

Nuclear Renaissance

An option for security of supply and climate change challenges: an operator's point of view

Jean-Paul BOUTTES

Executive Vice-President Prospective and International Affairs, Electricité de France

Contents

- 1. Nuclear contribution to key energy challenges
- 2. Lessons learnt & conditions of success
- 3. Financing nuclear investment in the new context of liberalized electricity markets
- 4. Industrial, Institutional & Political Conditions for Renaissance

Nuclear contribution to key energy challenges

1.1 Energy: 3 major challenges for Europe and worldwide

Present global energy outlook: altogether different from the 1990s

Oil & gas and security of supply

- ➤ Oil & gas located in few and generally faraway countries
- > Production expected to peak in the coming decades
- > Prices have already nearly trebled since the end of the 1990s
 - CCGT is no longer the miracle technology for power generation

Coal and climate change

- > Coal is abundant worldwide & is an inexpensive way to generate power
- ➤ Work in progress on CO₂ capture & storage, but until CCS maturity (beyond 2030?), coal remains one of the main sources of CO₂ emissions

Investment and competitiveness

➤ Considerable investment required in new equipment (G-T-D)

Opportunity to build efficient and available low or no CO₂ emitting technologies

1.2 Contribution of nuclear power a) to energy independance and security of supply

- Most uranium & thorium resources located in "non-sensitive" regions
 - Uranium resources, as used with Gen II & III technologies
 - > Price of natural uranium: less than 5% of the full cost of a nuclear plant
 - impact of fuel price increase < impact of gas price on cost of CCGTs
- known resources: 4 Million tons at \$80/kg (market price in 2005)
 - around 60 years to run the current number of nuclear plants worldwide
- known + yet undiscovered resources: 15 M tons, mostly at < \$ 130/kg
 - enough to run 3-4 times the current number of nuclear plants worldwide
- By 2040: maturity of Gen IV technologies
 - > 5 of the 6 reactors under study use U²³⁸ (fast breeders) or thorium
 - multiply the potential of current resources by 50

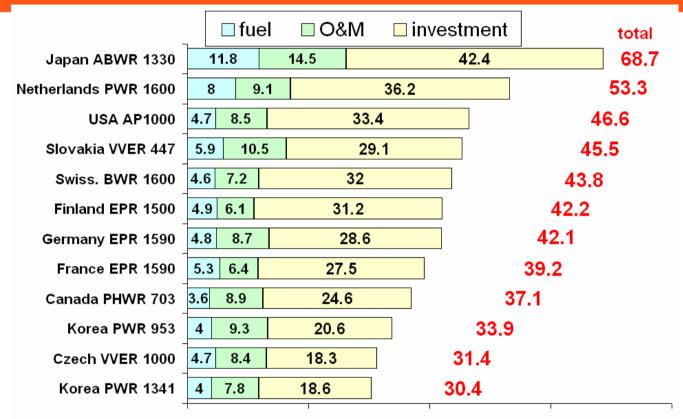
(Natural Uranium composed of 0.7% of U²³⁵ and 99.3% of U²³⁸)

1.3 Contribution of nuclear power b) to competitiveness

Up to 2000-2002: US studies show a high cost

- > Cautious approach, remembering the failures of the 1980s
 - escalation of overnight costs and construction times
 - contrast with French experience (around 50 plants commissioned within 10 years)

■ In past 2 years, US range have moved down (now nearer to costs in Europe)


- > Reflect a change in the industry, knowing how to draw lessons from the past
- Under appropriate industrial & regulatory conditions, the overnight investment costs and construction times can be controlled

Cost of least expensive available technolgies

- ➤ Coal is competitive ... when there is no CO₂ cost
- ➤ Gas is no longer the cheap technology of the 90s

1.4 Current forecasts: OECD-NEA-IEA data (2005)

of nuclear power at 10% discount rate in \$US 2003 / MWh

Forecasts provided by National Public Administrations (Hypotheses of OECD-NEA-IEA report: discount rate: 10% in real terms, with variant at 5%, lifetime 40 years, load factor 85%)

Globally, costs are less than \$50 /MWh, which is competitive with costs of coal or gas plants without CO₂ cost

2

Lessons learnt & conditions of success

2. Lessons learnt & conditions of success (1)

 Define a sound, long-term, stable non- (or bi-) partisan energy policy, to which stakeholders can refer with confidence

- Safety must be the top priority
 - Ensured by control by an independent safety authority with the requisite competencies, & responsible operators with an established safety culture and review processes

2. Conditions of success (2)

Competitiveness: depends on sound industrial & regulatory frameworks

- Clear & consistent procedures for licensing design & authorisation procedures for siting → favor long term visibility
- Standardization and building in series will enable industrial operators to benefit from economies of scale and to control costs and construction deadlines
- Stakeholders participation in structuring choices to address legitimate concerns about waste management and the safety of installations
 - In France, regular meetings of local information commissions near nuclear plants since 1977 → local authorities, NGOs and EDF can address these concerns
 - 2 recent public debates: on the construction of a new EPR plant in Normandy and on nuclear waste
 - The democratic processes implemented in Sweden and in Finland to take decisions on nuclear waste management point to other interesting approaches

Financing nuclear investment

3.1 Nuclear investment in the new context of liberalized electricity markets: what are the risks? (1)

a) Risks related to the volatility of electricity prices

Intra-annual volatility and tight demand-supply balance

 primarily affect revenues of peaking units and revenues of baseload plants for only a small share

Risks on annual electricity price over the years

- Merchant plant is not an easy model: CCGT in the US was the major technology to be affected by this risky model
- Nuclear can rely on alternative appropriate models

b) Industrial risks on investment costs

are related to the control of the initial overnight costs & construction lead times of complex technologies (nuclear as well as others)

- Pipelines and LNG terminals for gas
- Industrial uncertainty of CO2 capture & storage for future coal plants
- Nuclear: lessons from success (France, Belgium, Scandi-navian countries,...) and failures (UK, last US plants in the 80s)

3.2 Nuclear investment in the new context of liberalized electricity markets: what are the risks? (2)

c) Regulatory risks: the main cause of recent crises

Energy and financial crises in California (2000-2001), blackouts New-York (2003) and Italy (2003)

- Lack of coordination between TSOs (Transmission System Operators)
 and lack of interconnections
- Lack of visibility on long term (10-15 years) electricity supply-demand balance at regional (inter-States) levels
 - improve UCTE analyses; extend current national report (7-year Statement from NGC in UK, Generation Adequacy Report from RTE in France) at the European level?
- Price-cap and regulated tariffs artificially low that don't allow for the recovering of full costs
- Lack of visibility on G & T siting authorisation procedures
 - increase the impact of Nimby issues

Industrial, Institutional and Political conditions for Renaissance

4.1 Political, Institutional & Industrial Conditions

With thorough governance & appropriate organisational framework, nuclear power can make a key contribution to a sustainable global energy agenda, and should play a key role in a balanced energy policy along with energy efficiency, renewables and clean coal with carbon sequestration

Conditions for successful nuclear power: summary

- Safety at the top
- Stakeholders involvement
- Nuclear, more than other technologies, needs a sound, long term, stable and non partisan energy policy
- Risks on electricity markets: most required conditions are common to the new baseload power plant technologies, and higher to peak units
- Industrial and financial conditions
 - Large industrial players able to standardize & master total costs of technologies
 - Appropriate WACC
 - Financial design or organizations that provide immunity to interannual price cyels

4.2 IEA World Energy Outlook 2006 Capacity perspectives

	2004		2030 Reference scenario		2030 Alternative policy scenario	
	GW	0/0	GW	0/0	GW	%
World	364	9	416	5	519	7
USA	98	10	111	8	127	10
Japan	45	17	66	22	71	26
EU	131	18	74	6	107	11
Russia	22	10	35	12	40	15
China	6	1	31	2	50	4

