proposed to simulate generation firms’ decision making (see, for
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example, [18, 27, 35, 36]). One modeling consideration regarding the suppliers’ strategic behaviors

in these models is whether or not they game the congestion prices set by the ISO. Following [18]

and [27] we classify spot market models into two basic approaches.

The first approach assumes that generation firms anticipate the impact of their production on

the congestion prices set by the ISO and take that effect into account in their production decisions.

The resulting formulation of the spot market is a multi-leader one-follower Stackelberg game [27].

Each producer g solves the following MPEC, in which the optimality conditions for the ISO’s

program are the constraints shared by all the firms:

max
qc
i :i∈Ng

∑

i∈Ng

P c
i (rc

i + qc
i )q

c
i −

∑

i∈Ng

Ci(qc
i )

subject to:

0 ≤ qc
i ≤ qc

i , i ∈ Ng

P c
i (qc

i + rc
i )− pc +

∑

l∈L

(λc
l−Dc

l,i − λc
l+Dc

l,i) = 0, i ∈ N

∑

i∈N

rc
i = 0

0 ≤ λc
l− ⊥

∑

i∈N

Dc
l,ir

c
i + Kc

l ≥ 0, l ∈ L

0 ≤ λc
l+ ⊥ Kc

l −
∑

i∈N

Dc
l,ir

c
i ≥ 0, l ∈ L

The equilibrium problem among the above MPECs represents a “generalized Nash game” (see

[16]), and it may have zero or multiple equilibria (see [3]). On the other hand, even if some

pure-strategy equilibrium is found, it can be degenerate, that is, firms will find it optimal to

barely congest some transmission lines so as to avoid congestion charges (see [28]). Moreover, this

formulation would lead to a two-settlement model with three levels of decision, which makes an

equilibrium solution for the two-settlement market computationally intractable.

The second approach assumes that the firms do not fully anticipate the impact of their produc-

tion decisions on congestion charges (see, for example, [25]) which can be interpreted as a “bounded

rationality” assumption. In this approach, the ISO is a Nash player that moves simultaneously with

the generation firms. The firms determine their supply quantities so as to maximize their profits
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but they act as price takers with respect to transmission cost. The market equilibrium is then

determined by aggregating the optimality conditions for the firms’ and the ISO’s problems, which

result in a mixed complementarity problem or a variational inequality problem.

There are still two modeling options within this simultaneous-move framework. The first option

assumes that the ISO like the generation firms is a Cournot player whose strategic variables are

the import/export quantities at each node (see [27, 37, 38]). Hence, each firm g ∈ G solves the

following profit-maximization problem:

max
qc
i :i∈Ng

∑

i∈Ng

P c
i (rc

i + qc
i )q

c
i −

∑

i∈Ng

Ci(qc
i )

subject to:

0 ≤ qc
i ≤ qc

i , i ∈ Ng

Notice that, since this program is parameterized by {rc
i}i∈N , it can be decomposed into |Ng| sub-

problems, each corresponding to the production decision at one node. Therefore, this model will

yield a spot market equilibrium that is invariant to the generation resource ownership structure (i.e,

it doesn’t matter whether a firm owns one or multiple generators). Moreover, under this formula-

tion, when the network constraints (2)-(3) are nonbinding, the equilibrium solution predicts uniform

nodal prices that are systematically higher than the Cournot equilibrium price corresponding to a

single market with the aggregated system demand function [27]. These aspects make the choice of

import/export quantities as the ISO’s strategic variables (which we have used in our previous work

[37, 38]) unsatisfactory.

The second option which we employ in this paper is to use the locational price premiums as the

ISO’s strategic variables. This option can be viewed as a mixed Cournot-Bertrand model where

the ISO behaves a la Bertrand while the generation firms are Cournot players with respect to each

other (i.e., set quantities) but treat the ISO as a price setter. Thus, each firm chooses its production

quantities so as to maximize profits with respect to the residual demand defined implicitly by (4).

In this formulation the reference bus price pc is determined implicitly by the aggragate production

decisions of all the generation firms just as in a regular Cournot game. However, these production

decisions and the implied reference node price also depend on the nodal premiums {ϕc
i} set by the
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ISO. The resulting problem solved by each generation firm is

max
qc
i :i∈Ng ,pc

∑

i∈Ng

(pc + ϕc
i ) qc

i −
∑

i∈Ng

Ci(qc
i )

subject to:

0 ≤ qc
i ≤ qc

i , i ∈ Ng

∑

i∈N

qc
i =

∑

i∈N

(P c
i )−1 (pc + ϕc

i )

This modeling option takes account of the resource ownership structure and, when the network

constraints are relaxed, the locational price premiums go to zeros so that the model produces the

same equilibrium solution as the Cournot equilibrium applied to the aggregate system demand.

Unfortunately, this approach has another shortcoming which manifests itself if we reduce the ca-

pacity of a radial transmission line to zero or, more realistically, if it is common knowledge that a

radial line is constantly congested. In such situations, subnetworks connected by saturated radial

lines are effectively decoupled from a competitive interaction point of view. The demand functions

on both sides of the saturated line will be shifted by the import/export quantities but their slope

stays the same so generators will behave as local monopolists. For instance, in the case of a sym-

metric two-node one-line network, reducing the line capacity to zero creates two symmetric local

monopolies. However, in this situation, our model will produce a symmetric duopoly equilibrium

with prices that are systematically lower than the locational monopoly prices. Unfortunately, there

is no satisfying solution to this problem since a Nash equilibrium in a congestion prone network

depends on the conjectured common knowledge with regard to the extent of possible competition

across transmission lines. Such conjectures affect the perceived elasticity of the residual demand

by the competing firms and hence their strategic behavior. The discontinuities in reaction func-

tions and resulting equilibrium prices when a single transmission line separating two competitors

in a two node system switches from a congested to an uncongested regime, have been eloquently

demonstrated in [3]. Such discontinuities become intractable in a meshed system with multiple

nodes.

We partially address the above issue in a sequal paper [39] through a hybrid approach that

requires apriority identification of “systematically congested” links (e.g. path 15 in California or
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the link between France and the UK across the English Channel) which effectively decouples the

network into strategic subnetworks. In this paper, however, we will assume that the network is

fully connected physically and strategically so that competing firms behave as if the demand at all

nodes is contestable.

In our two-settlement model, we allow different granularity in the forward and spot markets.

This is achieved by dividing the network into a set Z of zones (or trading hubs), each consisting of

a cluster of nodes. In particular, the spot market supply and demand at each node are settled at

the nodal prices, whereas the forward contracts are traded at zonal hub forward prices and settled

at corresponding spot hub settlement prices {uc
z}z∈Z , which are defined as weighted averages of

the nodal prices in the respective zones. Thus, the nodal spot prices resulting from the strategic

interaction in the spot market will affect the settlement of the forward contracts, which is debited

from the firms’ spot market profits, through the zonal hub prices. The nodal weights {δi}i∈N are

assumed to be exogenous parameters based on historical load shares at the nodes. This assumption

is consistent with common practice, for instance, at the Pennsylvania-Jersey-Maryland (PJM)

Western Hub. In mathematical terms, each firm g ∈ G solves in the spot market the following

profit-maximization problem parametric on the locational price premiums {ϕc
i}i∈N and on its own

forward contract commitments {xgz}z∈Z :

max
qc
i :i∈Ng ,pc

∑

i∈Ng

(pc + ϕc
i ) qc

i −
∑

z∈Z

uc
zxgz −

∑

i∈Ng

Ci(qc
i )

subject to:

uc
z =

∑

i:z(i)=z

(pc + ϕc
i ) δi

qc
i ≥ 0, i ∈ Ng (5)

qc
i ≤ qc

i , i ∈ Ng (6)
∑

i∈N

qc
i =

∑

i∈N

(P c
i )−1 (pc + ϕc

i ) (7)

Let ρc
i−, ρc

i+ and βc
g be the Lagrange multipliers corresponding to (5)-(7), then the KKT condi-
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tions for firm g’s program are (after substituting the first constraint into the objective function)

pc + ϕc
i − βc

g −
dCi(qc

i )
dqc

i

+ ρc
i− − ρc

i+ = 0 i ∈ Ng

βc
g

∑

i∈N

d (P c
i )−1 (pc + ϕc

i )
dpc

+
∑

i∈Ng

qc
i −

∑

i∈N

δixgz(i) = 0

∑

i∈N

qc
i =

∑

i∈N

(P c
i )−1 (pc + ϕc

i )

0 ≤ ρc
i− ⊥ qc

i ≥ 0 i ∈ Ng

0 ≤ ρc
i+ ⊥ qc

i − qc
i ≥ 0 i ∈ Ng

Here, the first two conditions are the derivatives of the Lagrangian function with respect to qc
i and

pc, respectively.

2.1.3 Period-one Equilibrium Conditions.

Aggregating the KKT conditions for the firms’ and the ISO’s programs yields the spot market

equilibrium conditions, which, in general, form a mixed nonlinear complementarity problem. It

becomes a mixed LCP when both the nodal demand functions and the marginal cost functions are

linear as we assume in the remainder of this paper.

Let the inverse demand functions and the cost functions be, respectively,

P c
i (q) = ac − bc

iq, i ∈ N,

Ci(q) = diq +
1
2
siq

2, i ∈ N,

then the market equilibrium conditions become

pc + ϕc
i − βc

g − di − siq
c
i + ρc

i− − ρc
i+ = 0 i ∈ Ng, g ∈ G (8)

pc = ac −
∑

i∈N
ϕc

i
bc
i∑

i∈N
1
bc
i

−
∑

i∈N qc
i∑

i∈N
1
bc
i

(9)

− βc
g

∑

i∈N

1
bc
i

+
∑

i∈Ng

qc
i −

∑

i∈N

δixgz(i) = 0 g ∈ G (10)

0 ≤ ρc
i− ⊥ qc

i ≥ 0 i ∈ N (11)
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0 ≤ ρc
i+ ⊥ qc

i − qc
i ≥ 0 i ∈ N (12)

∑

i∈N

rc
i = 0 (13)

ac − (qc
i + rc

i )b
c
i − pc − ϕc

i = 0 i ∈ N (14)

ϕc
i =

∑

l∈L

(λc
l+Dc

l,i − λc
l−Dc

l,i) i ∈ N (15)

0 ≤ λc
l− ⊥

∑

i∈N

Dc
l,ir

c
i + Kc

l ≥ 0 l ∈ L (16)

0 ≤ λc
l+ ⊥ Kc

l −
∑

i∈N

Dc
l,ir

c
i ≥ 0 l ∈ L (17)

Here, (8)-(12) are the aggregated KKT conditions for the firms’ problems, while (13)-(17) are

the KKT conditions for the ISO’s problem. Under the assumption of linear demand functions

and quadratic convex cost functions, the firms’ and the ISO’s programs are strictly-concave-

maximization problems so (8)-(17) are also sufficient. Note that, since (9) is implied by (13)

and (14), it can be excluded from the preceding market equilibrium conditions.

2.2 Period Zero: the Forward Market

In period zero, we assume that the forward market is a standardized liquid market such that all

forward contracts in a zone are settled at equal prices. It is also assumed that there are enough

risk-neutral arbitrageurs in the markets and they will eliminate any profitable arbitrage opportunity

arising from the difference between the forward prices and the expected spot zonal settlement prices;

this is referred to as a “no-arbitrage”, or “perfect-arbitrage” condition. Consequently, the forward

price (hz) in each zone z ∈ Z equal to the expected values of the corresponding spot hub prices

over all contingent states (c ∈ C) with respective probabilities (Pr(c)) (we assume for simplicity

that the state probabilities and the market risk neutral probabilities are identical).

The risk-neutral firms simultaneously determine their forward contract quantities {xgz}g∈G,z∈Z

so as to maximize the total profit from both the forward contracts and the spot productions,

while anticipating the forward commitments of their rivals as well as the equilibrium outcome in

period one. In mathematical terms, each firm g ∈ G solves the following MPEC program, where
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{(8)− (17)}c∈C form the inner problem:

max
Φg

∑

z∈Z

hzxg,z +
∑

c∈C

Pr(c)πc
g

subject to:

Φg = {{xg,z}z∈Z , {rc
i , q

c
i , ρ

c
i+, ρc

i−}i∈N,c∈C , {λc
l−, λc

l+}l∈L,c∈C}

πc
g =

∑

i∈Ng

(pc + ϕc
i )q

c
i −

∑

z∈Z

uc
zxg,z −

∑

i∈Ng

Ci(qc
i ), c ∈ C

hz =
∑

c∈C

Pr(c)uc
z, z ∈ Z

uc
z =

∑

i:z(i)=z

(pc + ϕc
i )δi, z ∈ Z, c ∈ C

and (8)− (17), c ∈ C

The equilibrium problem in period zero is an EPEC. A solution to this EPEC is a set of the

variables, including the firms’ forward and spot decisions, the ISO’s redispatch decisions and the

aforementioned Lagrange multiplies, at which all firms’ MPEC problems are simultaneously solved,

and no market participant is willing to unilaterally change its decisions in either market.

It is worth noting that, from a philosophical point of view, the above formulation may appear

internally inconsistent since firms seem to base their decisions in the forward market on information

which is not available to them in the spot market. To resolve this inconsistency we might assume

that forward commitments are based on correct forecast of the expected spot market outcomes

rather then on the detailed information that we use to replicate that forecast. Furthermore, it is

also reasonable to assume that forward contracting decisions and spot market production decisions

are made by functionally independent entities within a firm operating on different time horizons and

employing different forecasting tools. So while the decisions made in the spot market are informed

of the forward contracting positions of the firm they do not necessarily account for all the global

information that led to these contracting decisions.
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3 A Compact Representation of the Model

In this section, we compact the notation so as to streamline the subsequent algorithmic presentation

by grouping and relabelling the variables, including the dual variables, as follows:

• xg (∈ R|Z|): The vector of the forward commitments by firm g ∈ G.

• rc (∈ R|N |): The vector of the ISO’s import/export quantities in state c ∈ C.

• qc (∈ R|N |): The vector of the firms’ generation quantities in state c ∈ C.

• ρc−, ρc
+ (∈ R|N |): The vectors of the Lagrange multipliers associated with the generation

capacity constraints in state c ∈ C.

• λc−, λc
+ (∈ R|L|): The vectors of the Lagrange multipliers associated with the flow capacity

constraints in state c ∈ C.

In addition, the parameters are relabelled as

• ∆ (∈ R|N |×|Z|): A matrix where the (i, z)-th element is −1 if z(i) = z, and 0 otherwise.

• qc (∈ R|N |): The vector of the generator capacity bounds in state c ∈ C.

• Bc (∈ R|N |×|N |): A diagonal matrix for state c ∈ C where the (i, i)-th element is bc
i .

• d (∈ R|N |): The vector of the marginal generation costs.

• Dc (∈ R|L|×|N |): A PTDF matrix for state c ∈ C where the (l, i)-th element is Dc
l,i.

• kc (∈ R|L|): The vector of the flow capacities of the transmission lines in state c ∈ C.

• Xg (∈ R|Z|): The feasible region of xg for each firm g ∈ G.

3.1 Compact Representation of the Inner Problem {(8)− (17)}c∈C

Let e ∈ R|N | be a vector with all 1’s, then (13) and (14) become




ace

0


−




Bc

0


 qc −




Bc e

eT 0







rc

pc


 +




DT
c

0


λ− −




DT
c

0


λ+ =




0

0



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Solving rc and pc yields




rc

pc


 =




Qc
B−1

c e

eT B−1
c e

eT B−1
c

eT B−1
c e

−1
eT B−1

c e










ace

0


−




Bc

0


 qc +




DT
c

0


λc

− −




DT
c

0


λc

+




where

Qc = B−1
c − B−1

c eeT B−1
c

eT B−1
c e

Hence,

rc =−QcBcq
c + Qc

(
DT

c λc
− −DT

c λc
+

)

pc =ac − eT

eT B−1
c e

qc +
eT B−1

c

eT B−1
c e

(
DT

c λc
− −DT

c λc
+

)

Now, consolidating conditions (8)-(10), we have

ρc
− = −ace + d + Hcq

c + BcQc

(
DT

c λc
− −DT

c λc
+

)
+ ρc

+ +
1

eT B−1
c e

∆
∑

g∈G

xg

where Hc is a matrix such that

(hc)ij =





2+si

eT B−1
c e

if i = j

2
eT B−1

c e
if i 6= j, and the units at nodes i and j belong to the same firm

1
eT B−1

c e
otherwise

Next, let wc and yc be two variable vectors, and tc, Ac and Mc be constants such that

wc =




q̄c − qc

ρc−

kc + Dcr
c

kc −Dcr
c




, yc =




ρc
+

qc

λc−

λc
+




, tc =




q̄c

−ace + d

kc

kc




,
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Ac =




0

∆
eT B−1

c e

0

0




, Mc =




0 −I 0 0

I Hc BcQcD
T
c −BcQcD

T
c

0 −DcQcBc DcQcD
T
c −DcQcD

T
c

0 DcQcBc −DcQcD
T
c DcQcD

T
c




The preceding applied to (8)-(17) leads to

wc = tc + Ac

∑

g∈G

xg + Mcy
c, wc ≥ 0, yc ≥ 0, (yc)T wc = 0 (18)

Finally, aggregating (18) for all states c ∈ C, we present the inner problem {(8)− (17)}c∈C as

w = t + A
∑

g∈G

xg + My, w ≥ 0, y ≥ 0, yT w = 0

where y and w are variables, and t, A and M are constants as follows:

y =
[

yc c ∈ C

]
, w =

[
wc c ∈ C

]
, t =

[
tc c ∈ C

]
,

A =
[

Ac c ∈ C

]
, M =




M1 0

M2

...

0 M|C|




.

3.2 Compact Representation of the MPEC Problems

In period zero, each firm g ∈ G solves the following MPEC problem:

Fg(x̄−g) : min
xg ,y,w

fg(xg, y, w, x̄−g)

subject to :

xg ∈ Xg

w = t + Ax̄−g + Axg + My, w ≥ 0, y ≥ 0, yT w = 0 (19)
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In this program, xg is the decision variable, (y, w) are the state variables, and x̄−g =
∑

k∈G\{g} x̄k

is a parameter that is the sum of other firms’ forward contract quantities .

We denote the EPEC problem in period zero as {Fg(·)}g∈G. An equilibrium of this EPEC

problem in period zero is a set ({x̄g}g∈G, y, w) that solves Fg(x̄−g) for all g ∈ G, i.e., (x̄g, y, w) ∈
SOL (Fg(x̄−g)) , g ∈ G, where SOL (Fg(x̄−g)) denotes the solution set of Fg(x̄−g).

4 Solution Approach

To solve the EPEC as stated above, we propose an iterative scheme that solves in turn the MPEC

problems Fg(x̄−g) by holding fixed the decision variables of the other MPEC problems. To avoid

ambiguity, we refer to the iterations for solving the MPECs as the inner iterations, while the

iterations for solving the EPEC problem are referred to as outer iterations. Below, we first observe

some properties of the MPEC problems; then exploiting these properties, we propose an MPEC

algorithm; and finally develop the EPEC solution scheme.

4.1 Properties of the MPEC Problems

We observe the following properties of Fg(x̄−g).

1. fg(xg, y, w, x̄−g) is quadratic with respect to (xg, y, w).

2. M is positive semi-definite. To show this, we first notice that Hc is symmetric positive-definite.

Secondly,

vT Qcv = vT B−1
c v − vT B−1

c eeT B−1
c v

eT B−1
c e

=
‖B− 1

2
c v‖2‖B− 1

2
c e‖2 − ‖vT B

− 1
2

c B
− 1

2
c e‖2

‖B− 1
2

c e‖2

≥ 0, v ∈ R|N |.
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Hence, Qc is symmetric positive semi-definite. Now, since

Mc + MT
c

2
=




0 0 0 0

0 Hc 0 0

0 0 0 0

0 0 0 0




+




0

0

Dc

−Dc




Qc




0

0

Dc

−Dc




T

,

we conclude that Mc is positive semi-definite.

3. Given x̄−g, the constraint set (19) is an LCP parameterized by xg. Moreover, for any xg,

wc =




q̄c

(
−ace + d + ∆x−g+∆xg

eT B−1
c e

)+

kc

kc




, yc =




(
−ace + d + ∆x−g+∆xg

eT B−1
c e

)−

0

0

0




, c ∈ C

satisfy the linear constraints of this LCP. By Theorem 3.1.2 in [6], the LCP problem (19) is

always solvable.

From an economic perspective, it reasonable to assume that, for each state in period one, there

is a unique market equilibrium, that is, (19) has unique solution (w, y) for all xg ∈ Xg. By Theorem

3.1.7 in [6], this is equivalent to assuming that the active constraints at the optimal solutions to

the period-one problems are linearly independent.

4.2 The MPEC Algorithm

The uniqueness of solution (w, y) in (19) implies its solution (y, w) is an implicit functions of xg.

Consequently, Fg(x̄−g) can be reduced to an optimization problem with respect only to xg. This

feature enables us to develop an algorithm for solving Fg(x̄−g) via a “divide-and-conquer” approach.

The proposed MPEC algorithm is a variant of the PSQP algorithm in [21, 23], but it specializes the

PSQP algorithm by taking advantage of the properties of Fg(x̄−g) identified above. Specifically,

we partition Xg into a set of polyhedra according to feasible complementary bases of (19). In each

polyhedron, we derive explicitly the affine functions for the state variables in terms of xg, and solve

a quadratic program involving only xg. Through parametric LCP pivoting, the proposed MPEC

19



algorithm searches in the space of feasible xg for a B-stationary point of Fg(x̄−g) along adjacent

polyhedra.

4.2.1 Partition of Xg

The partition of Xg is determined by the feasible complementary bases (see Definition 1.3.2 in

[6]) of the LCP problem (19). Let n and m be the dimensions of xg and y (and w), respectively.

Consider (19), given a partition (α, ᾱ) of {1, 2, ..., m}, we define matrix CM (α) ∈ Rm×m as

CM (α)•i =




−M•i if i ∈ α

I•i if i ∈ ᾱ
.

CM (α) is called a complementary matrix of [−M, I] with respect to α; it is a complementary basis if

nonsingular; it is a feasible complementary basis with respect to xg if C−1
M (α)(q + Axg) ≥ 0, where

q = t + Ax̄−g.

Now, given the partition (α, ᾱ), let wα = 0 and yᾱ = 0, then (19) is reduced to

vα = C−1
M (α)(q + Agxg) ≥ 0, where vα

i =





yi if i ∈ α

wi if i ∈ ᾱ
.

Note that the orthogonality of w and y is guaranteed for wα = 0 and yᾱ = 0. The preceding is

equivalent to

yα = M−1
αα (qα + Aα•xg) ≥ 0

wᾱ = −MᾱαM−1
αα (qα + Aα•xg) + qᾱ + Aᾱ•xg ≥ 0.

When CM (α) is a feasible complementary basis with respect to xg, these two nonnegative constraints

are satisfied.

As a result, the polyhedron

P̃g(α) =
{
xg ∈ Rn : C−1

M (α)(q + Agxg) ≥ 0
}

defines a set of xg with respect to which CM (α) is feasible. Moreover, the state variables y and w
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Figure 2: A typical partition of Xg

are affine functions of xg ∈ P̃g(α):

yα = M−1
αα (qα + Aα•xg) (20)

yᾱ = 0 (21)

wα = 0 (22)

wᾱ = −MᾱαM−1
αα (qα + Aα•xg) + qᾱ + Aᾱ•xg (23)

Equations (20)-(23) imply that xg ∈ Int(P̃g(α)) if and only if (yα, wᾱ) ∈ Rm
++ (y and w are non-

degenerate), and that xg ∈ Bd(P̃g(α)) if and only if there exists some i ∈ α such that yi = wi = 0

(y and w are degenerate).

Enumerating all feasible complementary bases CM (α), one can partition Xg into a set of poly-

hedra Pg(α) = Xg
⋂

P̃g(α). The uniqueness of the solution (y, w) to (19) guarantees that such

partition is also unique (but with respect to a fixed x̄−g). Figure 2 illustrates a sample partition

for the case of n = 2.

4.2.2 Stationary Point

Equations (20)-(23) imply that, whenever CM (α) is a feasible complementary basis, fg(xg, y, w, x̄−g)

is reduced to a quadratic function with respect to xg ∈ Pg(α). We denote this function as

fg,α(xg, x̄−g). Now, limiting Fg(x̄−g) to xg ∈ Pg(α) leads to the following program parameter-
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ized by x̄−g:

QPg(α) : min
xg

fg,α(xg, x̄−g)

subject to:

xg ∈ Xg

M−1
αα (qα + Aα•xg) ≥ 0

−MᾱαM−1
αα (qα + Aα•xg) + qᾱ + Aᾱ•xg ≥ 0

Notice that this problem does not involve y and w.

We call α the associated (index) basis of polyhedron Pg(α). Let xg ∈ Xg be given, and (y, w)

be the corresponding solution to (19), equations (20)-(23) hold for all associated bases in

Bg(xg, x̄−g) = {α ⊆ {1, 2, ..., m} : {i : yi > 0} ⊆ α ⊆ {i : wi = 0}} .

We refer to this set as the association (basis) set at xg. Clearly, xg ∈ Pg(α) for all α ∈ Bg(xg, x̄−g).

We are now ready to characterize the B-stationary points of Fg(x̄−g). Following [23], a vector

(x̄g, y, w) is called a B-stationary point of Fg(x̄−g) if, for all feasible directions (with respect to

(19)) u ∈ Rn+2m at (x̄g, y, w), the directional derivative ∇ufg(xg, y, w, x̄−g) ≥ 0.

Thus, a point x̄g ∈ Xg is a B-stationary point of Fg(x̄−g) if and only if, for all α ∈ Bg(x̄g, x̄−g),

either of the following holds

1. Pg(α) is a singleton containing only x̄g, i.e., Pg(α) = {x̄g};

2. for any unit-vector direction u ∈ Rn such that there exists a sufficiently small scaler ε > 0

satisfying x̄g + εu ∈ Pg(α), the directional derivative of fg(xg, y, w, x̄−g) at x̄g with respect to

u is non-negative, i.e.,

∇ufg(x̄g, y, w, x̄−g) =
∂fg

∂xg

∣∣∣∣
x̄g

u +
∂fg

∂y

dy

dxg

∣∣∣∣
x̄g

u +
∂fg

∂w

dw

dxg

∣∣∣∣
x̄g

u ≥ 0,

where y and w are as in (20)-(23).

The above B-stationary conditions suggest that, if a local minimum or stationary point x̄g of

22



QPg(α) yields non-degenerate (y, w) in (19), it is a B-stationary point of Fg(x̄−g); otherwise, one

should identify whether this point is a B-stationary point of Fg(x̄−g) by checking whether it is a

local minimum or stationary point with respect to all polyhedra associated with Bg(x̄g, x̄−g).

4.2.3 The MPEC Algorithm

Let x̄g ∈ Xg be a given starting point. If there exists an α ∈ Bg(x̄g, x̄−g) such that QPg(α)

is unbounded, then Fg(x̄−g) is also unbounded. If x̄g is a local minimum or stationary point of

problems QPg(α) for all α ∈ Bg(x̄g, x̄−g), it is a B-stationary point of Fg(x̄−g). Otherwise, there

exists an α∗ ∈ Bg(x̄g, x̄−g) for which QPg(α∗) yields a solution different than x̄g. Let this point

be x∗g, then its corresponding state variables y∗ and w∗ are as in (20)-(23) with α replaced with

α∗. If y∗ and w∗ are non-degenerate, x∗g ∈ Int(P̃g(α∗)) and hence a B-stationary point of Fg(x̄−g);

otherwise, it serves as the starting point for the next (inner) iteration. The dashed lines in figure

2 illustrate such a sample path.

The MPEC algorithm

Input: x̄g, x̄−g

0. (Initialization) Set α∗ := ∅.

1. (Subroutine call) Call the search subroutine.

2. (Termination check)

If the subroutine reports unboundedness,

report the problem Fg(x̄−g) as unbounded, stop.

else if the subroutine reports x̄g as a B-stationary point,

x̄g is a B-stationary point of Fg(x̄−g), stop.

else

let x∗g and α∗ be the returned point and the associated basis, respectively.

let y∗ and w∗ solve (19) with x∗g.

If (y∗α∗ , w
∗
ᾱ∗) ∈ Rm

++,

x∗g is a B-stationary point of Fg(x̄−g), stop.

else
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set x̄g := x∗g, go to step 1.

The search subroutine (input: α∗, x̄g, x̄−g)

0. (Initial pivoting) Pivot to an associated basis α ∈ Bg(x̄g, x̄−g)\{α∗} at x̄g.

1. (Search)

Call a quadratic programming subroutine to solve QPg(α).

If QPg(α) has an unbounded direction,

report unboundedness.

If QPg(α) yields a point x∗g 6= x̄g with a decreased objective value,

set α∗ := α, return x∗g and α∗.

2. (Termination Check)

If all bases in Bg(x̄g, x̄−g)\{α∗} have been visited,

return x̄g as a B-stationary point.

else

pivot (at x̄g) to the next α ∈ Bg(x̄g, x̄−g)\{α∗}, go to step 1.

Here, one can use any available quadratic programming solver as the quadratic programming

subroutine.

4.2.4 Remarks

• Because the number of zones is typically much smaller than the number of nodes, the dimen-

sion of QPg(α), |xg|, is usually much smaller than that of Fg(x̄−g). Therefore, the proposed

MPEC algorithm improves the performance of the general PSQP method [23].

• The MPEC algorithm maintains feasibility with respect to all constraints (including the

complementarity constraint) in (19).

• If |Bg(x̄g, x̄−g)| ≤ 2 throughout the course of the MPEC algorithm, then no basis will be

repeated. This, combined with the fact that there exists a finite number of partition of

Xg (bounded by the number of feasible complementary bases in (19)), establishes the finite
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global convergence of the MPEC algorithm. If the preceding condition is violated (that is,

if |Bg(x̄g, x̄−g)| > 2 for some x̄g), one can use any of the standard lexicographic schemes (in

the context of LCP pivoting; see, for example, [6]) to avoid cycling. It should be noted that

different lexicographic schemes might lead to different search paths of the MPEC algorithm

and thus possibly to different B-stationary points. For example, if the lexicographic scheme

selects the basis α2, instead of α1, at point A in figure 2, the algorithm terminates immediately.

• Note that, to solve QPg(α), we need to compute M−1
αα and possibly, depending on the

quadratic programming subroutine in use, a starting point. M−1
αα can be computed effi-

ciently from the corresponding matrix of the previously-visited basis, which differs from α by

one index. The solution to the quadratic program with respect to the previous-visited basis

can be used as the starting point.

4.3 The EPEC Scheme

4.3.1 B-stationary equilibrium

To define the B-stationary equilibrium for {Fg(·)}g∈G, we extend the definition of association set

for the MPECs to the EPEC. Because the association set depends on (y, w), which is determined

through (19) jointly by all MPECs’ design variables, we state the following equivalence property.

Let (y, w) solve (19) with given {x̄g ∈ Xg}g∈G and consider any two firms g and g′, then the

association set at x̄g for Fg(x̄−g) and the association set at x̄g′ for Fg′(x̄−g′) are equivalent, i.e.,

Bg(x̄g, x̄−g) = Bg′(x̄g′ , x̄−g′), g, g′ ∈ G.

The above equivalence of the association sets among all MPECs implies that

• if x̄g ∈ Int(P̃g(α)) for some α, then x̄g′ ∈ Int(P̃g′(α));

• if x̄g is in the boundaries of polyhedra P̃g(α1), P̃g(α2), ..., P̃g(αk), x̄g′ is also in the boundaries

of polyhedra P̃g′(α1), P̃g′(α2), ..., P̃g′(αk).

We define the association set of {Fg(·)}g∈G as follows. Given {x̄g}g∈G, let (y, w) solve (19),
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then the association set for the EPEC {Fg(·)}g∈G is

B({x̄g}g∈G) = {α ⊆ {1, 2, ...,m} : {i : yi > 0} ⊆ α ⊆ {i : wi = 0}}.

The association set of {Fg(·)}g∈G allows us to characterize the B-stationary equilibria of {Fg(·)}g∈G

as follows. A set {x̄g}g∈G is a B-stationary equilibrium of {Fg(·)}g∈G if x̄g is a B-stationary

point of Fg(x̄−g) for all g ∈ G, i.e., x̄g is a local minimum or stationary point of QPg(α) for

all α ∈ B({x̄g}g∈G).

4.3.2 The Scheme

To solve {Fg(·)}g∈G, we start with an arbitrary set {x̄0
g ∈ Xg}g∈G. At each outer iteration k, we

compute x̄k
g from Fg(x̄k−g) for each g ∈ G while taking x̄k−g as given. The algorithm terminates when

the improvement of the design variables in two consecutive iterations is reduced to a predetermined

limit, or when the number of iterations reaches a predetermined upper bound.

The EPEC Scheme

0. (Initialization) Select an arbitrary {x̄0
g ∈ Xg}g∈G. Let k := 1.

1. (Loop) Let {x̄k
g}g∈G := {x̄k−1

g }g∈G.

For each g ∈ G,

apply the MPEC algorithm to Fg(x̄k−g).

if Fg(x̄k−g) is unbounded,

report the failure of finding an equilibrium, stop.

else

let x̄k
g and (y, w) be the returned decision and state variables.

2. (Termination check)

If ‖{x̄k
g − x̄k−1

g }g∈G‖ is within a given error bound,

report ({x̄k
g}g∈G, y, w) as a B-stationary equilibrium, stop.

else if the predetermined bound of the number of iterations is reached,

stop.
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else

go to step 1 with k := k + 1.

4.3.3 Remarks

• The termination basis of an MPEC problem can be used as the starting basis for the next

MPEC problem.

• The termination point for an MPEC problem can be used as the starting point for solving

the next MPEC problem.

5 Computational Results

We implemented in MATLAB the MPEC and EPEC algorithms which utilize the optimization

toolbox for solving quadratic programs. In the implementation, we treat any number below 10−16

as zero to account for roundoff errors. Tests of the algorithms are performed on both randomly

generated problems and representative test cases specific to the context of electricity markets.

5.1 Tests of the MPEC Algorithm

The main computational effort involved in the EPEC scheme is to solve the MPECs. While Our

MPEC algorithm is guaranteed to terminate in finite number of steps (see Section 4.2.4), it is not

known whether it can be solved in polynomial time. In this section, we test the actual performance

of the algorithm on a randomly generated set of generic MPEC problems with quadratic objective

functions. Specifically, these MPEC problems are of the form:

min
x,y

1
2

[
x y

]
P




x

y


 + cT




x

y




subject to:

Ax + a ≤ 0

w = Nx + My + q,

w ≥ 0, y ≥ 0, wT y = 0
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where P , A, B, M (a positive-semidefinite matrix), N , c, a and q are constant matrices and vectors

with suitable dimensions. We use the “QPECgen” package by Jiang and Ralph [21] to generate

these MPEC programs.

In the tests, we launch the MPEC algorithm from random starting points. Table 1 summarizes

the test results. The first three columns list the dimensions of the decision and state variables, and

columns 5 to 7 report the minimum, maximum and average numbers of iterations, respectively. We

observe that

• The average number of iterations increases moderately as the dimension of the MPEC prob-

lems grows (except for the case of n = 150 and m = 100); but, there does not exist such a

trend for the minimum and maximum numbers of iterations.

• The algorithm is able to effectively solve MPEC problems with relatively large dimensions.

Note that all instances in table 1 have greater dimensions than those reported in [21].

Table 1: Test results of the MPEC algorithm

Dim(x) Dim(y) Dim(w) Total dimension Iterations
min max average

25 50 50 125 3 34 16
50 50 50 150 7 35 18
50 100 100 250 2 49 22
100 100 100 300 10 43 23
150 100 100 350 2 30 14
100 200 200 500 3 38 23
200 200 200 600 2 88 29
200 500 500 1200 2 76 43

5.2 Tests of the EPEC Scheme

We now test the MPEC/EPEC algorithms on an EPEC problem derived from the stylized Belgian

electricity system which was also used in our previous work [38]. This system is originally composed

of 92 380kv and 220kv transmission lines including some lines in neighboring countries for capturing

the effect of loop flow. Parallel lines between the same pairs of nodes have been collapsed into single

lines with equivalent electric characteristics. In total, the stylized network comprises 71 transmission

lines and 53 nodes (see figure 3). Generation units in this system are located, respectively, at
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Figure 3: Belgian high voltage network

the nodes {7, 9, 10, 11, 14, 22, 24, 31, 33, 35, 37, 40, 41, 42, 44, 47, 48, 52, 53}. The ownership structure,

zonal aggregation in the forward market and contingency states are fictitious and so are the nodal

demand functions, although they are calibrated to actual demand information.

Table 2 lists the nodal information for this test problem, including the IDF slopes, the marginal

generation costs (marginal costs are constant in this example), and the capacity bounds of the

generation units. The network data is summarized in table 3 which lists the impedance of the

transmission line and the corresponding thermal limits. Only the lines 22-49, 29-45, 30-43 and

31-52 are prone to congestion in this example. The method for calculating the state-dependent

PTDF matrices from the network data can be found in standard electrical engineering textbooks

(e.g. [15]) and will be omitted here due to space limitation.

We assume six independent contingency states in the spot market. The first three states cor-

respond to demand uncertainty, while all generation units and all transmission lines are rated at

their full capacities. State 4, 5 and 6 have the same demand levels as state 2, but they represent the

system contingencies resulting from transmission or generator outages. State 4 denotes a transmis-

sion breakdown on line 31-52. State 5 and 6 capture the unavailability of two generation units at

nodes 10 and 41, respectively. The price intercepts of the hypothetical IDFs and the probabilities

of the six states are given in table 4.
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Table 2: Nodal data

Node IDF Marg. Capac. Node IDF Marg. Capac. Node IDF Marg. Capac.
slope cost slope cost slope cost

$/MW2 $/MW MW $/MW2 $/MW MW $/MW2 $/MW MW
1 1 – 0 19 0.68 – 0 37 1 10 1399
2 0.82 – 0 20 1.05 – 0 38 0.85 – 0
3 1.13 – 0 21 1 – 0 39 1 – 0
4 1 – 0 22 1.1 19 602 40 1.15 10 1378*
5 0.93 – 0 23 1 – 0 41 1 21 522
6 0.85 – 0 24 0.75 10 2985 42 0.79 18 385
7 1 45 70 25 1 – 0 43 0.68 – 0
8 1 – 0 26 0.8 – 0 44 1.03 20 538
9 0.88 18 460 27 1.13 – 0 45 1 – 0

10 0.9 18 121* 28 1 – 0 46 1 – 0
11 1 20 124 29 0.93 – 0 47 1 – 0
12 0.73 – 0 30 0.85 – 0 48 0.73 22 258
13 1 – 0 31 1 18 712 49 1.2 – 0
14 0.85 13 1164 32 1 – 0 50 1.5 – 0
15 1 – 0 33 0.88 20 496 51 1 – 0
16 1.3 – 0 34 0.5 – 0 52 1 20 879
17 1 – 0 35 1 25 1053 53 0.7 58 95
18 0.79 – 0 36 0.73 – 0

∗ These numbers are zeros in states 5 and 6 respectively.

It is worth a mention that the stylized system has the dimension 2|C|×(|N |+|L|) = 684 of y (and

w), and the total number of possible partitions is 2684. In this implementation, we terminate the

EPEC algorithm at an outer iteration k if the relative improvement of the MPECs’ decision variables

(forward commitments) is no greater than 10−8, i.e., ‖{x̄k
g − x̄k−1

g }g∈G‖ ≤ 10−8‖{x̄k−1
g }g∈G‖.

We ran the tests with different numbers of zones and firms, and, for each test, we start with

randomly generated decision variables of the MPECs. In the implementation, the MPEC algorithm

was limited to execute a single inner iteration. (Note that, if the MPEC algorithm terminates before

it reaches a B-stationary point, the LCP constraints (19) are still satisfied; this allows us to trade

off the accuracy of the MPEC solution against speed of the overall EPEC scheme. We also tried

some other rules for terminating the MPEC algorithm; however, they don’t provide comparable

results.) The test results are summarized in table 5. Columns 4 to 9 show the minimum, maximum

and average numbers of outer iterations and quadratic programs, respectively. In addition, tables

6 and 7 report the outer iterations of the firms’ total forward commitments for the cases of two

zones and two or three firms. We find that
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Table 3: Belgian transmission network data

Line Imped. Capac. Line Imped. Capac. Line Imped. Capac.
(Ohm) (MW) (Ohm) (MW) (Ohm) (MW)

1-2 23716 345 16-17 2633 5154 34-37 7048 1350
1-15 6269 345 17-18 4236 1715 34-52 12234 1350
2-15 8534 345 17-19 1939 5140 35-41 14204 1350
3-4 5339 240 17-20 8071 1179 35-52 9026 1420

3-15 11686 240 18-19 1465 13710 36-41 15777 2770
4-5 6994 510 19-52 11321 1179 36-42 11186 2840

4-12 5887 405 20-23 13165 1316 36-43 15408 2770
4-15 3644 240 21-22 47621 1420 37-39 66471 1420
5-13 6462 510 22-23 11391 1350 37-41 21295 1350
6-7 23987 300 22-49 9138 1350 38-39 10931 1650
6-8 9138 400 23-24 41559 5540 38-51 17168 946

7-21 14885 541 23-25 16982 1420 39-51 8596 1650
7-32 5963 410 23-28 8610 1350 40-41 11113 2770
8-9 45360 400 23-32 33255 1350 41-46 11509 2840

8-10 26541 800 25-26 134987 1420 41-47 13797 1420
8-32 11467 400 25-30 11991 1420 43-45 34468 1350
9-11 20157 410 27-28 64753 1420 44-45 47128 1420
9-32 10012 375 28-29 38569 1350 46-47 34441 1420

11-32 18398 375 29-31 284443 1350 47-48 14942 1420
12-32 4567 405 29-45 14534 1350 48-49 6998 1420
13-14 121410 2700 30-31 269973 1420 49-50 5943 3784
13-15 5094 790 30-43 10268 1420 50-51 2746 5676
13-23 5481 2770 31-52* 1453 400 52-53 1279 2840
15-16 8839 400 33-34 40429 1420

∗ This line breaks down in state 4.

Table 4: States of the Belgian spot market

State IDF intercept Probability Type and description
($/MW2)

1 1000 0.20 Demand uncertainty: Demands are on the peak.
2 500 0.50 Demand uncertainty: Demands are at shoulder.
3 250 0.20 Demand uncertainty: Demands are off-peak.
4 500 0.03 Contingency of line breakdown: Line 31-52 goes down.
5 500 0.03 Contingency of generation outage: Plant at node 10 goes down.
6 500 0.04 Contingency of generation outage: Plant at node 41 goes down.
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• For all test problems, the EPEC scheme converges rapidly.

• There exists no clear relationship between the problem dimensions and the number of it-

erations. However, the total number of quadratic programs grows as the number of firms

increases.

• In the tests, the EPEC scheme quickly reaches the proximity of the B-stationary equilibrium,

after which it only improves the significant decimal digits (see, for example, tables 6 and 7).

Table 5: Test results of the EPEC algorithm

|Z| |G| Dim(y) Outer iterations Quadratic programs
min max average min max average

2 2 684 4 8 6 15 29 24
2 3 684 8 11 9 47 65 55
2 4 684 7 12 10 55 94 77
3 2 684 2 4 3 7 15 11
3 3 684 4 6 5 23 34 29
3 4 684 4 10 8 32 79 62
4 2 684 3 9 7 11 36 27
4 3 684 7 21 13 41 126 80
4 4 684 9 25 15 70 197 122

Table 6: Iterations of the firms’ total forward commitments (2 firms)

Outer iteration Firm 1 Firm 2
0 0.000000 0.000000
1 -513.063752 575.219726
2 -331.223467 1546.721883
3 -545.254227 1747.692181
4 -552.287608 1747.692181
5 -552.287608 1747.692181

6 Economic Interpretation of the Results

The EPEC algorithm is not guaranteed to locate a (global) Nash equilibrium; however, as we will

demonstrate in this section, it produced results that are consistent with economic intuition.

In particular, we considered two hypothetical generator ownership structures with two zones in

the stylized Belgian network: node 1 through 32 belongs to zone #1, and the remaining nodes to
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Table 7: Iterations of the firms’ total forward commitments (3 firms)

Outer iteration Firm 1 Firm 2 Firm 3
0 0.000000 0.000000 0.000000
1 6739.889190 -16.249658 -288.471837
2 6739.889190 246.601419 -103.536223
3 6851.687937 556.357457 71.319790
4 7001.487699 849.405693 154.719273
5 7154.268773 1001.093059 149.846951
6 7237.416442 1006.167745 149.619740
7 7239.775870 1006.342137 149.611431
8 7239.859233 1006.348165 149.611140
9 7239.862110 1006.348374 149.611129
10 7239.862110 1006.348382 149.611130
11 7239.862110 1006.348382 149.611130

zone #2. The first structure has two firms, where the units at the node set {9, 11, 22 31, 35, 37,

41, 47, 52, 53} belong to the first firm and the remaining units to the second firm. The second

structure is composed of three firms, operating the units at {7, 11, 33, 37, 41, 52, 53}, {10, 14, 24,

40, 44, 48} and {9, 22, 31, 35, 42, 47}, respectively.

We observe that, under both resource structures, firms have strategic incentives for forward

contracting as reported in tables 6 and 7. While some firms in our example have taken short

forward positions, the total forward commitment in the entire market is positive.

We plot in figure 4 the expected spot nodal prices under two settlements and contrast them with

the corresponding nodal prices in the equilibrium of a single-settlement market which is obtained

by constraining all firms’ forward positions to zero. We first notice that, whether or not there

exists a forward market, the three-firm structure yields lower spot equilibrium prices than the

Duopoly structure, as one would expect. Moreover, under both the two- and three-firm structures,

a two-settlement equilibrium results in lower spot equilibrium prices at most nodes than a single

settlement. However, nodes #29 and #31 do not follow this trend. Consequently, two settlements

increase social welfare and consumer surplus. These results suggest that the welfare-enhancing

effect described in [1] and [2] generalizes to the case with flow congestion, system contingency and

demand uncertainty, although that effect is quantitatively different due to generator capacities and

transmission limits.
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Figure 4: Expected spot nodal prices

7 Concluding Remarks

We study the Nash-Cournot equilibrium in two-settlement electricity markets. We develop an

EPEC model of this equilibrium, in which each firm solves an MPEC problem parameterized by

the design variables of the other MPECs.

We propose an MPEC algorithm by taking advantage of the special properties of the problems at

hand. This algorithm partitions the feasible region of the decision variables into a set of polyhedra,

and projects the state variables into the space of the decision variables. The algorithm solves a

quadratic program for a stationary point in each polyhedron, and pivots through adjacent polyhedra

while maintaining feasibility of the linear complementarity constraints. We establish the finite

global convergence of this MPEC algorithm. An EPEC scheme is constructed by deploying the

MPEC algorithm iteratively. Numerical tests on randomly generated quadratic MPECs and on

the EPEC derived from a stylized Belgian electricity network demonstrate the effectiveness of the

algorithms.

One limitation of our model is the assumption of risk neutrality on the part of the generating

firms. Unfortunately, introducing risk aversion will make the objective functions of the MPECs

non-quadratic which significantly increases the computational complexity of the model.

On the other hand we like to point out that although the MPEC and EPEC algorithms are

presented here in the context of two-settlement electricity markets, they can be applied to other

quadratic EPEC problems provided that the linear complementarity constraints yield unique values
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of the state variables.
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