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Abstract

Some argue that contracts reduce the pricing power of firms and hence are beneficial for the

efficiency of the market; others explain that they foreclose the market and hence restrict entry of

more efficient competitors. We construct a stylized model where two firms, each specializing in some

technology, invest in a first stage, contract part of their production in the second stage and sell the

rest in the spot market in the third stage. Working with two contracts (peak and off peak), we find

cases where the contracts change neither capacity nor prices, where the foreclosing effect can increase

investments and reduce prices, and where the opportunity to foreclose the market can incentivize one

firm to reduce its investment in order to foreclose the contract market to the other firm and increase

pricing power to the detriment of consumers. The model relies on the simplest possible assumptions

of imperfect competition (subgame perfect equilibria with Cournot agents). The different results are

obtained by changing one single parameter, the height of the off-peak time segment, which can result

from different degrees of wind penetration. Our conclusion is also very simple: if it is impossible

to characterize the consequences of contracts in a simple example it is not clear how regulators or

competition authorities can assess the benefits or drawbacks of contracts in the complexity of real

world restructured electricity markets.
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1 Introduction

The potential of contracts concluded by dominant firms to foreclose markets has long been recognized in

the economics literature. The problem has mainly been considered in the context of vertical integration,

such as when access to essential facilities can be denied to competitors. The treatment of horizontal

foreclosure is more limited (see Tirole and Rey (2009) for a survey of the different situations of foreclosure).

Horizontal foreclosure deals with situations where dominant agents conclude contracts that both extract

rents from customers and limit the entry of possibly more efficient competitors (Aghion and Boltron

(1987)). The rent is extracted by setting a high sales price, the barrier to entry by imposing a high

penalty for breaching the contract. A related question is to find efficiency defenses that justify the

contract. Even though we find little application of the results of that literature for our model, we

effectively treat a problem of this type. We consider the impact of contracts on investments in generation

capacity in markets with dominant agents. The contracts assumed in this paper always remain in force

and hence imply an infinite penalty for breaking the contract. The intuition derived from the existing

literature is that contracts would limit entry and be detrimental to welfare. To the best of our knowledge

there is no literature on the problem of horizontal foreclosure in the context of power markets.

The literature on the restructuring of the electricity industry has not paid much attention to exclu-

sionary effects of contracts because the literature investments and entrance is relatively new. In contrast,

considerable attention has been devoted to the impact of contracts on abusive prices in markets with

given capacities. Green (1992) was probably the first one to note that contracts mitigate the pricing

power of generators. Newbery (1998) and Green and Newbery (1992) further developed the idea, which

was then taken up by several authors (e.g. Wolfram (1999), Wolak (2000) and more recently Bushnell

et al (2008)). This literature has resulted in a general consensus that forward positions decrease pricing

power.

Harvey and Hogan (2000) asked why parties enter forward markets that decrease their pricing power.

Allaz and Vila’s (1993) seminal paper had provided an explanation. Leaving aside the role of contracts as

hedging instruments, Allaz-Vila developed a two-stage game in which Cournot players take positions in

the forward market in the first stage and act on the spot market in the second stage. Assuming arbitrage

between the spot and contract markets and affine demand and cost curves, they showed that competing

generators have an incentive to enter forward positions for purely strategic reasons that they identify
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as a prisoner’s dilemma game. This result added to the interest in forward contracts and an extensive

literature developed looking at variants of their paper. We do not review this literature here but simply

note that we rely on Allaz Vila’s result in this paper. Specifically, we consider contracts of the forward

type that we insert in a static capacity expansion model. By construction these contracts cannot be

breached and are in force for an infinite period of time. Competition law would see them as the most

damaging contracts that one can think of.

Referring to Allaz-Vila (1993) immediately suggests looking at Vila’s (????) extension of the model

to risk and hedging. Contracts can indeed be used to hedge risks and hence facilitate investments. Finon

and Perez (2008), and Finon and Roques (2008) offer informal arguments that explain that contracts

are of the essence to facilitate investments in the risky environment of merchant plants. More recently

Argenton and Willems (2009) extend the Aghion and Bolton (1987) model to invalidate risk hedging as

an efficiency defense for long-term contracts.

This brief discussion of some of the different roles of contracts suggests that it is difficult to ascertain

the global effect of contracts on competition. The reality is much worse. de Hautecloque and Glachant

(2008) and de Hautecloque (2009) review the economic literature on contracts that they find relevant for

the application of competition law in the power and gas industries. They discover, for each of the three

subjects mentioned above, a whole range of literature with sometimes contradictory results: changing

economic assumptions modifies the conclusion on the benefits and damages of contracts. The authors

conclude that economically based actions by competition authorities could lead to considerable legal

uncertainty. de Hautecloque and Glachant (2008) then analyze the recent rulings of these authorities and

argue that the procedural approach adopted in the law considerably limits this legal uncertainty. We

examine this claim and find it is impossible to ascertain to overall impact of contracts on competition,

even in the simplest models of competition.

We have limited the above discussion to three important properties of contracts, foreclosure, pricing

power, and risk hedging. See de Hautecloque and Glachant (2008) for other properties. We further

simplify our analysis and concentrate on foreclosure and the mitigation of pricing power in a risk free

world, dropping all considerations of hedging.

Our contribution to the literature can be summarized as follows. First, the literature reveals a wide

set of assumptions and results on the efficiency of contracts; in contrast with this literature we remain

within a single model to obtain different conclusions on contract efficiency. Second, while foreclosure is
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generally seen as detrimental to market efficiency, we see that it can increase capacity, decrease prices

and enhance welfare. Third, this apparently counter-intuitive result is obtained because our model is

specialized to electricity: the decomposition of demand into time segments without any possibility to

store electricity between them is instrumental to getting these results. Our model is simple: we cast the

problem in an investment context where agents compete in capacity development, contracts, and supplies

to the wholesale market. This model expresses in the simplest possible form the basic ingredients of the

investment process in generation capacities. The common wisdom is that generators extract monopoly

rents from customers. We thus use the simplest possible model of market power, namely the Cournot

model and we assume it applies to all stages of the market.

Even with these simplifying assumptions, the variety of outcomes obtained is striking: contracts can

benefit, hurt or have no effect; their impact is totally undetermined. We do not have to do anything

complicated to illustrate our theoretical results in an example. We change one coefficient of the model,

the demand intercept in the base-period demand curve. This coefficient is standard: it can usefully be

interpreted as resulting from more or less penetration of wind but many other interpretations are possible.

We reason that if it is impossible to ascertain the impact of contracts in such a simple model, it is unlikely

that a more complex treatment will give additional insight. As mentioned above, we did not look at the

impact of risk. Because we rely on an investment model and invoke extensively Allaz and Vila’s model,

our model can be extended to risk, albeit at the cost of considerable technicalities.

We begin by elaborating on an investment model discussed in Murphy-Smeers (2005). In contrast to

the extensive focus on market power in the wholesale and contracts markets, interest in the impact of

market power on investments is relatively new, but the literature is rapidly growing. This investment

model takes a stylized view of an electricity system with two generators, each specializing in one technol-

ogy. The model describes a two stage game where generators invest in a first stage and operate on the

spot market in the second stage. Based on that model, we show

• that an equilibrium of the capacity game does not necessarily exist because there are jumps in

the profit of player −i when it increases capacity and forecloses player i from some time segment

(foreclosure in the energy market);

• but when the equilibrium exists, it leads to higher capacity than the one where all capacity is sold

forward at the time of investment.

Our methodology consists of comparing the results from that model with those obtained by including
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a third stage in the game where contracts are signed between construction and the spot market.

The paper is organized as follows: we first present a summary of our results in section 2. Section 3

looks at the main features of the spot and capacity games without contracts and derives the necessary

conditions for an equilibrium in the capacity market in that game. Section 4 introduces contracts in the

investment model: agents invest in the first stage, contract part of their sales in the second stage and

participate in the spot market in the third stage. We characterize the equilibrium of the contract market

in section 4 and discuss equilibrium conditions in the capacity game in section 5. Section 6 illustrates

these results withthe small example introduced in section 2. Section 7 concludes with our main result: we

do not know the impact of contracts on competition and prices; it all depends on the particular case in

hand. In order to facilitate the reading of the paper, all technical developments are given in appendices.

2 A summary of the argument

2.1 General economic context

As in Murphy and Smeers (2005) we assume two technologies, each operated by a different generator.

We make the simplest (and most tractable) assumption of market power, namely Cournot competition,

where we try to identify and compare subgame perfect equilibria. The economic problem is as follows.

Assume a merchant organization of the market where each operator invests in the first stage and operates

on a spot market in the second stage. Operators behave as Cournot players in both stages. We search for

a subgame perfect equilibrium of that game as our benchmark. In order to assess the impact of contracts,

we extend this reference case in the simplest possible way, by moving from the two-stage game where

one invests in the first stage and operates in the second stage to a three stage game where one invests

in the first stage, contracts in the second stage and operates in the third stage. Again, we are looking

for subgame perfect equilibrium and are interested in assessing the impact of contracts on total capacity

and prices.

2.2 A simplified model

We summarize our analysis with a simplified model and illustrate the different behaviors of the model with

numerical results in Section 6. In this section we assume demand is decomposed into two time segments,

peak (p) and off peak (b) of equal duration; we let the inverse demand function be ps = αs−qs, s = p, b in
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each segment. In our theoretical development we assume S load segments. We assume two technologies

indexed by i = 1, 2. Let ki be the investment cost and νi the operating cost and player i specializes

in technology i. Capacities are denoted by xi, i = 1, 2 and contractual positions in time segment s

are denoted by ys
i , i = 1, 2; s = p, b. Actual generation is written as zs

i , i = 1, 2; s = p, b. Assume an

equilibrium exists when there are no contracts. Then both players are at capacity in the peak segment.

In contrast three different situations can prevail in the off-peak segment. Both players can remain at

capacity off peak (case a), both can be below capacity in the off-peak period (case b), and one of the

players can operate at capacity while the other player is below capacity (case c). These different cases

lead to different contributions to the value of the capacity investment and hence have different impacts on

competition. Our analysis of contracts elaborates on their effect in this off-peak period to derive global

results on both the peak and off-peak segments. We summarize this analysis of incentive to invest in the

rest of this section and fully develop the argument in the rest of the paper. We illustrate these results

numerically in Section 6.

2.3 Investment and prices when both players are at capacity in both time

segments (case (a))

Let base and peak demands be identical or close (e.g., αp ∼ αb). Then both players operate at full

capacity in peak and off peak when there is no contract,

zs
i = xi, i = 1, 2; s = p, b.

Later in the paper we show that each time segment contributes a marginal revenue of αs− 2xi−x−i− νi

to the investment cost ki. This marginal revenue accrues half of the time because both periods have

equal duration. At equilibrium, capacities xi and x−i, therefore, satisfy

1
2

(αp − 2xi − xi − νi) +
1
2

(αb − 2xi − x−i − νi) = ki, i = 1, 2.

In this case introducing contracts has no effect on the market equilibrium. Both players remain at capacity

and prices are not changed.

6



2.4 Investment and prices when both players are at capacity in peak and

only one player is at capacity off peak (case (c))

Consider now the case where both players operate at full capacity in peak,

zp
i = xi, i = 1, 2.

Assume that −i is at capacity off peak while i remains below capacity in peak,

zb
i < xi, z

b
−i = x−i.

Because player i is at capacity only during the peak period, the marginal revenue of its capacity is limited

to that period. This revenue is αs − 2xi − x−i − νi. At equilibrium

1
2

(αp − 2xi − x−i − νi) = ki.

Player −i is at capacity in both periods. Our results show that the marginal revenue accruing to its

capacity is different in peak and off peak . The marginal revenue is αp − xi − 2x−i − ν−i in peak and
1
2 (αb−2x−i−2ν−i +νi) > (αb−xi−2x−i−ν−i) off peak. At equilibrium, the incentive to invest satisfies

1
2

(αp − xi − 2x−i − ν−i) +
1
4

(αb − 2x−i − 2ν−i + νi) = k−i.

We are able to prove that player i does not enter into contracts and the incentives to invest are unchanged.

2.5 Investment and prices when both players are at capacity in peak and

below capacity in off peak (case (b))

This is the case where contracts play a key role. Let base and peak demand be sufficiently different (e.g.,

αp � αb) and assume that both players operate at full capacity in peak

zp
i = xi, i = 1, 2

but remain below capacity off peak

0 < zb
i < xi, i = 1, 2

(recall: Cournot equilibria allow for both players to operate in base even though νi > ν−i). Because both

operate below capacity in the off peak segment, only the peak segment makes a contribution to cover the

investment cost. At equilibrium, the investment criterion without contracts is then

1
2

(αp − 2xi − x−i − νi) = ki, i = 1, 2.

Introducing contracts leads to three possible cases.
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2.5.1 Both players increase their off peak production after introducing contracts and re-

main below capacity. Investment does not change but the exercise of market power

decreases off peak

This is the case where the Allaz-Vila effect applies without modification. Contracts increase generation off

peak, but not to the point of reaching capacity, and decrease market power. The marginal contributions

to investment and capacities remain unchanged and market power does not change in the peak period.

2.5.2 One player finds it profitable to foreclose the contract market. Investment increases,

reducing the exercise of market power

Contracts can induce one agent to increase generation and fully use its capacity off peak. Both players

keep operating at full capacity in peak

zp
i = xi, i = 1, 2

and player −i operates at capacity off peak, while player i operates below capacity

zb
−i = x−i, z

b
i < xi.

Our results show that player −i forecloses the contract market. The incentives to invest then take the

same form as case (b) above. The marginal contribution to capacity of player i is unchanged

1
2

(αp − 2xi − x−i − νi) = ki, i = 1, 2.

For player −i it changes to

1
2

(αp − xi − 2x−i − ν−i) +
1
4

(αb − 2x−i − 2ν−i + νi) = k−i.

The consequence is that total investment increases over the case without contract and market power

decreases in base and peak.

2.5.3 One player reduces capacity in order to be in position to foreclose the contract

market: this decreases total capacity and increases market power

A third possibility exists. The underlying argument for a player to foreclose the contract market in section

2.5.2 is that operating at capacity increases its profit. This also leads to an incentive for this player to

increase investment. In contrast to this case, player −i may be induced to decrease capacity in order

to make it easier (in fact possible) to operate at capacity and thus foreclose the contract market. This
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situation is a mixture of the two preceding cases in the following sense. Assume an equilibrium x∗i , x∗−i

from the capacity game without contracts and that zb
i < x∗i , i = 1, 2 but zb

−i = x−i for some x−i < x∗−i.

The foreclosure effect applies when player −i decreases capacity to some point below x∗−i (and operates at

capacity in base). Yet, the standard Allaz-Vila result applies (this player operates below capacity) with

capacity at x∗−i. At the largest capacity for −i that allows for a foreclosure, there is a discrete change in

player −i profits. The profits are higher with lower capacity because player i drops out of the contract

market from foreclosure and its production makes a discrete drop. If the profits for −i are higher with

the lower capacity associated with foreclosure, then there may exist an equilibrium where total capacity

decreases. We elaborate on this mechanism in section 5 and show in section 6 that the likelihood of it

occurring depends on the shape of the load curve and the cost parameters.

2.6 Summary conclusions

These three cases show that the impact of contracts is not predictable even in the simplest possible

long-term model of a generation system. Contracts can leave capacities unchanged and keep market

power unchanged in the peak period and decrease it during the off peak periods. Contracts can also

foreclose the market and increase capacities, benefiting consumers. Alternatively, contracts can foreclose

the market and decrease capacities, harming consumers. In short the effect of contracts is ambiguous.

We now present the results leading to this conclusion.

3 The game without contracts

3.1 Introductory intuition

We extend our example by increasing the number of time segments, denoted by s = 1, · · · , S. The

segments are of duration πs. The signs of the expressions

αs − 2zi − z−i − νi and xi − zi, i = 1, 2

fully characterize time segment s when there are no contracts. Specifically, given capacities (xi, x−i),

time segments can be characterized as follows.

αs − 2xi − x−i − νi > 0, xi − zi = 0 i = 1, 2 (e.g. peak load)

αs − 2zi − z−i − νi = 0, xi − zi > 0 and αs − zi − 2z−i − ν−i > 0, x−i − z−i = 0 (e.g. shoulder load)

αs − 2zi − z−i − νi = 0, xi − zi > 0 i = 1, 2 (e.g. off peak load).

9



When

αs − 2xi − x−i − νi > 0, xi − zi = 0

player i can profitably use all its capacity in the spot market and would increase production if it could

do so. Conversely,

αs − 2zi − z−i − νi = 0, xi − zi > 0, i = 1, 2

signals a case where none of the players desire to operate at full capacity. Lastly,

αs − 2zi − z−i − νi = 0, xi − zi > 0 and αs − zi − 2z−i − ν−i > 0, x−i − z−i = 0

indicates a time segment where player i does not want to use all of its capacity in the spot market if the

other player is at capacity.

Section 3.2 develops this idea by characterizing the spot game equilibrium.

3.2 The spot market in time segments s

Let xi be the capacities resulting from the investment stage. The equilibrium conditions of the spot

market are obtained when each agent solves the following optimization problem,

max
0≤zs

i
≤xi

[αs − zs
i − zs

−i]z
s
i − νiz

s
i . (1)

The existence and uniqueness of the equilibrium in the spot market are easily established. They result

from the solution of the following complementarity problem

αs − 2zs
i − zs

−i − νi + ωs
i = λs

i i = 1, 2

xi − zs
i ≥ 0 λs

i ≥ 0 (xi − zs
i )λs

i = 0 (2)

zs
i ≥ 0 ωs

i ≥ 0 zs
i ω

s
i = 0

Using n to indicate the game without a contract market, let zns(x) be the solution to these equilibrium

conditions as a function of the capacities x inherited from the first investment stage. Note that zns(x)

is single valued and continuous in x. Also, zns(x) is not continuously differentiable in x. The point

where zns(x) is not differentiable is where zns(x) = xi and λs
i = 0. At this point both the left and right

derivatives exist and are the limits as ε → 0 of the derivatives at zns(x) = xi − ε and zns(x) = xi + ε

respectively.
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As in Murphy and Smeers (2005), we treat a set of cases that characterize the solution for the different

steps of the load duration curve. In order to simplify the presentation, we focus on the load steps where

the equilibrium satisfies 0 < zs
i ≤ xi, that is, the two producers are active at the equilibrium. Including a

discussion of cases with one zs
i = 0 adds complications without offering insight or affecting our conclusion

on the ambiguity of the impact of contracts. See Murphy and Smeers (2005) for a discussion of these

cases. The equilibria in the spot market that we consider satisfy one of three conditions.

(a)

αs − 2xi − x−i − νi − λs
i = 0, (3)

0 < zns
i (x) = xi, λ

s
i ≥ 0, i = 1, 2 (4)

(b)

αs − 2zns
i (x)− zns

−i(x)− νi = 0, (5)

0 < zns
i (x) < xi, λ

s
i = 0, i = 1, 2 (6)

(c)

αs − 2xi − zns
−i(x)− νi = 0, (7)

0 < zns
i (x) < xi, λ

s
i = 0 (8)

αs − xs
i − 2zns

−i(x)− ν−i − λs
−i = 0, (9)

0 < zns
−i(x) = x−i, λ

s
−i ≥ 0 (10)

Proposition 1 Let xi and x−i be given capacities (not necessarily an equilibrium in the capacity game).

Then the equilibrium on the spot game can be of one of the three following types

(a) αs − 2xi − x−i − νi ≥ 0, i = 1, 2; xi = zs
i , i = 1, 2

(b) αs − 2zs
i − zs

−i − νi = 0, i = 1, 2; xi > zs
i , i = 1, 2

(c) αs − 2zi − x−i − νi = 0, αs − zi − 2x−i − ν−i ≥ 0; xi > zs
i , x−i = zs

−i.

Proof. The result follows directly from the KKT conditions of each player in Nash Cournot.

We refer to zs
i = xi, i = 1, 2; zs

i < xi, i = 1, 2 and zs
i < xi and zs

−i = x−i (and conversely zs
i = xi and

zs
−i < x−i) respectively as full capacity, interior, and corner equilibria (in the spot market).
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3.3 The capacity game without a forward market

We now find the equilibrium in the capacity game that accounts for the behavior of the players in the

spot market. This is commonly referred to as a subgame-perfect equilibrium or closed-loop equilibrium

(Fudenberg and Tirole (2000)). The optimization that each player solves can be stated as follows:

max
xi≥0

Πn
i (xi, x−i) = max

xi≥0

S∑
s=1

[αs − zns
i (x)− zns

−i(x)− νi]zns
i (x)− kixi. (11)

Assuming each player invests a positive amount and a point xi, x−i where the z(x) are differentiable, the

necessary equilibrium condition for each player is

S∑
s=1

{
[αs − 2zns

i (x)− zns
−i(x)− νi]

∂zns
i (x)
∂xi

(x)−
∂zns
−i(x)
∂xi

zns
i (x)

}
− ki = 0. (12)

Note that the partial derivatives in (12) exist when the solutions for all the load steps in (7) to (10)

satisfy strict complementarity. If we do not have strict complementarity in some load segment, the right

and left derivatives exist and are either 0, 1, or − 1
2 , and the arguments we develop for the differentiable

case apply to the right and left derivatives in the relevant cases.

Note that the partial derivative −1
2 is the partial of zns

i with respect to x−i when zns
i < xi and

αs − 2zns
i − x−i − νi = 0. (13)

Using the partial derivatives of zi and z−i with respect to xi given above to compute the contribution

of each segment type (the term in brackets {}) in (12), we obtain:

• for load segments s with equilibria of type (a) (s ∈ Sn(a)),

αs − 2xi − x−i − νi = λi i = 1, 2; (14)

• for segments of type (b) (s ∈ Sn(b)),

αs − 2zns
i (x)− zns

−i(x)− νi = 0 i = 1, 2; (15)

• and for segments of type (c) (s ∈ Sn(c)), we have after replacing ∂zns
i (x)
∂xi

and
∂zns
−i(x)
∂xi

by 1 and

−1
2 respectively

αs − 3
2
x−i − zns

i (x)− ν−i = µs
−i (16)

αs − xs
−i − 2zns

i (x)− νi = 0. (17)
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Notice that we use µs
−i rather than λs

−i in load segments of type (c) because the perceived marginal value

of capacity is different in the capacity game (relation (12) versus the spot game (relations (3) to (10))

since in the capacity game player −i sees that an increase in capacity decreases the generation by player

i in the spot game as expressed by ∂zns
i (x)
∂x−i

, whereas under the Cournot assumption, it does not see this

response in the spot game. From (12) we can conclude that the necessary equilibrium conditions for each

player are ∑
s∈Sn(a) π

sλs
−i +

∑
s∈Sn(c) π

sµs
−i = k−i,∑

s∈Sn(a) π
sλs

i = ki.
(18)

Note for further reference that substituting zns
−i(x) in (16) by its expression taken from (17) gives

µs
−i =

1
2

(αs − 2x−i − 2ν−i + νi)

which will play a crucial role in further characterizing time segments when discussing the impact of

contracts. Because µs
−i > λs

−i from the complementarity conditions (7) to (10) in segments of type (c),

we were able to conclude in Murphy and Smeers (2005) that the closed-loop game leads to higher capacity

than in the single-stage open-loop game. Also, Murphy and Smeers (2005) show that only the player

with the base load cost structure has µs
−i > 0, for s ∈ Sn(c).

Proposition 2 An equilibrium xi, x−i of the capacity game, if it exists, satisfies∑
s∈S(a)

πs(αs − 2xi − x−i − νi) = 2ki∑
s∈S(a)

πs(αs − xi − 2x−i − ν−i) +
∑

s∈S(c)

πs 1
2 (αs − 2x−i − 2ν−i + νi) = 2k−i

Proof. The proof derives from relations (18) after replacing µs
i by its value.

The expression µs
−i = 1

2 (αs − 2x−i − 2ν−i + νi) appearing in the investment objective is crucial for

the rest of the discussion. We complete this section by emphasizing its interpretation in relation (18).

Assume again that all functions z(x) are differentiable, then we have the following proposition.

Proposition 3 Let s be a time segment with a corner equilibrium in the spot market. Assume −i is at

capacity in that corner equilibrium. Then 1
2 (αs − 2x−i − 2ν−i + νi) is the marginal revenue of player −i

accruing from the spot market in that time segment.

Proof. See the above discussion.
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4 The game with contracts

4.1 Introductory intuition

We now turn to the more complex case of a game where investors in merchant plants can contract part of

their production forward, trading the rest in the spot market. The definitions of the (local) closed-loop

equilibrium of the two-stage game can be readily extended to the three-stage game after introducing

additional notation.

Assuming that forward contracts are linked to the spot market by an arbitrage argument, Allaz and

Vila show that contracts incentivize agents to increase production and hence mitigate market power.

Making their assumptions and trying to apply their results, we immediately encounter difficulties in

cases (a) and (c) when one or both players are at capacity off peak. Case (b) poses a different type of

difficulty. The Allaz-Vila result applies directly if the increased generation induced by the contract does

not hit capacity. The question is what happens if this increased generation exceeds capacity? We show

that this introduces a foreclosure effect in the contract market that can benefit or hurt the consumer.

We now examine the role of contracts in the different types of time segments and successively look at

(a) (full capacity equilibrium), (c) (corner equilibrium), and (b) (interior equilibrium).

4.2 Spot and contract games with given capacities

4.2.1 Equilibrium conditions in the spot game when there is a contract game

The discussion here summarizes results in Murphy and Smeers (2009) where we develop results for forward

markets with uncertain demand without a load curve. The three-stage game can be solved starting from

the spot game as follows. For a given x and ys
i the spot market optimization is

max
0≤zs

i
≤xi

Πs
i (x, ys; zs

i , z
s
−i) = [αs − (zs

i + zs
−i)](z

s
i − ys

i )− νiz
s
i for i = 1, 2. (19)

The difference between the optimizations with and without a contract market is that the contract positions

ys
i are subtracted from the production levels, as the revenues from these positions are accounted for in

the contract game.

The equilibrium conditions in the spot game can be written as

αs − 2zs
i − zs

−i − νi + ys
i + ωi = λs

i i = 1, 2
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(xi − zs
i ) ≥ 0 λs

i ≥ 0 (xi − zs
i )λs

i = 0 i = 1, 2 (20)

zi ≥ 0 ωi ≥ 0 zs
i ωi = 0 i = 1, 2.

Note that yi can be either positive or negative, corresponding to selling or buying in the contract

market. Needless to say, the results are more easily interpreted in terms of long-term contracts if yi is

positive, which we show is always the case. Given values for x and ys, the spot market equilibrium exists.

When both players have positive production, as in the game without a contract market, the equilibrium

zs(x, y) = (zs
i (x, y), zs

−i(x, y)) of the spot market satisfies one of the following conditions:

(a) 0 < zs
i (x, y) = xi; i = 1, 2

(b) 0 < zs
i (x, y) < xi; i = 1, 2 (21)

(c) 0 < zs
i (x, y) < xi; 0 < zs

−i(x, y) = x−i.

In case (a) (a full capacity solution), we have

αs − 2xi − x−i − νi + ys
i = λs

i ≥ 0 i = 1, 2. (22)

In case (b), (an interior solution), we can solve for zs
i without including the capacity constraints, since

they are not binding. The equilibrium conditions are

αs − 2zs
i (x, y)− zs

−i(x, y)− νi + ys
i = 0

αs − zs
i (x, y)− 2zs

−i(x, y)− ν−i + ys
−i = 0 (23)

0 < zs
i (x, y) < xi i = 1, 2

or after solving

zs
i (x, ys) =

1
3

[αs − 2(νi − ys
i ) + (ν−i − ys

−i)]. (24)

We need to verify that 0 < zs
i (x, y) < xi for this solution to be interior.

In case (c), (a corner solution), the equilibrium conditions are

αs − 2zs
i (x, y)− x−i − ν−i + ys

−i = 0 0 < zs
i < x∗i

αs − zs
−i(x, y)− 2x−i − νi + ys

i = λs
i 0 < zs

−i = x∗−i.
(25)

From them we find the following solution to the system

zs
i (x, y) =

1
2

(αs − x−i − νi + ys
i )

λ−i = αs − 2x−i − ν−i + ys
−i −

1
2

(αs − x−i − νi + ys
i ) (26)

=
αs

2
− 3

2
x−i −

1
2

(2ν−i − νi) +
1
2

(2ys
−i − ys

i )
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where we again need to verify that 0 < zs
i (x, y) < xi.

4.2.2 Necessary equilibrium conditions in the contract game

We can write the contract market optimization using the solution in (19) as follows:

max
ys

i

Πfs
i (x, ys) = max

ys
i

Πfs
i (x, ys, zs(x, ys)) (27)

where

Πfs
i ((x, y), zs(x, ys)) = [αs − zs

i (x, ys)− zs
−i(x, y

s
i )− νi]zs

i (x, ys).

To characterize the solution, we have to look at the three cases (21).

In case (b) where zs
i < xi i = 1, 2, (24) applies and we solve for ys

i . Inserting the solutions for zs(x, ys)

from (24) into the forward-market profit function Πfs
i (x∗, y, zs(x, ys)), we get

Πfs
i =

1
9
[(
αs − 2νi + ν−i − y−i

)2 +
(
αs − 2νi + ν−i − y−i

)
ys

i − 2ys2

i

]
. (28)

Using the first order equilibrium conditions from the profit function and solving the system, we find that

ys
i (x) =

1
5

[αs − (3νi − 2ν−i)] i = 1, 2. (29)

Letting ys(x) = (ys
i (x), ys

−i(x)) we have

zs
i (x, ys(x)) =

2
5

[αs − (3νi − 2ν−i)] i = 1, 2. (30)

The computation of ys
i (x) in (29) does not guarantee that these values are an equilibrium in the contract

game. If zs
i (x, ys(x)) < xi for i = 1, 2, we have an interior contract equilibrium. In other words, an

interior contract equilibrium is a pair (ys
i , y

s
−i) that is an equilibrium in the contract game and induces a

type (b) equilibrium in the spot game. In this case the spot and contract games have unique equilibria

of type (b) given the capacities. The discussion of Section 5 and the example of Section 6.5 show that

one can have both an interior and a corner equilibrium. Note that the effect of adding a contract market

in this case is to increase production, as the standard Allaz-Vila’s result implies.

We now turn to case (c) where zs
−i(x, y

s(x)) = x−i and zs
i (x, ys(x)) < xi. The contract optimization

for player i is to choose the ys
i that maximizes profits subject to the equilibrium conditions in the spot

market, equations (25). From (26) we know the value of zs
i (x, ys(x)) as a function of ys

i and can calculate
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the profit as a function of ys
i as follows.

Πfs
i (x; yi, y−i)

= [αs − x−i − 1
2 (αs − x−i − νi − ys

i )− νi] 12 (αs − x−i − νi − ys
i )

= 1
4

[
(αs − x−i − νi)2 − y2

i

]
.

(31)

Clearly, the profit for player i is maximized when ys
i = 0 and zs

i has the following solution.

zs
i =

1
2

(αs − xi − νi). (32)

For player −i, from (25), we see that ys
−i must be chosen to guarantee that λs

−i ≥ 0 for zs
−i = x−i for all

potential values of zs
i . The following condition on ys

−i ensures that λs
−i ≥ 0,

ys
−i ≥ −(αs − 2x−i − zs

i − ν−i), (33)

and the contract equilibrium ys, if it exists, turns out to be a vector-valued point-to-set map ys(x) with

a unique solution in the spot market associated with this set of contract positions. Again the set ys
i = 0,

ys
−i ≥ −(αs − 2x−i − zs

i − ν−i) is not yet proven to be an equilibrium on the contract game. If it is, we

refer to it as a corner contract equilibrium. In other words, a corner contract solution is a pair (ys
i , y

s
−i)

that is an equilibrium in the contract game and induces a type (c) equilibrium on the spot game.

We now turn to the last case (a) where zs
i (x, ys(x)) = xi, i = 1, 2. The contract optimization for each

player i is to choose ys
i that maximizes profit subject to the equilibrium on the spot game. One can easily

check that

ys
i ≥ −(αs − 2xi − x−i − νi) i = 1, 2

guarantees λs
i ≥ 0 and hence zs

i (x, ys(x)) = xi, i = 1, 2. If a point (ys
1, y

s
2) satisfying these conditions can

be shown to be an equilibrium on the contract game, we refer to it as a full capacity contract equilibrium,

or in other words an equilibrium on the contract game that induces a type (a) equilibrium on the spot

game.

4.2.3 Sufficient equilibrium conditions in the contract game: cases (a) and (c)

Lemma 1 Let αs − 2xi − x−i − νi > 0, i = 1, 2. Then any position

ys
i ≥ −(α− 2xi − x−i − νi) < 0, i = 1, 2

is an equilibrium of the contract game. All these equilibria lead to the same full capacity equilibrium.
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Proof. See Lemma A1 in Appendix 1.

The proposition is not surprising and the proof amounts to showing that there is no incentive to

reduce generation by making ys
i sufficiently negative (something that could in principle occur since, in

contrast with the standard Alla-Vila reasoning, the other player cannot respond by increasing generation

when it is at capacity). Note that any non-negative yi satisfies this condition; non-negative yi can easily

be interpreted as long term contracts.

Corollary 1 If αs−2xi−x−i−ν−i ≥ 0, i = 1, 2, then zi = xi, i = 1, 2 at the equilibrium of the capacity

game with and without the contract game.

Lemma 2 Let αs−2zi−x−i−νi = 0, zs
i < xi, αs−zi−2x−i−ν−i > 0 and zs

−i = x−i in the no-contracts

game. Then any position ys
−i ≥ −(αs − xi − 2x−i − ν−i) < 0; ys

i = 0 is an equilibrium of the contract

game. All these equilibria lead to the same corner equilibrium xi > zs
i , x−i = zs

−i. There is no other

equilibrium in the contract game.

Proof. See Lemma A2.1 and A2.2 in Appendix 2.

The proof is technical; its structure is as follows. Lemma A2.1 of Appendix 2 shows that yi = 0 is the

best response of player i to any contract position of player −i that is sufficiently large, as we see from

(31). The idea behind the proof is that player i cannot cause z−i to decrease by acting on the contract

market: this is one major difference between our result and the result of Allaz and Vila. Lemma A2.2 of

Appendix 2 also shows that the best response of player −i to yi = 0 is ys
−i > −(αs−xi−2x−i−ν−i) > 0.

Thus, given (xi, x−i), we have a set of equilibria in the contract market that leads to a unique spot-market

equilibrium (even though the x may not be an equilibrium in the capacity market).

Note that player −i forecloses the contract market as player i is crowded out of the forward market:

player −i can sell forward (ys
−i > −(αs−xi− 2x−i− ν−i) > 0) but player i does not (ys

i = 0) (recall that

αs− 2xi−x−i− νi < 0 implies in some sense that player i has too much capacity for this time segment).

Corollary 2 states that foreclosure has no impact on competition in this case: foreclosure has no effect

on capacity or price.

Corollary 2 Let αs − 2zi − x−i − x−i − νi = 0, zs
i < xi, αs

i − zi − 2x−i − ν−i > 0 and zs
−i = x−i in

the no-contracts game. Then zi < xi, z−i = x−i at the equilibrium of the spot game with and without a

contract market.
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The above discussion makes it clear that time segments s that give corner and full capacity equilibria

in the game without a contract market have the same property with the addition of a contract market:

using the same capacities, the equilibria on the spot markets are identical in the two games. This situation

is not covered by Allaz-Vila’s theory since capacity is binding. Note however that Allaz-Vila’s result is

not contradicted in the sense that the contract market does not decrease spot production.

Corollary 3 Time segments s that lead to full capacity and corner equilibria without a contract market

still lead to full capacity and corner equilibria with a contract market and production in the spot market

is also the same.

The Allaz-Vila effect is thus inoperant (or trivially satisfied) for time segments of type (a) and (c).

Contracts have no effect on investment and the exercise of market power if there are only time segments

of type (a) and (c). Note that we have assumed differentiability. The same results hold when working with

right and left derivatives as the lower bounds on the equilibrium ys
i lead to the points of nondifferentiability

where the left and right derivatives must be used. We now turn to time segments of type (b) which are

more involved.

4.2.4 Sufficient equilibrium conditions in the contract game: case (b)

The case of the interior equilibrium is more complex. We note in passing that time segments of type (b)

are those where observation of real markets suggest competitive behaviors because of unused capacity.

Nevertheless, we continue with the Cournot paradigm in these time segments.

Recall that α − 2zi − z−i − νi = 0, xi − zi > 0, i = 1, 2 implies an interior spot equilibrium in the

game without a contract market. Allaz-Vila’s theory can apply here as capacities are not binding in the

game without a contract market. With αs sufficiently small, capacity is not binding and the introduction

of contracts increases production in the spot market, leading to the interior solution obtained in (30) in

Section 4.1,

zs
i (x, ys(x)) =

2
5

[αs − (3νi − 2ν−i)], i = 1, 2.

The following lemma formalizes this finding.

Lemma 3 Let αs − 2zi − z−i − νi = 0, zs
i < xi, i = 1, 2 and

zi =
2
5

[αs − (3νi − 2ν−i)] < xi, i = 1, 2

then yi = 1
2 [αs − (3νi − 2ν−i)], i = 1, 2 is the unique interior equilibrium in the contract game.
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Proof. The profit function (28) is strictly concave. Thus, decreasing yi while y−i remains constant

decreases the profit of player i. Conversely, increasing yi also decreases this profit until zi reaches xi and

the profit remains constant at that lower level.

It is, however, possible that one or both of the capacity constraints on z are violated, and a time

segment that leads to an interior equilibrium in the problem without a contract market has a corner

equilibrium with contracts. It is also possible that, even though there is a unique interior solution with

contracts, there can also exist other corner or full capacity equilibria. These are the questions that we

turn to now. Note that since ys
i = 0 when zs

−i = x−i for i = 1, 2, we have αs−2zs
i −zs

−i−νi < 0, i = 1, 2.

Thus, there can be no full-capacity equilibrium resulting from contracts if we are in a time segment of

type (b) when there are no contracts.

We first present the following result.

Lemma 4 Let (xi, x−i) imply

αs − 2zs
i − zs

−i − νi = 0, zs
i < xi, i = 1, 2.

Then ys
i = 0 is the optimal response of player i to any ys

−i ≥ ỹs
−i(x) = −(αs − xi − 2x−i − ν−i).

Proof. With the assumed choice of ys
−i, z

s
−i = x−i. By (31) the result holds locally. In order to show

that it applies globally, note that the assumption αs− zi− 2x−i− ν−i > 0 never plays a role in the proof

of Lemma A2.1 in Appendix 2 and this lemma applies to this case.

Lemma 4 shows that player −i can foreclose the contract market (yi = 0) by selling forward. The

question is whether it is in player −i’s interest to do so, that is, whether y−i ≥ −(αs−xi−2x−i−νi) > 0

is the best response of player −i to yi = 0. Lemma A2.2 allows us to prove this type of result for a time

segment of type (c). The proof of Lemma A2.2 effectively involves the condition αs−zi−2x−i−ν−i > 0,

in its parts (ii) and (iii). It therefore cannot be used here. We adapt the proof by delving into the

conditions that guarantee an interior equilibrium.

Lemma 5 Assume that there exists no corner equilibrium in time segment s of type (b) in the con-

tract game. Then there exists an interior equilibrium with the Allaz-Vila solution remaining within the

capacities.

Proof. See Lemma A3.1 in Appendix 3
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We now show a somewhat symmetric result.

Lemma 6 Assume that there is no interior equilibrium in time segment s of type (b) in the forward

game. Then there exists a corner equilibrium.

Proof. See Lemma A3.2 in Appendix 3.

Lemma 7 Let (xi, x−i) and the Allaz-Vila solution (zav
i , zav

−i) satisfy

α− 2zav
i − zav

−i − νi = 0, i = 1, 2, zav
i < xi, z

av
−i > xi

( z−i in the solution of the Allaz-Vila exceeds its bound x−i). Then

yi = 0, y−i > ỹ−i(x)

is a corner solution.

Proof. From Lemma 4, yi = 0 is the optimal response to any y−i ≥ ỹ−i(x). From Lemma 6 we must

have a corner solution. Thus, y−i ≥ ỹ−i(x) is the optimal response of player −i to yi = 0.

Recall that µs
−i = 1

2 (αs − 2x−i + νi − 2νi) is the marginal revenue accruing to player −i from its

capacity at a corner equilibrium; the following corollary is a byproduct of the above discussion.

Corollary 4 αs − 2x−i + νi − 2ν−i > 0 is a necessary condition for a corner equilibrium with player −i

at capacity in the contract game.

Proof. This result is embedded in the proof of Lemma 5.

The interpretation of this proposition is that a positive incentive to invest (αs−2x−i−2ν−i +νi > 0)

in segment s is also an incentive to foreclose the contract market in that time segment.

Corollary 5 Assume the solution to the Allaz-Vila problem violates capacity bounds for both players,

then there are two corner equilibria in the contract market.

Note however, as mentioned before, that the violation of the two bounds of the Allaz-Vila solution

does not imply a full capacity equilibrium. Indeed both players operating at capacity would imply a

negative marginal profit for both of them, which cannot be an equilibrium in the contract game. The

following proposition summarizes this discussion:
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Proposition 4 There always exists a pure strategy equilibrium of the contract game.

We characterize these equilibria for a given time segment s and given capacities as follows:

• a full capacity equilibrium (type (a)) when there is no contract game is a full capacity equilibrium

when there is a contract game,

• a corner equilibrium (type (c)) when there is no contract game is also a corner equilibrium when

there is a contract game,

• an unconstrained equilibrium (type (b)) when there is no contract game can give rise to an uncon-

strained equilibrium in the contract game if

2
5

(α− (3νi − 2ν−i)) < xi, i = 1, 2.

It can also give rise to a corner equilibrium yi = 0, y−i ≥ ỹ−i(x) but only if

α+ νi − 2ν−i > 2xi.

There can also be two corner equilibria

yi = 0, y−i ≥ ỹ−i(x) and yi ≥ ỹi(x), y−i = 0

if and only if

α+ νi − 2ν−i > 2xi and α+ ν−i − 2νi > 2x−i.

It is also possible to have simultaneously

2
5 (α− (3νi − 2ν−i)) < xi, i = 1, 2

α+ νi − 2ν−i > 2xi for i = 1 or 2 or 1 and 2

in which case one has both interior and corner solutions (see the example of Section 6.5).

4.2.5 Summing up

We summarize the preceding discussion in the following theorem. Let Sc(a), Sc(b), and Sc(c) be the sets

of load segments with spot solutions of type (a), (b), and (c), respectively when there is a contract game.

Recall that we denoted these sets as Sn(a), Sn(b) and Sn(c) in the no contract game.

Theorem 1 Given the same capacities in the games without and with contracts,
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• (a) the sets Sn(a) = Sc(a) are identical and both models have the same equilibrium conditions:

αs − 2xi − x−i − νi = λi i = 1, 2. (34)

in the games with and without contracts;

• (b) Sn(b) ⊇ Sc(b) and production is higher with a contract game for s ∈ Sn(b). Note that Sn(b)

can be empty if there are only full capacity or corner equilibria in the no contract case;

• (c) Sn(c) ⊆ Sc(c).

5 Necessary equilibrium conditions in the capacity game

The above analysis of equilibria in the contract game allows us to write necessary conditions for an

equilibrium in the capacity game with contracts. Recalling the discussion of the capacity game without

contracts, note that the necessary equilibrium conditions are obtained under the assumption that the

zi(x) are differentiable in x. We also briefly mentioned in passing that the conditions should be slightly

modified in case of non-differentiability. This occurs when one of the time segments changes categories,

that is, at a value of x where zi is equal to xi and λi = 0. This lack of differentiability was extensively

discussed in Murphy-Smeers (2005); it leads to discontinuities in the players’ profit functions, which can

cause the pure strategy equilibrium to not exist. Discontinuities also appear here, resulting from changes

of equilibria in the contract game. They are of a different nature and hence warrant some preliminary

discussion.

We have seen in Corollary 4 that αs − 2x−i − 2ν−i + νi > 0 signals a corner equilibrium for the game

with contracts and is equal to the marginal revenue of capacity −i in time segment s at that corner

equilibrium. We have also seen that it is possible to have both a corner and an interior equilibrium at a

point with αs−2x−i−2ν−i +νi > 0, implying that players’s payoffs are ambiguously defined. Conversely,

αs − 2x−i − 2ν−i + νi < 0 for both players always implies a single interior equilibrium. An interior

equilibrium in some time segment implies a zero marginal revenue of the capacity in that time segment.

The revenue is thus non-differentiable when αs − 2x−i − 2ν−i + νi = 0 and one moves from an interior

to a corner solution. Also we can state necessary conditions for an equilibrium in the capacity game if

the payoff of each player is well defined and hence only if there is a single equilibrium in the contract

market. The discussion of section 4 reveals that this is not always the case. All this requires adapting the

necessary equilibrium conditions. All these restrictions are assembled in the following proposition that
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states necessary conditions for an equilibrium at a point where revenues are continuous for variations

in capacities around the equilibrium. This is the case if the sets Sc(a), Sc(b) and Sc(c) are well defined

(there is a single equilibrium in the contract game) and remain unchanged around the equilibrium. These

necessary conditions are obtained by adapting the necessary conditions for an equilibrium in the capacity

game without contracts: it suffices to replace Sn(a), Sn(b) and Sn(c) by Sc(a), Sc(b) and Sc(c). This is

stated in Proposition 5, which is similar to Proposition 2 for the no contract game.

Proposition 5 Let (xi, x−i) be a point such that αs− 2x−i− 2ν−i + νi 6= 0 for all s and a unique corner

or interior equilibrium prevails in the contract market. If this point is an equilibrium of the game with

contracts, it satisfies∑
s∈Sc(a)

πs(αs − 2xi − x−i − νi) = 2ki∑
s∈Sc(a)

πs(αs − xi − 2x−i − ν−i) +
∑

s∈Sc(c)

πs 1
2 (αs − 2x−i − 2ν−i + νi) = 2k−i

The following intuitive comments can help to understand the content of Proposition 5. Consider the

move from the capacity game without contracts to the game with contracts. Suppose one remains at

the equilibrium capacities of the no contract game, then the introduction of contracts can (but does not

necessarily) enlarge the set of time segments with a corner equilibrium. This happens when a generator

exceeds its generation capacity in some time segment in the Allaz-Vila solution. Lemmas 4 to 6 indicate

that this player is induced to increase its contract position in order to fully utilize its generation capacity.

This increases the marginal revenue accruing from capacity and hence the incentive to invest. This in turn

leads to a global increase of capacity and a reduction of market power. This phenomenon was uncovered

in Murphy-Smeers (2005) when moving from the open to the closed loop equilibrium in the capacity

market without contracts. In short, in this model as well as in Murphy-Smeers (2005) the possibility of

foreclosing the market (here offered by contracts) in some off peak time segments can lead to an increase

of capacity and a decrease of market power.

The introduction of contracts with given capacities does not necessarily enlarge the set of time seg-

ments with corner contract equilibria. Suppose that neither player at the capacity equilibrium of the

game without contracts finds its Allaz-Vila generation exceeding capacity and there is no incentive for

these generators to reach a corner solution at these capacity levels. Then the capacities of the game

without contracts may still be in equilibrium (and are in any case a local equilibrium). Alternatively,

there can be an incentive to decrease capacity in order to create the possibility of a corner equilibrium.
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This introduces a discontinuity in the profit functions. We illustrate this phenomenon in Figure 1 which

shows the profit of both players as a function of their capacities in a game with two load segments, peak

and off peak. Assume again that we start from the equilibrium capacities (x∗i , x
∗
−i) of the game with

no contracts and there is an interior equilibrium for these capacities in the off peak segment. Suppose

also that the Allaz Vila solution is also an interior equilibrium in the off peak segment in the contract

game and there is no corner equilibrium at that point. We then depict the profit function of player −i

when it decreases capacity with the other player remaining at x∗i . We first find an interval where the

interior equilibrium is the sole equilibrium in the contract market (αs − 2x−i − 2ν−i + νi < 0) . The

profit function splits into two components at xf
−i, where αs − 2x−i − 2ν−i + νi goes from a negative

value (interior equilibrium only) to zero, where there is both an interior and a corner equilibrium in the

contract market. We analyze what is taking place at this point in more detail.

Recall that one can always write

0 =
(
α− 2xf

−i + νi − 2ν−i

)
=

(4
5α− 2xf

−i − 12
5 ν−i + 8

5νi

)
+ 1

5
(
α+ 2ν−i − 3νi

)
.

Because 2
5 (α+ 2ν−i− 3νi) is the value of zi in the spot market of the no contract game, it is positive.

This implies that the first term in the right hand side is negative or that the Allaz-Vila solution zav
−i is

smaller than x−i and hence that there is both a corner and an interior equilibrium in the contract market

at (xf
−i, x

∗
i ). There is thus only an interior equilibrium in the contract market when x−i > xf

−i (because

α− 2x−i + νi − 2ν−i < 0), and both interior and corner equilibrium in some interval for xf
−i > x−i. The

upper function in the left part of the graph ( xf
−i > x−i) is the profit of player −i when it forecloses

the contract market. We include two profit functions for the corner solution to illustrate two possible

outcomes. The bottom function in the left part (that extends the function in the right part x−i > xf
−i )

is the profit of player −i with the interior solution in the off-peak period. The profit of player −i jumps

when it forecloses the market because player i has a discrete drop in production at the point where it is

foreclosed from the contract market, when −i is at capacity. With the interior-solution profit function,

profit is maximized in the figure at x∗−i. As drawn in the example, player −i can achieve a higher profit

with capacity xf
−i, when player i remains at x∗i . But there are two contract-market equilibria at (xf

−i, x
∗
i ),

both a corner and an interior, implying that player −i cannot guarantee a corner solution in the contract

market at xf
−i.

Decreasing x−i further, there is a region with only a corner equilibrium in the contract market. Let
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xu
−i be this point such that there is a unique corner equilibrium in the off peak segment of the contract

game for all x−i such that xu
−i > x−i . Player −i can set its capacity at this level and impose the corner

equilibrium on player i because it can always marginally decrease its capacity to a region where there

is only a corner equilibrium. The top curve in Figure 1 illustrates a case where player −i’s profits are

higher at xu
−i. However, this may not always be the case as seen in the middle curve. In the examples,

we show cases where the highest profits are at the interior solution. Note that profits are always higher

at xf
−i than at xu

−i when foreclosure happens. However, any capacity between these two points allows for

two equilibria on the contract market, which precludes finding a capacity equilibrium in such a region.

For illustrative purposes, in the next section, we present examples where xf
−i increases and decreases

capacity. However, we always show a decrease of capacity at xu
−i when the Allaz-Vila solution is interior

with the capacities from the game without futures and foreclosure is profitable.

The above reasoning assumes that player i remains at the no-contract equilibrium capacity x∗i . The

same reasoning can be applied for any other capacity adopted by player i, assuming that player −i

manages to secure the profit function of the corner equilibrium. When player −i decreases capacity to

foreclose the market,player i increases capacity. We present one possibility in Figure 2. Here capacity

and profit increase, illustrating that foreclosure by player −i does not necessarily hurt player i. We have

the following lemma on total capacity.

Lemma 8 Assume that there is an equilibrium (xu
−i, x

u
i ) where player −i can always enforce the corner

equilibrium by marginally decreasing its capacity at xu
−i to foreclose the contract market while increasing

its profits above the profits at the interior equilibrium of the contract game for those capacities. Then

total capacity decreases compared to the equilibrium of the no contract game

Proof. Player −i has to decrease capacity to xu
−i in order to guarantee foreclosure. Player i increases

capacity in response. Thus, we can use results in Murphy and Smeers (2005) that in the reaction curve of

player i, i increases capacity at a lower rate than −i decreases capacity. Thus, total capacity decreases.

6 Finding an equilibrium in the capacity game

Based on the necessary conditions. We can say:
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Figure 1: Profit for player −i as a function of capacity given x∗i

(i) Adding contracts in time segments of type (a) and (c) does not change the incentive to invest

(ii) Adding contracts in time segments of type (b) can produce different outcomes

• unconstrained equilibrium on the contract market, which do not change the incentive to invest

• a single corner equilibrium on the contract market that increases the incentive to invest

• a multiplicity of equilibria on the contract markets, which complicates the analysis of the

equilibrium in the capacity game.

• an incentive to decrease capacity in order to make it possible to guarantee a corner equilibrium,

which decreases total capacity

These results are obtained by only considering necessary conditions and are thus inconclusive: they do

not tell us anything positive about the outcome of the introduction of contract market but are indicative

that everything can happen. We confirm this conclusion numerically. We do this on a simple numerical

example: consider the situation with two time segments, peak and off peak, where αp = 300 and αb
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Figure 2: Profit for player i as a function of capacity given x∗−i and xu
−i

is varied. Suppose that the technologies have the costs k1 = 25, ν1 = 30 and k2 = 15, ν2 = 50. The

corresponding generation costs in base load would then be 55 and 65.

6.1 Case 1– αb = 100: low off peak demand: contract markets leave capacity

unchanged

With αb = 100 the demand level is low relative to the 300 of time segment 1 and there is a unique

equilibrium for all games with the production in the second time segment falling below capacity with and

without a contract market. Because the capacity constraint is binding only in the first time segment with

a contract market, the capacity level is unchanged with the addition of this market. The production in

the off peak segment increases as in Allaz Villa (1993). We know the equilibrium is unique by testing the

potential solution with zb
1 equal to capacity through calculating the left partial derivative of the futures

profit function with respect to zb
1 at this point. It is negative, given the optimal response, zb

2, at this point.

We conclude in this case that contracts have no effect on investments, they do not foreclose markets; they

mitigate market power in off peak but have no effect in peak load.
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x1 x2 Tot. cap. zb
1 zb

2 Tot. prod. Price s = p Price s = b

W/O forward 73.3 73.3 146.6 30 10 40 153.3 60

W/ forward 73.3 73.3 146.6 44 4 44 153.3 52

Table 1: An example with only an interior equilibrium, αb = 100

6.2 Case 2 – αb = 200: medium base demand: contract markets increase

capacity

We now change αb to 200. This higher intercept increases total production in the second time segment.

If there were no capacity limit, player 1 would produce beyond the capacity limit. As proved before,

this means there is no interior solution and adding contracts leads to a corner solution where player 1

forecloses the contract market. We tested the alternative equilibrium with player 2 at capacity in the

second step. That solution is not an equilibrium. Thus, we have another unique equilibrium. Even

though player 2 is excluded from the contract market, total capacity and production increase in both

load steps.

x1 x2 Tot. cap. zb
1 zb

2 Tot. prod. Price s = p Price s = b

W/O forward 73.3 73.3 146.6 63.3 43.3 106.6 153.3 93.4

W/ forward 82 69 151 82 34 116 149 84

Table 2: An example with one corner equilibrium, αb = 200

6.3 Case 3 – αb = 225: medium base demand: multiple corner solutions

Increasing αb to 225 leads to two corner equilibria in the contract market where each of the players can

move to capacity in the second load step and foreclose the contract market, even though without contracts

neither player operates at capacity in the second load step. As in the previous example, production

increases with the addition of a contract market no matter which player forecloses the contract market.

The results are as follows.

Because of the multiplicity of corner equilibrium, one cannot concluded that (87, 66.5) or (72.5, 75)

are capacity equilibria.
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x1 x2 Tot. cap. zb
1 zb

2 Tot. prod. Price s = p Price s = b

W/O forward 73.3 73.3 146.6 71.7 51.7 123.4 153.3 101.3

W/ player 1 corner 87 66.5 153.5 87 44 131 146.5 94

W/ player 2 corner 72.5 75 147.5 60 75 135 152.5 90

Table 3: An example with two corner equilibria, αb = 225

6.4 Case 4 – αb = 155 and 132: the forward market decreases capacity and

the corner equilibrium is guaranteed with αb = 155 but is not guaranteed

with αb = 132

So far in the examples we have presented either total capacity does not change or it increases after

introducing the contract market. We begin with the case where αb = 155. In Table 4 a case where

capacity would decrease after introducing the contract market if player 1 could guarantee the corner

equilibrium in the off peak period. We indeed see that there exist regions of capacities for which there

exist two equilibria in the contract market. The profit of player 1 is higher at the corner equilibrium,

but there is no guarantee that it can secure this profit because of the other interior equilibrium. Starting

from capacities in the no contract equilibrium (x1 = x2 = 73.3) the profit of player 1 first falls when it

decreases its capacity as long as the corresponding contract equilibrium remains interior. When player 1

reduces capacity below its Allaz Vila production, there is no interior equilibrium and the corner solution

is guaranteed in the game with contracts. Before reaching that capacity level, however, there is a region

where there is both a corner and an interior equilibrium in the contract market. The capacity of 72.5 is the

point of discontinuity in the profit function of player 1 in Figure 1 (it is the point where α+νi−2ν−i = 2xi).

At this point the optimal y2
b goes from a positive number to 0 if player 1 can achieve the corner solution.

The question is whether this would be profitable, and if so whether player 1 can guarantee that

solution. We now solve for the necessary conditions, assuming that player 1 can secure the corner

solution in the contract market. First, the equilibrium solution at the corner is x1 = 72.5, x2 = 73.75.

To verify whether this is indeed an equilibrium, we look at the sequence of moves the players would

have to take to go from the interior solution to this corner solution. Player 1 moves first. If player 1

sets its capacity to 72.5 with player 2 unchanged, its profit drops from 3778 with the starting interior

equilibrium with capacities of (73.333,73.333) to 3777 with capacities of (72.5,73.333). This shows that

player 1 would not make the unilateral move to the lower capacity if it retains the interior equilibrium
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in the contract market. At the corner equilibrium in the contracts market with capacities (72.5,73.333)

the profit for player 1 is 4003.

If player 1 can guarantee the corner solution, it is profitable to move from the interior equilibrium

to the corner solution in the capacity game. Since player 2 increases capacity in response to player 1’s

decrease in capacity, the corner equilibrium capacities are (72.5,73.75) and profit of player 1 is 3987.5, an

increase over the interior solution. But there are still two contract equilibria (the corner and the interior)

at those capacities, implying that player 1 is taking the risk of not insuring the corner equilibrium in the

contract game. To guarantee that that the corner equilibrium obtains, player 1 has to drop its capacity to

66 (α− (3νi− 2ν−i)) = xi where the Allaz Vila solution is at capacity), resulting in a profit of 3965.5 for

player 1 with capacities (66,73.333). Thus, it is profitable for player 1 to cut capacity to the point where

it guarantees the corner equilibrium when αb = 155. The optimal response by player 2 is to increase

capacity, leading to an equilibrium of (66,77) and a profit of 3844.5, which is higher than the profit of 3778

at the interior solution. Table 4 gives the numerical results for the interior solution and the guaranteed

corner equilibrium. Results with αb = 155, therefore, show that at this reduced capacity level player 1’s

profit is higher than at the interior solution, which actually is just a local equilibrium at (73.333,73.333).

x1 x2 Tot. cap. zb
1 zb

2 Tot. prod. Price s = p Price s = b

W/O forward 73.3 73.3 146.6 48.33 28.33 76.67 153.3 78.3

W/ interior 73.33 73.33 146.67 66 26 92 153.3 63

W/ corner 66 77 143 66 19.5 85 157 70

Table 4: An example where total capacity decreases with the addition of contract markets and the equi-

librium is unique, αb = 155

We repeat the moves of the players in the game with αb = 132 (Table 5). The interior equilibrium

again has capacities (73.333,73.333) and the profit of player 1 is 3495.4. Player 1 looks at decreasing its

capacity to the point where there are both corner and interior equilibria in the contracts game and finds

its profit at the corner solution with capacities of (61,73.333)to be 3543.1, which is a profitable move

if the corner equilibrium can be guaranteed. With the player 2 response, we reach the equilibrium of

(61,79.5) and the profit of player 1 is 3355. That is, the profit is actually lower than with the interior

local equilibrium. Nevertheless, this is an equilibrium if the corner equilibrium can be guaranteed in the

contracts game because once can calculate that 61 is the best response of player 1 to 79.5. To guarantee
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the corner solution, player 1 would have to cut its capacity to 56.8. With capacities (56.8,73.333) the

profit drops to 3478.1 and it is not profitable for player 1 to guarantee the corner solution. The following

table gives the results for the interior solution and the corner solution that is not necessarily guaranteed.

x1 x2 Tot. cap. zb
1 zb

2 Tot. prod. Price s = p Price s = b

W/O forward 73.3 73.3 146.7 40.7 20.7 61.4 153.3 70.6

W/ interior 73.3 73.3 146.7 56.8 16.8 73.6 153.3 58.4

W/ corner 61 79.5 140.5 61 10.5 71.5 159.5 60.5

Table 5: An example where total capacity decreases with the addition of contract markets, αb = 132

6.5 Case 5 – αb = 160: the contract market increases capacity with the corner

equilibrium. However, there is also an interior equilibrium

This case rounds out the possible solutions to the game (Table 6). Capacity increases with the corner

equilibrium. However, at that capacity player 1 cannot guarantee the corner equilibrium. If it reduces

capacity to 68 to guarantee a corner equilibrium, then capacity decreases. At this reduced capacity the

profits for player 1 are higher than with the interior equilibrium but lower than they would be if player

1 could enforce the corner equilibrium with the interior capacities.

x1 x2 Tot. cap. zb
1 zb

2 Tot. prod. Price s = p Price s = b

W/O forward 73.3 73.3 146.7 50 30 80 153.3 80

W/ interior 73.3 73.3 146.7 68 28 96 153.3 64

W/ corner 74 73 147 74 18 94 155 62

Table 6: An example where total capacity decreases with the addition of contract markets, αb = 160

7 Conclusion

Market power remains a subject of intense interest in the restructured electricity industry. It has been

claimed that firms commonly exercise market power during periods of high demand while markets can be
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quite competitive during low demand. Contracts are commonly advocated by economists to mitigate this

exercise of market power. Competition authorities have taken another perspective. They see contracts

concluded by firms in dominant positions as an instrument to foreclose the market and hence reinforce

their position. We examine these different points through a simple model. There are two agents each

operating a different technology. Firms can invest, contract part of their production forward, and sell

the rest on the spot market. All of this is driven by the standard Cournot behavior. We assume that

their incentive to contract is driven by an Allaz-Vila representation of contract markets that we adapt to

a game with capacities. We assess the situation by comparing subgame perfect equilibrium in markets

with and without contracts.

Our results are not in line with the common wisdom. We first find that contracts have essentially no

effect in periods of high demand. Firms that exercise market power without contracts find no advantage

in these contracts. In contrast we find that the role of contracts is mainly felt during periods of low

demand, where observation indicates that firms do not exercise substantial market power. But assuming

that they still behave as Cournot players in low-demand periods, our results cast some doubt on the

validity of the conclusion of both regulatory economists and competition authorities. We indeed find that

contracts allow dominant firms to foreclose the market as foreseen by competition authorities. But the

effects of that foreclosure are ambiguous. If the capacities inherited from a market without contracts are

high compared to demand in off peak periods, the foreclosure effect increases the incentive to invest and

hence mitigates market power. In contrast, if capacities inherited from the market without contracts are

relatively low compared to demand in these low periods, it can be profitable to reduce investments and

increase market power. In short, the impact of contracts is totally unpredictable in this small model.

The question becomes how can it be more predictable the complexities of real world electricity markets?
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Appendix 1: Proof of Lemma 1

Lemma A1 Let (xi, x−i) satisfy

α− 2xi − x−i − νi > 0 i = 1, 2

then

yi ≥ ỹi(x) = −(α− 2xi − x−i − νi) < 0, i = 1, 2

is an equilibrium of the contract game.

Proof. Take x given and let ỹi = ỹi(x), i = 1, 2 for this given x. One has

α− 2xi − x−i − νi + ỹi = 0, i = 1, 2

and hence zi = xi is an equilibrium on the spot game.

We want to prove that any yi ≥ ỹi is the best response of player i to a contract position y−i ≥ ỹ−i of

player −i. Suppose yi > ỹi, one has

α− 2xi − x−i − νi + yi = λi > 0

α− xi − 2x−i − ν−i + y−i = λ−i ≥ 0

and zi = xi remains an equilibrium on the spot game. Taking yi > ỹi, therefore, maintains the profit of

player i, whatever y−i ≥ ỹ−i is selected by player −i.
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Let yi < ỹi, then y−i ≥ ỹ−i. zi becomes smaller than xi and one can write the equilibrium conditions of

the spot game as

α− 2zi − x−i − νi + yi = 0

α− zi − 2x−i − ν−i + y−i = λ−i > 0.

This implies

zi =
1
2

(α− x−i − νi + yi)

and

Πf
i (x; yi, y−i) =

1
4
[
(α− x−i − νi)2 − y2

i

]
.

The optimum of the profit of player i is achieved for yi = 0 with a payoff equal to 1
4 (α− x−i− νi)2. This

is the global optimum of player i if and only if

0 = yi < ỹi = −(α− 2xi − x−i − νi) < 0 ,whichisacontradiction.

Therefore, yi < ỹi cannot be the best response of player i to y−i ≥ ỹ−i. Thus ỹi(x), i = 1, 2 is a sub-

game perfect equilibrium of the contract game and any yi ≥ ỹi(x), i = 1, 2 is also a sub-game perfect

equilibrium of the contract game.

Appendix 2: Proof of Lemma 2

Lemma A2.1 For a given (xi, x−i), if α − 2zi − x−i − νi = 0, α − zi − 2x−i − ν−i > 0, zi < xi and

z−i = x−i, then yi = 0 is the optimal response of player i to any y−i ≥ ỹ−i(x) = −(α− xi− 2x−i− ν−i).

Proof. Suppose player −i takes a position y−i ≥ ỹ−i(x) and yi = 0. Consider the relations

α− 2zi − x−i − νi = 0

α− zi − 2x−i − ν−i + y−i = λ−i ≥ 0.

Because the definition of ỹ−i(x) implies α− xi − 2x−i − ν−i + ỹ−i(x) = 0, any zi < xi and y−i > ỹ−i(x)

satisfies α− zi − 2x−i − ν−i + y−i = λ−i ≥ 0, which shows that zi < xi and z−i = x−i is the equilibrium

on the spot market.

Consider the reaction of player i to y−i > ỹ−i(x). Because y−i ≥ ỹ−i(x), α−xi−2x−i−ν−i +y−i ≥ 0,

and α− zi− 2x−i− ν−i + y−i ≥ 0 for all zi < xi. Therefore, z−i = x−i whenever y−i ≥ ỹ−i(x), whatever

the position of player i on the contract market. Consider the following strategies of player i, keeping in
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mind that y−i ≥ ỹ−i(x) implies z−i = x−i, whatever i does on the forward market. Because the shape of

the objective function depends on the value of yi, we treat two cases:

(i) yi ≥ ỹi(x) = −(α− 2xi − x−i − νi) > 0

(ii) yi ≤ ỹi(x) = −(α− 2xi − x−i − νi) > 0.

Note first that player i’s payoff in case (i) remains constant at (α− xi − x−i − νi)xi (which is lower than

its payoff at yi = 0) for all yi ≥ ỹi(x) > 0. Therefore player i cannot improve its payoff by selecting

yi ≥ ỹi(x) and the optimum in case (i) is a global optimum.

Player i’s payoff in case (ii) can be computed as follows. Because yi ≤ ỹi(x), zi ≤ xi and zi solves

α− 2zi − x−i − νi + yi = 0

α− zi − 2x−i − ν−i + y−i = λ−i > 0.

As in Lemma A1, the optimal response of player i is

zi =
1
2

(α− x−i − νi + yi) < xi

and

Πf
i (x; yi, y−i) =

1
4
[
(α− x−i − νi)2 − y2

i

]
.

The maximum profit is achieved for yi = 0 with the player i payoff equal to 1
4 (α−x−i− νi)2. This is the

global optimum of player i’s payoff if one has both

0 = yi < ỹi(x) = −(α− 2xi − x−i − νi) > 0

and
1
4

(α− x−i − νi)2 > (α− xi − x−i − νi)xi.

The first condition is true by assumption. To verify the second condition, first note that it can be

rewritten as

(α− x−i − νi)2 − 4(α− x−i − νi)xi + 4x2
i > 0

or

(α− 2xi − x−i − νi)2 > 0

which is always satisfied.
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The optimal reaction of player i is thus yi = 0 when player −i selects y−i ≥ ȳ−i and α−2xi−x−i−νi <

0. Note that this solution is unique by the strict concavity of the objective function in this range. This

proves the lemma.

Lemma A2.2 Let α − 2zi − x−i − νi = 0, α − zi − 2x−i − ν−i > 0, zi < xi and z−i = x−i. Then

y−i ≥ ỹ−i(x) is the optimal reaction of player −i to yi = 0.

Proof. With yi = 0, define z̃i such that α−2z̃i−x−i−νi = 0. By assumption, z̃i is smaller than xi. We

consider three cases that reflect the shape of the objective function of player −i, depending on whether

the spot decisions of players i and −i are at capacity. We examine the following strategies of player −i

on the forward market.

(i) y−i is selected to guarantee z−i = x−i.

(ii) y−i is selected to optimize the payoff in the range where zi < xi, z−i < x−i.

(iii) y−i is selected to optimize the payoff in the range where zi = xi, z−i < x−i.

We successively consider these three cases and compute the resulting payoff for player −i.

(i) Player −i uses the contract market to guarantee the full utilization of its capacity and it takes

y−i ≥ ˜̃y−i(x) where ˜̃y−i(x) is defined by

α− z̃i − 2x−i − ν−i + ˜̃y−i(x) = 0.

Because zi is equal to

z̃i =
1
2

(α− x−i − νi).

One has ˜̃y−i = −(α− 2x−i − ν−i − z̃i) =
(
α

2
− 3

2
x−i − ν−i +

1
2
νi

)
The equilibrium on the spot market associated with yi = 0, y−i ≥ ˜̃y−i(x) is zi = z̃i and z−i = x−i.

The payoff for player −i is

(α− z̃i − x−i − ν−i)x−i =
1
2

(α− x−i + 2νi − ν−i)x−i.
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(ii) Let y−i = ˜̃y−i(x) − ε−i where ε−i is small enough to guarantee that zi does reach xi and z−i does

not hit zero. zi and z−i then solve the system

α− 2zi − z−i − νi = 0

α− zi − 2z−i − ν−i + y−i = 0

We can solve for zi and z−i as a function of y−i to obtain as in relation (23) after setting yi = 0

zi = 1
3

[
α− 2νi + (ν−i − y−i)

]
z−i = 1

3

[
α− 2(ν−i − y−i) + νi

]
.

The price of the market is then

α− zi − z−i =
1
3

(α+ νi + ν−i − y−i)

and the profit of the player −i

1
3

(
α+ νi − 2ν−i − y−i

)
1
3 (α− 2ν−i + νi + 2y−i)

or 1
9

[(
α+ νi − 2ν−i

)2 + y−i

(
α+ νi − 2ν−i

)
− 2y2

−i

]
.

The derivative of this profit function with respect to y−i is

α+ νi − 2ν−i − 4y−i.

Let ˜̃y−i be the value of y−i where zi is equal to

z̃i =
1
2

(α− x−i − νi).

We have ˜̃y−i = −(α− 2x−i − ν−i − z̃i) =
(
α

2
− 3

2
x−i − ν−i +

1
2
νi)

. Computing this derivative of the profit function of player −i at ˜̃y−i, we have

α+ νi − 2ν−i + 2α− 6x−i + 4ν−i + 2νi

= 3α− 6x−i + 3νi − 6ν−i = 3(α− 2x−i + νi − 2ν−i).

The derivative is positive (and hence y−i = ˜̃y−i(x) − ε−i is not optimal) if α + νi − 2ν−i > 2x−i.

We now verify that this is true under the current assumptions.

We have seen that α − 2zi − x−i − νi = 0, zi < xi and α − zi − 2x−i − ν−i > 0 implies z−i = x−i

or that the unconstrained spot equilibrium zc
−i > x−i.
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By relation (23) we have

zc
−i =

1
3
(
α− 2ν−i + ν+i

)
> x−i

and hence

α− 2ν−i + ν−i > 3x−i > 2x−i

which proves the desired inequality.

(iii) The following elaborates on the same concavity argument to prove that decreasing y−i to the level

where zi reaches xi or z−i reaches 0 cannot maximize Πf
−i[x; 0, y−i]. There is obviously no gain for

player −i to further decrease y−i if z−i hits zero before zi reaches xi since its payoff is then exactly

zero. Consider the alternative case where zi hits xi and z−i is still positive. This occurs for some

z−i that satisfies

α− 2xi − z−i − νi = 0

or z−i = α− 2xi − νi.

Consider decreasing y−i further to check the possibility of the resulting price increasing profits. We

show that this cannot happen. Let z−i = z−i + ε. The corresponding profit of player −i is

(α− xi − z−i − ε− ν−i)(z−i + ε).

The derivative of this expression at ε = 0 (for z−i = z−i) is equal to 3xi + (2νi − ν−i) − α. This

expression is positive because it is greater than 3zi + (2νi − ν−i)− α, which is equal to

2(−α+ 2zi + x−i + νi) + (αi − zi − 2x−i − ν−i)

which is positive by assumption.

The conclusion is that it cannot pay to further decrease yi beyond the point where zi = xi. y−i ≥˜̃y−i(x) thus guaranteeing the maximum profit of player −i when yi = 0. Because −(αs−xi−2x−i−

ν−i) > −(αs− zi−2x−i−ν−i) = ˜̃y−i(x), we have proved that any ys
−i ≥ −(αs−xi−2x−i− ν−i) =

ỹ−i(x) is an optimal reaction of player −i to yi = 0.

Appendix 3: Proofs of Lemmas 5 and 6

Lemma A3.1 Assume that there exists no corner equilibrium in time segments of type (b) in the contract

game. Then there exists an interior equilibrium (the Allaz-Vila solution remains within capacities).
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Proof. Corner equilibria, if they existed would be given by

y−i = 0, yi ≥ ỹi(x) = −(α− 2xi − x−i − νi) > 0

and yi = 0, y−i ≥ ỹ−i(x) = −(α− xi − 2x−i − ν−i) > 0.

Take (yi = 0, y−i ≥ ỹ−i(x)) and assume it is not a corner equilibrium. We know from the proof of

part (i) of Lemma A.2.2 that the objective function of player −i does not increase when increasing y−i

beyond ỹ−i(x) > ˜̃y−i(x). Therefore, this point not being an equilibrium implies that player −i has an

incentive to decrease y−i below ỹ−i(x) or more precisely below ˜̃y−i(x) such that

α− 2z̃i − x−i − νi = 0

α− z̃i − 2x−i − ν−i + ˜̃y−i(x) = 0

In order to explore this incentive, consider values of y−i = ˜̃y−i − ε. Following the same reasoning as

in part (ii) of Lemma A.2.2 we can show that the profit function of player −i for y−i = ˜̃y−i(x)− ε, yi = 0

is quadratic and its left derivative at ˜̃y−i(x) is

α+ νi − 2ν−i − 4˜̃y−i = 3(α− 2x−i + νi − 2ν−i).

Departing at this stage from the proof of part (ii) of Lemma A.2.2, we note that player −i has an incentive

to decrease y−i below ˜̃y−i if

α− 2x−i + νi − 2ν−i < 0.

We want to show that this implies that the solution of the Allaz-Vila problem is bounded away by x−i or

2
5
(
α− 3ν−i + 2νi

)
< x−i

or equivalently

0 ≥ 4
5α−

12ν−i
5 + 8

5νi − 2x−i

=
(
α− 2x−i − 2ν−i + νi

)
−
(1

5α+ 2
5ν−i − 3

5νi

)
This relation is true because the first term of the right-hand side is negative as assumed and the second

term is a multiple of α+ 2ν−i − 3νi which is the assumed positive value of zi in the solution of the Allaz

Vila problem.

Assuming α − 2x−i + νi − 2ν−i < 0 is a sufficient by not necessary condition to incentivize player

−i to decrease y−i. One can indeed have a positive derivative of the profit of player −i at ˜̃y−i(x), but

an incentive to decrease y−i(x) to an extent sufficient to push zi to xi. Part (iii) of the proof of Lemma

A.2.2 shows that his happens for a value of z−i that satisfies

α− 2xi − z−i − νi = 0 or z−i = α− 2xi − νi.
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We follow again the reasoning of the proof of (iii) of Lemma A.2.2 to show that the derivative of the

profit function of player −i for z−i = z−i + ε is

(α− xi − z−i − ε− ν−i)(z−i + ε)

with derivative of ε = 0 equal to 3xi + (2νi − ν−i) − α. We now depart from the proof of (iii) of

Lemma A.2.2 to note the following. The case discussed here is of type (b), that is the solution of the

no-forward-markets case remains below capacity, that is

zi =
1
3
(
α− 2νi + ν−i

)
< xi

or

3xi − α+ 2νi − ν−i > 0.

This shows that the incentive of −i to decrease y−i cannot go beyond pushing it below z−i. Summing

up, yi = 0, y−i ≥ ỹ−i(x) not being a corner equilibrium implies that the z−i that is the solution of the

Allaz Vila solution remain away from x−i. The same reasoning applied to

y−i = 0 yi ≥ −yi(x)

implies that the solution zi of the Allaz Vila problem remains away from xi. The absence of a corner

solution therefore implies that the Allaz Vila solution remains away from the bounds and hence is an

unconstrained equilibrium.

Lemma A3.2 Assume that there is no interior equilibrium in time segment s of type (b) in the contract

game. Then there exists a corner equilibrium.

Proof. The non-existence of the interior equilibrium implies that the solution of the Allaz-Vila problem

exceeds one of the bounds. Suppose

2
5
(
α− 3ν−i + 2νi

)
> x−i.

we want to show that part (ii) of the proof of Lemma A.2.2 holds. That is, we want to show that the

derivative of the profit function of player −i at ỹ−i is positive. Using the argument of the proof of part

(ii) of Lemma A.2.2, we know that this derivative is equal to

α− 2x−i + νi − 2ν−i.
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We then write (
α− 2x−i + νi − 2ν−i

)
=

(4
5α− 2x−i − 12

5 ν−i + 8
5νi

)
+ 1

5
(
α+ 2ν−i − 3νi

)
The first term of the righthand side is positive by assumption and the second term is positive because it

is the value of the i component of the Allaz-Vila solution.

Using the same reasoning as in Lemma 5, we prove that player −i cannot have an incentive to lower y−i

to the point where z−i becomes lower than z−i. Therefore yi = 0, y−i ≥ ỹ−i(x) is a corner equilibrium.
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