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Abstract

We study alternative market power mitigation measures in a model of the electricity mar-
ket where a dominant producer faces a competitive fringe with the same cost structure. We
characterise the asset divestment by the dominant firm which achieves the greatest reduction in
prices (taking the size of the divestment as given). The optimal divestment entails the sale of
assets which are price-setting post-divestment. A divestment of this type can be several times
more effective in reducing prices than divestments of baseload (or low-cost) assets of the same
size. We also establish that Virtual Power Plant schemes are at best equivalent to baseload
divestments in terms of their impact on consumer welfare, and cannot replicate the optimal
divestment.

JEL classification codes: D42, L13, L40, L94.
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remedies.

1 Introduction

Regulatory and antitrust proceedings often require the application of remedies, in order to mitigate
the market power of the affected parties or prevent a reduction in competition from a change
in market structure. The appropriate remedy design often plays a critical role in ensuring that
competition remains effective in the presence of firms with market power. This paper studies the
issue of optimal remedy design in a stylised model that is designed to capture the essential features
of the wholesale electricity market. Our analysis focuses on the relative impact of different types
of asset divestments, and on the comparison between divestments and financial contracts (in the
form of Virtual Power Plants (VPP)). Our framework and results are however applicable also to
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industries which share some of the basic features of power generation (most notably, a homogenous
final product and cost asymmetries between different assets).

In electricity generation markets, the divestment of actual and/or virtual capacity owned by
producers with market power is often employed as a remedy by competition authorities and sec-
tor regulators to enhance competition. Outright plant divestments and VPP schemes have been
used across Europe in recent times, in the context of merger control proceedings, abuse of domi-
nance investigations, and regulatory reviews of market power in electricity markets. Examples of
mergers or joint ventures in the electricity sector where divestments or VPPs have been required
by the competition authorities include Gas Natural/Union Fenosa (2009), EDF/British Energy
(2008), Gas Natural/Endesa (2006), GDF/Suez (2006), Nuon/Reliant (2003), ESB/Statoil (2002)
and EDF/EnBW (2000).1 Alleged abuse of dominance cases where divestments of generation ca-
pacity or VPPs have been implemented as a remedy include proceedings involving E.On (2008),
RWE (2008) and Enel (2006). Divestments of power plants have also been used by regulators
to mitigate market power of incumbent generators in the UK and Italy in the 1990s, whilst in
Spain and Portugal regulatory contracts and more recently VPPs have been employed to make the
electricity market more competitive.

This paper analyses the competitive impact of divestments and of VPPs in a stylised model of
a wholesale electricity market where a dominant producer faces a competitive fringe with the same
cost structure. The aim of the paper is two-fold: to study the differential impact of divestments
depending on the costs of the generation capacity that is sold by the dominant firm (and thereby
identify the divestment policy which achieves the largest reduction in prices); and to compare the
effectiveness of divestments of generation capacity with that of VPPs.

We find that the position of the divested capacity on the marginal cost curve of the dominant
firm has a strong effect on the impact that a divestment has on market prices. For sufficiently large
divestments, the divestment policy which achieves the greatest reduction in prices (which we define
as the “optimal” divestment) is the one which divests marginal plants, whose range of costs encom-
passes the post-divestment equilibrium price (at a given demand level). The optimal divestment
includes capacity whose highest cost lies below the pre-divestment price (i.e. capacity that is being
strategically withheld from the market by the dominant firm), but above the competitive price (i.e.
whose costs are not ‘too’ low). In particular, unless the divestment is relatively large (i.e. strictly
larger than the output withheld by the dominant firm relative to the competitive equilibrium), the
divestment should not include the cheapest capacity withheld from the market, and should instead
include more expensive capacity (as long as it is not too expensive). Only if the divestment is
above a certain size threshold, it should then optimally include the lowest-cost capacity withheld
by the dominant firm relative to the competitive benchmark. In this case the optimal divestment
also achieves the competitive price.

We find that the optimal divestment induces the dominant firm to price on the flatter segment of
its residual demand curve. Depending on the size of the divestment, the most effective divestment

1Divestments of generation capacity were also implemented in the British market in the context of two mergers
involving the incumbent generators and retail suppliers during the 1990s.
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can reduce prices several times more than the divestment of baseload plants (i.e. capacity used by
the dominant firm in the pre-divestment equilibrium). We also find that the optimal divestment
always increases total welfare (or efficiency), whilst this is not the case for all types of divestments.
Our results on divestments have implications for the assessment of the impact of independent entry,
showing that the entry of marginal plants can be significantly more effective in reducing prices than
the entry of baseload plants.

The paper compares the optimal divestment policy to VPP arrangements. We abstract in our
modelling from some of the potential advantages of VPPs, including the fact that they may be easier
and faster to implement than plant divestments, and can be reversed once competitive conditions
improve. We also do not model some of the shortcomings of VPPs which have been identified in
dynamic settings (e.g. the fact that they may not mitigate market power effectively if VPP auctions
are repeated over time, thereby potentially giving incentives to producers with market power to
increase spot prices to affect future VPP revenues).

We model VPPs as a set of several call options on the output of the dominant firm with different
exercise prices. We establish that VPPs are always weakly less effective than plant divestments in
reducing prices and they can at best replicate the impact of a baseload divestment (if the strike
prices are set sufficiently low, implying that the VPP works like a forward contract). This result
implies that setting the strike prices of a VPP so as to mimic the variable costs of marginal plants
does not increase the effectiveness of the remedy. In particular, it does not ensure that the sale of
virtual plants will be as effective as the corresponding divestment of generating capacity in reducing
prices.

There is a relatively limited literature on the impact of divestments and VPPs on market power
in electricity generation markets, and on their relative effectiveness. Green (1996) is a relatively
early contribution which considers the impact of divestments in a model of supply-function equilib-
rium. He focuses on divestments that apply uniformly to the entire portfolio of the larger incumbent
generators, which can therefore be modelled by simply changing the slope of the respective cost
curves. This approach generates analytical convenient results, but cannot be used to analyse di-
vestments of assets that are located at different positions on the cost curve of a dominant generator
(which is the main focus of our paper).

A significant part of the related academic research to date has focused on the impact of forward
contracts on market power. This literature is relevant to VPPs since forward contracts can be
interpreted as call options which are exercised by the option holder independently of the spot price
(i.e. the options are always “in the money”). This strand of the literature was started by the
contribution by Allaz and Vila (1993), which established that forward contracts can significantly
increase competition in spot markets in a Cournot duopoly model. Newbery (1998), Green (1999),
and Bushnell (2007) extend some of the results established by Allaz and Vila to competition in
supply functions and Cournot competition with multiple firms, in the specific context of electricity
markets.

More recently some papers have noted that the pro-competitive impact of forward contracts
in electricity markets may be mitigated in the presence of repeated interaction with or without
asymmetric information on the costs of the dominant firms (see Schultz, 2007, and Zhang and
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Zwart, 2006 respectively), or if contracts are not assigned to the largest firms in the market, in a
model with discrete bidding functions (Fabra and de Frutos, 2008). Our paper shows that even
in the absence of these circumstances, contracts and/or VPPs are inferior to divestments as an
instrument to increase competition in electricity markets.

Willems (2006) is more closely related to our paper. Willems compares the effectiveness of
“financial” and “physical” VPPs, where the latter are defined as options for capacity that are
directly bid in the market by the option holder (whilst financial VPPs are simply call options which
are settled once the spot market clears). He finds that the market is more competitive with physical
rather than financial options, due to the assumed impact of physical options on the conjectures
made by strategic players. The effect identified by Willems is not present in our framework, since
physical and financial options are equivalent in the absence of strategic interaction (which is the
case for the residual monopoly setting with a competitive fringe that we adopt). Nonetheless we
find that − even in a residual monopoly framework − divestments and VPPs can have a very
different impact on market prices, due to the fact that divestments have different properties than
physical options (as modelled by Willems) and can be significantly more pro-competitive than
option contracts.

More generally, the results presented in this paper are related to some of the points noted by
Armington et al. (2006) and Wolak and McRae (2008). These two articles discuss in qualitative
terms how divestments of generation capacity can be utilised to remedy the expected impact of a
merger on prices, using the specific example of the proposed Exelon/PSEG merger in the US in
2006. The remedies imposed by the US Department of Justice in that merger focused on divesting
‘ability’ assets, whose costs were close to the market clearing price, implying that the merged entity
faced a low opportunity cost of withholding them from the market. By divesting these plants, the
competition authority sought to reduce the ability and incentives of the merging parties to increase
prices. The results presented in our paper formalise and extend this intuition, identifying exactly
which ability assets should be divested to maximise the pro-competitive impact of the remedy (for
a given level of demand). Our results also provide formal support to the relatively commonly-held
view in the literature and decision practice on electricity markets that ownership of price-setting
assets confers greater market power than ownership of baseload plants, even though both types of
assets contribute to the presence of market power (for a discussion see Newbery, 2005, and Federico
et al. 2008; see also OECD, 2005 for some related results).

The structure of the remainder of this paper is as follows. Section 2 describes the set-up of
our model, including a characterisation of the residual monopoly (or pre-divestment) equilibrium.
Section 3 solves the case of divestments of intermediate size (which we treat as our benchmark
divestment scenario). Section 4 presents our results for VPPs, comparing them to those obtained
for intermediate divestments. Section 5 extends our core results to the cases of small and large
divestments, whilst Section 6 concludes.
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2 Model set-up

We model a market with a dominant electricity firm facing a competitive fringe that offers all of its
output at cost.2 We also assume for simplicity that pre-divestment the dominant firm and the fringe
have the same linear and increasing marginal cost function, with slope γ. The marginal cost function
can be interpreted as the aggregation of production from several atomistic generation plants with
different marginal costs, stacked in ‘merit order’, from the cheapest to the most expensive. We
define marginal costs for each firm i as ci and output as qi. We also adopt subscript d for the
dominant firm and f for the fringe. Our set-up implies that ci = γqi for i = d, f .

We also assume that total demand is perfectly price inelastic and takes a value of µ. We assume
a constant willingness to pay for consumers that lies above the pre-divestment equilibrium price.
This ensures that total and consumer surplus are finite. The assumption of inelastic demand also
implies that consumer welfare decreases monotonically with the market price, and that total welfare
increases if total production costs decrease.

2.1 Pre-divestment equilibrium

For a given price p, the competitive fringe always produce at its marginal cost: p = cf = γqf , where
qf = µ− qd, implying that p = γ(µ− qd).

The dominant firm solves maxp pqd−
∫
cddq, which is equivalent to solving maxqd γ(µ−qd)qd−

(γ/2)(qd)
2. The first-order condition yields:3

q∗d =
µ

3
; and p∗ =

2

3
γµ

where the latter defines the residual monopoly (or pre-divestment) price level.
In the pre-divestment equilibrium the dominant firm therefore serves a third of demand, rather

than half of demand as it would in a competitive equilibrium. The quantity between µ
2 and µ

3 is
withheld from the market, forcing more expensive generation units owned by the fringe to produce,
thereby raising prices and lowering both consumer and total welfare. Note that the competitive
price (i.e. the price which would result if all production plants in the market were offered at their
marginal cost) is given by pc = 1

2γµ.

2Whilst this set-up is stylised, it is also a reasonable representation of the competitive structure of a number of
European power markets, including Belgium, France, Ireland, Italy, and Portugal. The results that we present below
are also directly applicable to the competitive residual demand framework proposed by Gilbert and Newbery (2008)
for the evaluation of mergers in the electricity sector. Our results can also be applied to oligopoly models which
assume that firms compete with discrete bids. In these models in any given pure-strategy equilibrium only one firm
exercises market power and other firms behave as if they offered of all their output at cost (see Fabra and de Frutos,
2008). This implies that as long as a given equilibrium continues to exist after the application of a divestment/VPP
to the price-setting firm, such equilibrium can be characterised using the model of a dominant firm with a competitive
fringe.

3The second-order conditions are satisfied throughout the analysis.
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2.2 Definition of divestment

We model divestments of generation units that are located contiguously on the marginal cost
function of the dominant firm. The maximum output (or capacity) that can be produced by the
divested units is defined as δ. This parameter describes the ‘size’ of the divestment. We treat δ as
an exogenous parameter in our model. This parameter can interpreted as the outcome of a bargain
between a regulator that seeks to mitigate market power and other groups which oppose such
intervention. In the context of a specific antitrust procedure, the size of the divestment can also be
thought of as the smallest intervention required to eliminate the price increase that is associated
with a competition concern (e.g. a merger, or an abuse of dominance).

We define the marginal cost of the most expensive divested unit as c. This uniquely defines the
‘position’ of the divestment on the cost curve of the dominant firm. The marginal cost of the least
expensive divested unit is therefore given by c = c− γδ . For notational purposes we also define q′

as follows: q′ = c
γ
.4

Divested generation units are assigned to the competitive fringe and are therefore offered to
the market at cost in the post-divestment equilibrium.5 Relative to the pre-divestment set-up,
post-divestment the marginal cost curve of the dominant firm shifts upwards for cd > c− γδ and
its residual demand curve is lower for p > c−γδ . It is also flatter than the pre-divestment residual
demand function for p ∈ (c − γδ, c), whilst for p ≥ c it has the same slope as the pre-divestment
residual demand function, but it is displaced downwards by the size of the divestment δ. The
impact of a divestment on the marginal cost and residual demand functions of the dominant firm
is illustrated in Figure 1.

The rest of this paper focuses on the impact on market prices (and therefore consumer welfare)
of divestments of size δ, depending on their location on the cost curve of the dominant firm (given
by c). We primarily concentrate on consumer welfare rather than total welfare in our assessment
of divestments given that competition authorities and sector regulators are typically concerned
with policies which benefit consumers. We however also comment on the welfare implications of
alternative divestment policies.

We rely on this set-up to model also the impact on prices of VPPs. VPPs are analysed as call
options that are structured so as to mimic a given plant divestment. That is, we consider a bundle
of call options of total size δ with contiguous strike prices ranging from c to c−γδ. This modelling
assumption (which is without loss of generality) is set out in more detail in Section 4 below.

4This variable defines the total output that the dominant firm would produce in the pre-divestment set-up if the
unit with marginal cost c were its last (or marginal) unit to be offered to the market and accepted for production.
It can also be interpreted as a quantity index along the cost curve of the dominant firm, which also describes the
position of the divested segment (in terms of quantities rather than costs).

5We assume that the divested capacity is transferred through a competitive auction process, which determines
a lump-sum payment from the fringe to the dominant firm in exchange for the production capacity. The same
assumption holds for the transfer of the VPP contract.
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Figure 1: Description of the model set-up and of the impact of a divestment.

3 Divestments of intermediate size

In this section of the paper we model divestments of intermediate size, defined as cases where δ,
expressed as a ratio of total demand µ (i.e. δ

µ), lies between two threshold values: 1− 12
5
√
6
≈ 0.02

and 1 − 2√
6
≈ 0.18. This is a relative wide range for the divestment, which we feel captures

most realistic divestment scenarios.6 Note that the upper bound of this range strictly exceeds the
amount of output withheld by the dominant firm in the pre-divestment equilibrium relative to the
competitive benchmark (i.e. δ

µ =
1
6). In Section 5 below we extend our results to cases with smaller

and larger divestments.

3.1 Prices with divestments of intermediate size

The following Proposition describes the post-divestment price function for divestments of inter-
mediate size, as a function of the position of the divested plants. As we show, a unique optimal

6For example, in the case of the Spanish wholesale electricity market which had average demand in 2007 of
approximately 30GW, the range for the divestments that we consider here is between 0.6GW and 5.5GW (evaluated
at average demand). As a comparison, the total size of the VPP imposed on the two largest producers (Endesa
and Iberdrola) in 2008 and 2009 reached roughly 2.5GW, and that of the plant divestments ordered by the Spanish
government in two recent domestic mergers (the proposed merger between Gas Natural and Endesa, and the approved
merger between Gas Natural and Union Fenosa) were of 4.2GW and 2 GW respectively (see Federico et al. 2008).

Another example of divestments is provided by the merger between EDF and British Energy in the British market,
where the European Commission imposed a divestment of 2.8GW of generation capacity in December 2008. This is
equivalent to roughly 0.07 of average electricity demand in Great Britain, which is also within the range of intermediate
divestments that we consider.
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divestment can be identified. The optimal divestment is defined as the one that leads to the lowest
price (and therefore the highest level of consumer welfare) in the post-divestment equilibrium.

Proposition 1 (Intermediate divestments) The post-divestment price function depends on the

position of the plant divestment (denoted by c). For divestments of intermediate size, this function

(defined as p(c)) has 6 distinct segments:

Segment Price Range of c

I (baseload) p∗ −∆p γδ ≤ c < p∗

2 +∆p

II γµ− c p∗

2 +∆p ≤ c <
p∗

2 + 2∆p

III p∗ − 2∆p p∗

2 + 2∆p ≤ c < γ
(
2
√
6
3 − 1

)
(µ− δ)

IV 3
8(γ(µ− δ) + c) γ

(
2
√
6
3 − 1

)
(µ− δ) ≤ c < γ(35µ+ δ)

V c− γδ γ(35µ+ δ) ≤ c < p∗ + 3∆p
VI p∗ c ≥ p∗ + 3∆p

,

where ∆p ≡ γδ
3 .

The optimal divestment is given by setting c = ĉ ≡ γ
(
2
√
6
3 − 1

)
(µ− δ) , which defines the lower

bound of segment IV of the post-divestment price function. The optimal divestment achieves the

competitive price pc at the upper end of the range for the size of the divestment considered in this

Proposition (i.e. if δµ = 1− 2√
6
). Otherwise it yields a price that is between pc and p∗.

Proof. See Appendix A.1.
The post-divestment price function is shown in Figure 2, as a function of the position of the

divestment c. As the figure illustrates this function lies below the pre-divestment price p∗ for
divestments that are sufficiently competitive, which is the case for c sufficiently low (i.e. c <

p∗ + 3∆p).
The six segments in the post-divestment price function can be understood by reference to the

impact of a divestment on the cost and demand of the dominant firm. As we noted above, a
divestment increases the cost function of the dominant firm above a given marginal cost level
(i.e. for cd > c − γδ). This can be defined as a cost-increasing effect. This effect is relevant
to equilibrium pricing for divestments of production capacity whose marginal cost is sufficiently
low (implying that the dominant firm is utilising at least part of the divested capacity in the pre-
divestment equilibrium). Note that the presence of the cost-increasing effect tends to reduce the
pro-competitive impact of a divestment because it induces the dominant firm to set higher prices,
ceteris paribus, since its costs are higher.

A divestment also changes the residual demand curve of the dominant firm, introducing a flatter
segment, and also displacing it downwards by the size of the divestment δ for sufficiently high price
levels (i.e. p > c), as it is shown in Figure 1. We term the first demand effect a demand-slope
effect, whilst the second demand effect is termed a demand-shift effect.

The four segments of the post-divestment price function where interior equilibria exist (these
are segments I, III, IV and VI − see Appendix A.1) display different combinations of these three
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Figure 2: The post-divestment price as a function of the position of the divestment on the cost
curve of the dominant firm (for divestments of intermediate size).

possible cost and demand effects, and differ depending on which of the three effects are relevant to
the conduct of the dominant firm in the post-divestment equilibrium:

• In segment I (which relates to divestment of low-cost, or baseload, units) the cost-increasing
and the demand-shift effects apply, leading to a price reduction since the second effect out-
weighs the first. The effect of the divestment in this segment is equivalent to the imposition
of a forward contract of size δ on the producer, as we show formally in Section 4.

• In segment III, the demand-shift effect applies, but not the cost-increasing one, since the
divested units are relatively expensive and include capacity which the dominant firm would
have not utilised in the post-divestment equilibrium even if it had been available. The cost of
the divested units is however sufficiently low for the divested capacity to be fully utilised by
the competitive fringe, which in turn reduces the residual demand faced by the dominant firm
by δ. The price reduction from the divestment is therefore larger than in segment I (more
precisely, it is twice as large) since the cost-increasing effect is absent.

• In segment IV, the demand-slope effect applies instead of the demand-shift effect since the
cost of the divested units is sufficiently high so as to make it profitable for the dominant firm
to price on the flatter segment of its residual demand curve (rather than withholding more
output, and pricing on the steeper part of the curve). As long as the divestments located
within segment IV are sufficiently competitive (i.e. for c low enough), pricing on the flatter
part of the demand curve has an output-expansion effect and yields lower prices relative to
segment III of the post-divestment price function.
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• In segment VI, none of the three effects identified above apply, since the divested units have
marginal costs that are too high to constrain the pricing of the dominant firm. The post-
divestment price is therefore the same as the residual monopoly price p∗.

The other two segments of the post-divestment price function (segments II and V) are corner
solutions (as is also explained in Appendix A.1).

• In segment II the demand-shift effect applies and the dominant firm produces on the post-
divestment cost function. The cost-increasing effect is still present here since the dominant
firm cannot produce the optimal output implied under segment III because at that output
level its costs would increase relative to the pre-divestment equilibrium. The dominant firm
therefore selects an output level that is exactly equal to q′−δ (i.e. the quantity corresponding
to the first generation unit that is divested), and does not utilise any of the units that are
more expensive than the divested capacity.

• In segment V the dominant firm prices on the second kink of its residual demand curve,
i.e. where the flatter segment of the curve intersects the original pre-divestment residual
demand function. The price is therefore equal to the lowest cost of the divested capacity
(i.e. p = c − γδ), implying that none of the divested units produce in the post-divestment
equilibrium. This price is below the monopoly price since at that price some of the divested
units would be able to produce. In order to avoid the reduction in its demand that would
result if the divested capacity were to produce some output, the dominant firm finds it optimal
to price on the second kink of its residual demand curve. It therefore increases its output
and lowers its price compared to the pre-divestment outcome, thus ensuring that none of the
divested units produce in the post-divestment equilibrium.

3.2 Characterisation of the optimal divestment of intermediate size

Proposition 1 establishes that the divestment which yields the largest price reduction relative to
the pre-divestment equilibrium is the one given by the lowest-cost divestment on segment IV. This
is the segment where the dominant firm prices on the flatter part of its residual demand curve.
This optimal position for the divested capacity (defined above as c = ĉ) results in the lowest post-
divestment price because it induces the dominant firm to drop its price in order to capture more
output from the competitive fringe, and prevent some of the divested capacity from producing. At
the optimal divestment, the range of costs of the divested capacity encompasses the post-divestment
price, implying that the divested plants become price-setting, and that some of divested capacity
does not produce in equilibrium.

The highest marginal cost of the optimally divested capacity is below the pre-divestment price,
meaning that the divestment needs to be sufficiently competitive to be effective.7 Moreover, the

7This follows directly from the fact that ĉ ≡ γ
(
2
√
6

3
− 1

)
(µ− δ) approximates to 0.63γ (µ− δ) which is below

p∗ = 2
3γµ.
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cost range of the optimal divestment lies above both the costs of the cheapest units withheld by
the dominant firm in the pre—divestment equilibrium, and the competitive price pc.8 If one thinks
as the cheapest withheld units as the marginal, or price-setting units, of the dominant firm in the
pre-divestment equilibrium (e.g. as would be the case if the dominant producer was constrained
to offer a linear supply function for its output), this condition implies that the optimal divestment
needs to include units which are bid above the pre-divestment price (i.e. they are outside the
competitive margin), but which become price-setting post-divestment when they are owned by the
competitive fringe.

The figure presented in Appendix A.7 provides an illustration of the position of the optimal
divestment for the case of δµ =

1
20 .

The following Corollary summarises the main characteristics of the optimal divestment.

Corollary 1 (Characteristics of the optimal divestment) For intermediate values of δ, to

achieve an optimal divestment the highest cost of the divested capacity needs to be located between the

competitive and the pre-divestment price, that is: ĉ ∈ (pc, p∗). The costs of the optimal divestment
also need to encompass the post-divestment price, that is: p (ĉ) ∈ [ĉ− γδ, ĉ).

Marginally cheaper divestments than the optimal divestment have a lower pro-competitive effect
(even if they do not include baseload plants, as it is the case in segment III of the post-divestment
price function). This is due to the fact that the price which the dominant firm would need to accept
to exclude some of the divested capacity from the market is too low. In this case the dominant
firm finds it optimal to set a higher price and accept a larger reduction of its residual demand.
Marginally more expensive divestments than the optimal divestment are also less effective, since
they put less competitive pressure on the dominant firm (i.e. a lower price reduction is required to
prevent at least some of the divested capacity from producing).

3.3 Implications for the impact of entry on prices

The price results obtained above also have some implications for the impact of entry by independent
firms on market prices.9 To see this, assume for simplicity that new capacity of size δ belonging to
the competitive fringe can enter the market, with marginal costs ranging from c̄ to c̄ − γδ, along
a linear cost function of slope γ. Entry of this type shifts the residual demand function of the
dominant firm in the same way as a divestment but does not affect its cost curve. Its impact on
prices is therefore the same as that obtained with a divestment, as long as the dominant firm prices
on its pre-divestment cost function (i.e. its costs do not increase relative to the pre-divestment
equilibrium). This is the case in segments III to VI of the post-divestment price function.

Proposition 1 therefore effectively establishes that entry of low-cost (or baseload plants) of
capacity δ leads to a price reduction equal to the one given in segment III, since in this segment of
the post-divestment price function the residual demand faced by the dominant firm shifts by δ and

8The former follows from the fact that ĉ ≥ γ(µ3 + δ) (which is shown in Appendix A.1). The latter derives from

the fact that ĉ > γµ

2
, which is the case for δ

µ
< 4

√
6−9

4
√
6−6 (which is satisfied in the case of intermediate divestments).

9This discussion assumes that entry decisions and the cost of new capacity are exogenous.
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the dominant firm does not price on the flatter part of its residual demand. Entry can therefore
be defined as baseload in our set-up as long as the highest cost of the new capacity entering the
market is strictly below ĉ. However, entry can also replicate the impact of the optimal divestment if
the highest cost of new capacity of size δ equals exactly ĉ.10 Proposition 1 therefore indicates that
marginal (or price-setting) entry is more effective than baseload entry in constraining market prices,
assuming the cost of the new capacity is determined by the same cost function as the dominant
firm.

3.4 Welfare analysis of intermediate divestments

Our assumption of perfectly inelastic demand implies that divestments increase total welfare (or
efficiency) if they reduce the total costs of producing the fixed level of output µ. A divestment
affects total costs by leading to three distinct output effects: (i) a reduction in the output of
high-cost capacity owned by the fringe (which takes place as long as the divestment leads to a
reduction in prices); (ii) an increase in the output by the divested units (which occurs as long as
the divestment is price-reducing and the dominant firm is not using all of the divested capacity
in the pre-divestment equilibrium); and (iii) a change in the net output of the dominant firm (i.e.
output net of any part of the divested capacity which was being utilised by the dominant firm in the
pre-divestment equilibrium). These three output effects necessarily sum to 0, given the assumption
of inelastic aggregate demand.

Using the case of the optimal divestment to illustrate the impact of these three output effects,
the change in welfare from the optimal divestment can therefore be expressed as follows:11

∆W (ĉ) =

2
3
µ∫

p(ĉ)
γ

γxdx

︸ ︷︷ ︸
cost saving

competitive fringe

−

p(ĉ)
γ∫

q̂−δ

γxdx

︸ ︷︷ ︸
additional cost
divested units

−

µ+q̂−δ
4∫

µ
3

γxdx

︸ ︷︷ ︸

.

additional cost
dominant firm

Divestments are welfare-increasing as long as they do not induce the dominant firm to reduce
its net output (as defined above). This follows from the assumption of increasing marginal costs,
which in turns implies that both the output increase by the divested capacity in the post-divestment
equilibrium and any net output increase by the dominant firm have lower marginal costs than the
capacity of the competitive fringe that no longer produces post-divestment.

The following Proposition summarises the welfare effects of divestments of intermediate size.

10Note of course that entry of capacity with highest cost equal to ĉ will not be all used in the market for a given
demand level µ. If demand is fixed at µ therefore it will not be profitable to build such capacity. If demand is variable
however, then it may be profitable to invest capacity that is price-setting at low or medium demand levels, and that
is infra-marginal during high demand levels.

11Recall from Proposition 1 that ĉ = γ
(
2
√
6

3 − 1
)
(µ− δ) and that q̂ = ĉ

γ
. The proof of Proposition 1 also

establishes that µ+q̂−δ
4 is the output of the dominant firm in the case of the optimal divestment.
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Proposition 2 (Welfare) Divestments of intermediate size are welfare-increasing for all the ranges

of c̄ given in Proposition 1, except for segment III, where c̄ ∈
[
p∗

2 + 2∆p, γ
(
2
√
6
3 − 1

)
(µ− δ)

)
. In

this range of the costs of the divested units, divestments can reduce welfare for sufficiently small

divestments, i.e. for δ
µ ∈

(
1− 12

5
√
6
, 6
√
6−14

6
√
6−7

)
.

Proof. See Appendix A.2.
The result given in Proposition 2 follows from the fact that - for intermediate divestments

- the net output of the dominant firm falls only in the range of costs which applies to segment
III of the post-divestment price function (as defined in Proposition 1). For this range of costs,
the divestment affects capacity that the dominant firm was not utilising pre-divestment, and the
dominant firm reduces its output due to a reduction in its residual demand. As it is shown in the
proof of Proposition 1, the net output of the dominant firm falls by δ

3 in this case. This creates a
productive inefficiency which can lead to an overall reduction in total welfare, for sufficiently small
divestments, as Proposition 2 establishes.

The dominant firm’s net output increases for intermediate divestments located other than in
the cost range which applies to segment III of the post-divestment price function. As a result, total
production costs are necessarily lower post-divestment in these other cases. Note that Proposition
2 also establishes that the optimal divestment from a consumer welfare perspective always increases
total welfare as well, compared to the pre-divestment outcome.

4 Virtual Power Plants

In this section of the article we describe the impact of financial contracts (modelled as VPPs) on
equilibrium prices, in the same model of a dominant firm facing a competitive fringe considered
above for the case of divestments. VPPs are typically structured as call options that are imposed
on a producer for a certain part of its generation output. The option holders have a right to
acquire electricity from the generator at a strike (or exercise) price ps, and can re-sell this output
in the spot market to obtain the market price p.12 The option will therefore be exercised whenever
p > ps. We assume that both the volumes associated with these options and the strike prices are
set exogenously by a regulator for market power mitigation purposes. In what follows we analyse
the impact of VPPs from a static perspective, and abstract from some of potential institutional
advantages associated with VPPs (as discussed in the Introduction).

For analytical convenience, so as to obtain results which are directly comparable to those derived
above in relation to divestments, we assume that the VPP scheme entails the sale of a group of
infinitesimally small call options each with a different strike price.13 The sum of the volumes
associated with the aggregate set of options equals δ. The strike prices associated with each option
are defined along an increasing and continuous linear function that has the same slope (γ) as the

12We assume that multiple players hold the options and do not have any market power when exercising their
options.

13This set-up is similar to that employed by Willems (2006) to describe the impact of VPPs.
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marginal cost function of the dominant firm.14 The VPP scheme that we model is therefore designed
to mimic a physical plant divestment of size δ, from a firm with a linear and increasing marginal
cost function with slope γ. As in the case of divestments, the highest strike price associated with
a VPP can also be expressed as c, implying that the lowest strike price is given by c − γδ. This
allows for a direct comparison of the relative impact of a VPP and of a divestment that have the
same position on the cost curve of the dominant firm, as measured by c. The restriction on the
shape of the VPP does not affect the results on the nature of the optimal VPP (i.e. the VPP which
leads to the largest reduction in spot prices). In particular, as we show below, the effectiveness of
a VPP is maximised by choosing a set of strike prices that are such that the option is exercised in
its entirety. This result is independent of the slope of the strike price function that is assumed, and
is also obtained with a constant strike price (i.e. setting strike prices according to more complex
formulae does not affect this result).

4.1 Prices with VPPs

The following Proposition describes the impact of a VPP on prices, depending on the strike prices
associated with the scheme.

Proposition 3 (Virtual Power Plants) The post-VPP price function depends on the level of

the range of strike prices associated with the VPP (as identified by the level of the highest strike

price c). This function (pV PP (c)) has 3 segments, for δ ≤ µ
2 :

Segment Price Range of c

IV PP p∗ −∆p γδ ≤ c < p∗ −∆p
IIV PP 1

2

(
c
2 + γ

(
µ− δ

2

))
p∗ −∆p ≤ c < p∗ + 3∆p

IIIV PP p∗ c ≥ p∗ + 3∆p

,

pV PP (c) is weakly increasing in c. The VPP which achieves the largest price reduction (i.e. the

optimal VPP) is achieved by setting c < p∗ − ∆p, that is, by choosing a baseload VPP which is
exercised in its entirety.

Proof. See Appendix A.3.
The post-VPP price function is shown in Figure 3, as a function of the position of the VPP

c. The figure also plots the post-divestment price function p(c) for a divestment of the same size
(assuming intermediate values of δ, as considered in Proposition 1). As the figure shows the post-
VPP price lies below the residual monopoly price p∗ for c sufficiently low (i.e. c < p∗ +3∆p), as it
is the case for intermediate divestments.

14 In the case of a VPP that is exercised in its entirety, our set-up implies that the dominant firm receives financial
flows

∫ q′
q′−δ γxdx from the option holders (where γq′ equals the highest strike price associated with the VPP), but

foregoes market revenues pδ. If the option is not exercised in its entirety, then the dominant firm will receive the
following payment from the option holders:

∫ µ−qd
q′−δ γxdx, where µ− qd = qf , which determines the market price (i.e.

p = γqf ).
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Figure 3: Impact of a VPP on prices (and comparison with a divestment of intermediate size), as
a function of the position of the VPP and of the divestment.

The reason why a VPP leads to a reduction in prices for sufficiently low strike prices is that it
“sterilises” part of the revenues of the dominant firm, making them independent of the spot prices.
Formally, the effect of a VPP on a dominant producer is to lead to an outwards shift in its marginal
revenue function, due to the fact that less of its infra-marginal output receives the spot price, so
that a price reduction is less costly for the firm. This leads to an output increase for the dominant
firm, along its pre-divestment marginal cost function, and consequently a price reduction.

In segment I of the post-VPP price function, all of the call options associated with the VPP
are exercised, and the VPP has the same impact as a forward contract of size δ. In this case the
market price drops by ∆p, which is the same price reduction achieved by a baseload divestment
(as shown in Proposition 1). A baseload VPP yields the same price as a baseload divestment of
the same size because it effectively removes an amount δ from the infra-marginal capacity of the
dominant firm (thus inducing it to price lower). It is therefore as if the dominant firm “reserves”
this part of its infra-marginal capacity to meet its contract obligations, foregoing the spot market
revenues associated with the capacity but still bearing the associated costs. This is equivalent to
simply not having such capacity and not serving the demand that is associated with the contract.
This yields the same effect on prices as a baseload divestment of size δ since the latter displaces
both the cost and residual demand functions of the dominant firm by δ (as we showed in preceding
section of the paper).

The spot price associated with a baseload VPP applies until such spot price is higher than the
highest strike price of the VPP, allowing the VPP to be exercised in its entirety. The impact of a
baseload VPP therefore does not depend in any way on the distribution of strike prices, as long as
the highest strike price set in the contract lies below p∗ −∆p.
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In segment II of the post-VPP price function the highest strike price rises above p∗ − ∆p,
implying that it is not profitable to exercise some of the call options in the VPP. This in turn
results in a higher amount of output for the dominant firm benefitting from spot prices (i.e. a lower
level of contract cover), inducing it to set higher level spot prices. The price set in segment II
therefore increases with the level of the highest strike price of the VPP, until none of the options
are exercised in equilibrium (i.e. until the lowest strike price is above the residual monopoly price).
When the latter condition holds, segment III applies and the VPP is ineffective (i.e. the post-VPP
spot price is the same as p∗).

Similar results would apply to the case of a VPP with a single strike price. In particular, with
a single strike price the baseload VPP would achieve the same outcome as the one described above,
whilst the slope and position of the upwards-sloping part of the post-VPP price function would be
affected. The main conclusion that the optimal VPP corresponds to the baseload VPP would be
unaltered.

4.2 Price comparison between the optimal VPP and the optimal divestment of

intermediate size

Proposition 3 establishes that VPP are never more effective than divestments of the same size and
same position on the cost curve of the dominant firm, for the intermediate values of δ

µ
considered

in Proposition 1. As noted, divestments and VPPs achieve the same price reduction when they are
both baseload. However, divestments of non-baseload plants can be several-fold more effective in
reducing prices than VPPs. In particular, the optimal divestment can be several-fold more effective
than the optimal VPP (which is in turn equivalent to a baseload divestment).

Corollary 2 below compares the price reduction achieved by the optimal divestment to that
obtained by the optimal VPP (the latter being denoted as ∆p ≡ γδ

3 in Proposition 1 and in
Proposition 3).

Corollary 2 For divestments of intermediate size, the ratio between the price reduction achieved

by the optimal divestment and the optimal VPP is given by R
(
δ
µ

)
= p∗−p(ĉ)

∆p
which can be expressed

as:

R

(
δ

µ

)
=

(
2− 3

√
6

4

)
µ

δ
+
3
√
6

4

This function is decreasing in δ
µ . At the lower bound of the relevant range of

δ
µ (i.e.

δ
µ = 1− 12

5
√
6
),

R
(
δ
µ

)
≈ 9.9. At the upper bound of the relevant range of δµ (i.e. δ

µ = 1− 2√
6
), R

(
δ
µ

)
≈ 2.7.

Corollary 2 shows that selecting the position of the divestment optimally results in a price
reduction that is larger than that achieved with baseload divestment and/or with the optimal
VPP. For relatively small divestments (i.e. at the lower end of the range considered in Proposition
1) the price reduction achieved by the optimal divestment is approximately 10 times larger than
that which a VPP can yield (for a given demand level). At the higher range of the relative size of
the divestment described in Proposition 1, optimal divestments are close to 3-times more effective
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in reducing prices than a VPP. The complete R
(
δ
µ

)
function − for all possible sizes of divestment

− is illustrated in the next Section of the paper (in Figure 4).
Given that the price reduction achieved by a VPP is proportional to δ, this means that the

function R( δµ) derived in Corollary 2 also describes the size of the VPP required to match an
optimal divestment of size δ, expressed as a ratio of µ. That is, if R( δµ) = 5 (which is the case for
δ
µ ≈ 1

20), then in order to achieve the same price reduction as an optimal divestment of size δ = µ
20 ,

a VPP would need to be 5 times larger, i.e. it would need to equal µ4 .
The reason for the significant difference in effectiveness between divestments and VPPs is that

the latter only affect the financial flows received by the dominant firm, but do not affect the
production capacity that is available to competitors of the dominant producer and therefore the
slope of the residual demand of the dominant firm. In particular, as we have shown, divestments
can be targeted at strategic plants which are being withheld by the dominant firm and which
become price-setting in the post-divestment equilibrium. Divesting these plants can significantly
enhance the pro-competitive impact of a divestment. The same result cannot be achieved with a
VPP scheme, since VPPs do not directly involve generation plants and therefore cannot be tailored
to apply to specific types of generation capacity. In particular − unlike a divestment − the VPP
cannot make the residual demand faced by the dominant producer flatter, nor can it be specifically
targeted at plants which the dominant firm was not utilising in the pre-divestment equilibrium.

A further implication of the comparison between divestments and VPPs is that mimicking the
properties of the optimal divestment by setting a range for the strike prices in the VPP that is
equal to the cost range of the optimal divestment (or indeed, any other range) does not increase
the pro-competitive impact of a VPP (relative to a baseload VPP). In particular, for intermediate
divestments it can be shown that ĉ < p∗−∆p, which implies that a VPP that is explicitly designed to
mimic the optimal divestment (i.e. with a maximum strike price equal to ĉ) is actually equivalent
to a baseload VPP that is always exercised, and is therefore significantly less effective than the
optimal divestment.

The reason for this result is that with a VPP the dominant firm receives the strike price rather
than the spot price for part of its sales. In situations where the VPP’s strike prices are “marginal”
(i.e. they span the equilibrium price that can be achieved with the optimal divestment), the
dominant firm does not face incentives to further reduce the spot price below the strike price(s) in
order to decrease the number of options which are exercised. Doing this is sub-optimal since the
dominant firm would forego higher revenues from the option holders in exchange for lower revenues
from the spot market (with no additional increase in its output relative to the pre-divestment
equilibrium). In the case of divestments, lowering the spot price to a level below the cost of the
some of the divested capacity is instead optimal for the dominant firm, since it reduces the output
that is produced by the divested assets, allowing the dominant producer to increase its sales (i.e.
by doing so the firm moves along the flatter part of its residual demand function).

Note finally that dividing the R
(
δ
µ

)
function by 2 also measures the relative impact of optimal

price-setting entry and baseload entry, as described in Section 3.3. This is because baseload entry
yields a price reduction that is twice as large as the one obtained with a baseload divestment.

17



4.3 Welfare comparison between the optimal VPP and the optimal divestment

of intermediate size

The discussion of the welfare effects of divestments presented in Section 3.4 implies that the optimal
VPP is welfare-increasing. This follows from the fact that it induces the dominant firm to increase
its net output, thus leading to a reduction in the output of high-cost capacity belonging to the
competitive fringe. However, the optimal divestment always leads to a greater efficiency increase
than the optimal VPP. This result is stated formally in the following Proposition.

Proposition 4 Optimal divestments of intermediate size increase total welfare by more than the

optimal VPP (and/or a baseload divestment) of the same size.

Proof. See Appendix A.4
This Proposition therefore shows that divestments, if chosen optimally, can increase both con-

sumer and total welfare by more than VPPs. The intuition for the welfare result is that at the
optimal divestment more of the production of the competitive fringe shifts from high cost capacity
to lower cost capacity (i.e. that which is divested), coupled with the fact that the dominant firm
also increases its net output (for δ

µ < 1− 2√
6
). This efficient reallocation of output takes place to

a greater extent than with a VPP, since the latter yields a lower reduction in prices.

5 Prices with small and large divestments

This section of the article extends some of the results presented in Section 3 to cases with smaller
and larger divestments than those considered in Proposition 1. We show that the core result shown
above (i.e. the fact that an optimally chosen divestment can be significantly more effective in
reducing prices than a baseload divestment and/or a VPP) extends to the cases of small and large
divestments. The optimal divestment becomes as effective as a baseload divestment or a VPP of the
same size only when the divestment is so large that it achieves the competitive price independently
of its position on the cost curve of the dominant producer. For this to be the case, the divested
capacity needs to equal the competitive output level of the dominant producer, which is equivalent
to 50% of total demand (i.e. µ

2 ). This would clearly represent a very large divestment which is not
realistic for practical purposes.

The following Proposition summarises the properties of the optimal divestment, and its re-
lationship to a baseload divestment of the same size, for small divestments (as defined in the
Proposition).

Proposition 5 (Small divestments) For the case where δ
µ ∈

[
0, 1− 12

5
√
6

]
, the optimal divest-

ment is given by setting c̄ = γ
(
2
3µ+ δ − 1

3

√
δ (2µ− δ)

)
. The optimal divestment achieves a price

of p∗− γ
3

√
δ (2µ− δ), whilst a baseload divestment yields a price of p∗−∆p. For small divestments,

we have that R
(
δ
µ

)
=

√
2µ
δ − 1, which is decreasing in δ

µ and takes a value of approximately 9.9

for δ
µ
= 1− 12

5
√
6
.

18



Proof. See Appendix A.5.
This Proposition shows that for small divestments the optimal divestment remains several-

fold more effective than a baseload divestment. As for the case of intermediate divestment, the
optimal divestment has a cost range that is below the pre-divestment price15 and higher than the
competitive price. Contrary to the intermediate case, for small divestments the optimal divestment
is such that the dominant producer faces the incentive to set a price equal to the lowest cost of
the divested capacity (i.e. p = c̄ − γδ), which is equivalent to pricing on segment V of the post-
divestment price function plotted in Figure 2. This means that the none of the divested units
produce in the post-divestment equilibrium (even though they can still be considered price-setting
since the cheapest divested unit sets the price). This also means that the dominant producer never
prices on the flatter segment of its residual demand curve in this case. The output of the dominant
firm increases in the case of the optimal divestment of small size, implying that the divestment is
welfare-increasing.

The following Proposition summarises the properties of the optimal divestment, and its rela-
tionship to a baseload divestment, for large divestments (as defined in the Proposition).

Proposition 6 (Large divestments) For the case where δ
µ ∈ (1− 2√

6
, 12 ] , setting c̄ = γ

(
µ
3 + δ

)

achieves the optimal divestment (even though the optimal divestment is not unique). The optimal

divestment always yields the competitive price pc = γµ
2 , whilst a baseload divestment yields a price

of p∗ −∆p > pc for δ
µ <

1
2 . For large divestments, we have that R

(
δ
µ

)
= 1

2
µ
δ , which is decreasing

in δ
µ and implies R

(
δ
µ

)
= 1 for δ

µ =
1
2 .

Proof. See Appendix A.6.
Proposition 6 shows that the optimal divestment for sufficiently large divestment always achieves

the competitive price, thereby maximising both consumer and total welfare. For this to be the case
the divestment needs to be strictly larger than the output withheld by the dominant firm relative
to the competitive benchmark (i.e. we require δ

µ ≥ 1 − 2√
6
> 1

6). As in the case of intermediate
divestments, the divested units for large divestments are price-setting post-divestment, and their
marginal costs encompass the post-divestment price. The optimal divestment can be achieved by
setting c̄ = γ

(
µ
3 + δ

)
, which is equivalent to divesting the lowest-cost capacity of aggregate size

δ that is withheld by the dominant firm in the pre-divestment equilibrium (whilst for the cases
of small and intermediate divestments relatively more expensive capacity needs to be divested).
Contrary to the other cases, the optimal divestment is not unique for large divestments. Also
in this case, baseload divestments are always less effective than optimally-chosen large divestment,
unless the size of the divestment is very large (i.e. it equals half of total demand, which is equivalent
to the competitive output of the dominant producer).

Using the Propositions for small, intermediate and large divestments respectively, we can con-
struct the function describing the ratio of the price impact of the optimal divestment and of a
baseload divestment (or a baseload VPP of the same size) for all values of δ between 0 and µ

2 .

15This follows from the fact that γ
(
2
3
µ+ δ − 1

3

√
δ (2µ− δ)

)
< 2

3
γµ for δ

µ
< 1

5
which is satisfied in the case of

small divestments.
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Figure 4: Ratio between the reduction in prices achieved by the optimal divestment and a base-
load divestment (or a baseload VPP); and the post-divestment price at the optimal divestment
(normalised by γµ).

This is shown in Figure 4. This function decreases monotonically with δ
µ
and converges to 1 as

the divestment becomes very large. Figure 4 also shows the post-divestment price associated with
the optimal divestment for each value of δ

µ (normalised by γµ).16 This function also decreases

monotonically with the size of the divestment, and it reaches the competitive price (i.e. p(c̄)
γµ

= 0.5)
for δ

µ
≥ 1− 2√

6
≈ 0.18.

6 Conclusion

This paper has studied the impact of remedy design in a model where a dominant producer faces a
competitive fringe with the same cost structure. We analysed the effect on market prices of transfers
of capacity from a dominant producer to a competitive fringe. We show that divesting capacity

16Using the results given above, this function is as follows:

p(c̄)

γµ
=






1
3

(
2−

√
δ
µ

(
2− δ

µ

))
if δ

µ
∈

[
0, 1− 12

5
√
6

]

√
6
4

(
1− δ

µ

)
if δ

µ
∈

(
1− 12

5
√
6
, 1− 2√

6

]

1
2

if δ
µ
∈

(
1− 2√

6
, 1
2

]
.

20



that is marginal (or price-setting) in the post-divestment equilibrium can be several fold more
effective in reducing prices that an equivalent release of baseload capacity. In order to maximise
the effectiveness of the divestment from a consumer welfare perspective, the divested capacity
needs to include assets which are sufficiently competitive to impose a competitive constraint on
the dominant firm but whose costs are not too low so as to induce the dominant producer to
accept a larger loss in its output and keep prices high. In the optimal post-divestment equilibrium
(for intermediate and large divestments), the cost range of the divested capacity needs to span
the post-divestment price (implying that some but not all of the divested capacity produces in
equilibrium). We also find that the optimal divestment from the perspective of consumer welfare
is always efficiency-increasing.

We have also compared the effectiveness of divestments to that of VPP schemes. We established
that the effectiveness of VPPs is maximised when all of the options which are sold are exercised.
This is achieved by setting a sufficiently low exercise price. In this case, the VPP reduces prices as
much as a divestment of baseload generation of the same size. Given that the optimal divestment
is several-fold more effective than a baseload divestment, our findings also imply that divestments
can be significantly more pro-competitive than VPPs (if the divested plants are selected optimally).
Whilst VPPs may be preferred to a divestment because of other reasons (e.g. ease of implementa-
tion, divisibility, and reversibility), our results show that relying on VPPs as a remedy instead of
using divestments can lead to a significant reduction in the effectiveness of the intervention from a
market power mitigation perspective.

Our findings have a direct policy relevance, given that divestments and VPPs are frequently
accepted by competition authorities as remedies in antitrust cases relating to the electricity sector.
Our results are also relevant to the evaluation of merger effects in power generation markets, since
divestments are the exact opposite of a merger. The findings of this paper imply that a merger where
a portfolio generator buys price-setting capacity from a smaller competitor can have significantly
greater effect on prices than one where additional baseload capacity is purchased instead. This
can be interpreted as meaning that the competitive constraint exercised by price-setting capacity
is much greater than that imposed by baseload generation. By the same token, our results indicate
that the price-increasing effect of the acquisition of a given volume of baseload generation by a firm
with market power can be remedied by significantly smaller divestments of price-setting capacity.
Finally, our results also imply that the entry of price-setting independent capacity can constrain
prices significantly more than the entry of low-cost plants.

Possible extensions of the work presented in this paper include the analysis of cases with variable
demand levels (which is relevant to electricity markets)17, and with oligopoly interaction. Obtaining
analytical results for standard oligopoly models (e.g. Cournot or Supply Function Equilibria) may
be a challenge in our set-up, given the cost discontinuities created by the divestments of generation
capacity. We expect however that the core intuitions developed in this paper would also extend to
such models, given the general nature of the cost and demand effects that we identify.

Finally, whilst the set-up employed in this paper is developed with the electricity generation
market in mind, our results also extend to other industries with homogenous products and increasing

17For a discussion of the case with variable demand see Federico and López (2009).
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cost functions (e.g. mining).
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A Appendix

A.1 Proof of Proposition 1

This Proposition relates to the case where δ
µ
∈

(
1− 12

5
√
6
, 1− 2√

6

]
. The dominant firm’s post-

divestment marginal cost is defined by the following two-step function:

cd =

{
γqd if qd < q

′ − δ
γ(qd + δ) if qd ≥ q′ − δ

,

while the competitive fringe’s post-divestment marginal cost function is defined by the following
three-step function:

cf =





γ(µ− qd − δ) if qd < µ− q′ − δ
γ
2 (µ+ q

′ − qd − δ) if µ− q′ − δ ≤ qd ≤ µ− q′ + δ
γ(µ− qd) if qd > µ− q′ + δ

.

As the model is discontinuous we have to study the firm’s maximization problem in each of
the regions defined by q′ (and δ). The proof proceeds in two steps. First, we will derive the
necessary and feasibility conditions for the equilibrium existence in each of these regions. A unique
candidate equilibrium can exist inside each region since the model is linear. Second, we will study
the existence of profitable deviations at each candidate equilibrium and equilibria at the regions
where the feasibility conditions are not satisfied.

Necessary and feasibility conditions for interior equilibria

Case I (baseload divestment): in this region the dominant firm and the competitive fringe
of firms produce, respectively, at a higher and lower marginal cost than in the pre-divestment case,
i.e., cd = γ(qd+ δ) and cf = γ(µ− qd−δ). The dominant firm maximises πId = p

IqId− γ
2 (q

I
d)
2−γδqId

with respect to qId and subject to pI = cf , which yields qId = q
∗
d − 2

3δ, implying that pI = p∗ − γδ
3 .

The feasibility conditions are qId < µ− q′− δ and qId > q′− δ, thus q′ < 1
3 min{2µ− δ, µ+ δ}. Since

δ < µ
2 this condition reduces to: q′ < µ+δ

3 .
Case III: the dominant firm produces at the pre-divestment marginal cost, while the com-

petitive fringe produces at a lower marginal cost, i.e., cd = γqd and cf = γ(µ − qd − δ). Thus,
pIII = γ(µ− qd− δ) and πIIId = pIIIqIIId − γ

2 (q
III
d )2. The first-order condition yields qIIId = q∗d − δ

3 ,
implying that pIII = p∗− 2γδ

3 . The feasibility conditions are qIIId < µ−q′−δ and qIIId ≤ q′−δ, which
for δ < µ

4 (which is the case for the range of δ that we consider) boil down to: µ+2δ
3 ≤ q′ < 2(µ−δ)

3 .

Conversely, if δ ≥ µ
4 , no equilibrium exists in the region of Case III.
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Case IV : the dominant firm produces at the pre-divestment marginal cost, while the com-
petitive fringe produces at the flatter part of its marginal cost function, i.e., cd = γqd and
cf =

γ
2 (µ + q

′ − qd − δ). Thus, pIV = γ
2 (µ + q

′ − qd − δ) and πIVd = pIV qIVd − γ
2 (q

IV
d )2. From

the first-order condition we obtain qIVd = µ+q′−δ
4 , so pIV = 3

8(γ(µ− δ) + c). The feasibility condi-
tion µ − q′ − δ ≤ qIVd ≤ µ − q′ + δ can be rewritten as (3/5)(µ − δ) ≤ q′ ≤ (3/5)µ + δ, and the
feasibility condition qIVd ≤ q′ − δ can be rewritten as q′ ≥ δ + µ/3.

Notice that 3
5(µ − δ) ≥ δ +

µ
3 if δ ≤ µ

6 . In such a case the feasibility conditions boil down to:
3
5(µ− δ) ≤ q′ ≤ 3

5µ+ δ.

Conversely, if δ > µ
6 , the feasibility conditions reduce to: δ + µ

3 ≤ q′ ≤ 3
5µ+ δ.

Case V I: the dominant firm and the competitive fringe of firms produce at the pre-divestment
marginal cost, i.e., ci = γqi for i = d, f . Thus, the first-order condition yields the same result as in
the pre-divestment case: qV Id = q∗d and p

V I = p∗. Here, the feasibility conditions are qV Id > µ−q′+δ
or, equivalently, q′ > 2

3µ + δ, and q
V I
d ≤ q′ − δ, or, equivalently, q′ ≥ µ

3 + δ. Thus, we have that:
q′ > 2

3µ+ δ.

Infeasible cases or sub-optimal cases

Case i: cd = γ(qd + δ) and cf =
γ
2 (µ + q

′ − qd − δ). The first-order condition yields qd =
1
4(µ+ q

′−3δ). The feasibility condition µ− q′− δ ≤ qd ≤ µ− q′+ δ implies that 3µ−δ5 ≤ q′ ≤ 3µ+7δ
5 ,

while the feasibility condition qd > q′ − δ implies that q′ < µ+δ
3 . Since µ+δ

3 < 3µ+7δ
5 , the two

conditions reduce to 3µ−δ
5 ≤ q′ < µ+δ

3 . However µ+δ
3 > 3µ−δ

5 holds only if δ > µ
2 .

Case ii: cd = γ(qd + δ) and cf = γ(µ− qd). From the first-order condition we have qd =
µ−δ
3 .

The condition qd > µ− q′+ δ can be rewritten as q′ > 2
3(µ+2δ), while qd > q

′− δ can be rewritten
as q′ < µ+2δ

3 . Therefore, we have that 2
3(µ+ 2δ) < q

′ < µ+2δ
3 , which is a contradiction.

Case iii: the post-divestment marginal cost curve passes through the second jump of the
marginal revenue curve. If so, the higher value of the marginal revenue function at qd = µ−q′+δ, i.e.,
γ
2 (µ+q

′−δ)−γ(µ−q′+δ), must be higher than the corresponding marginal cost: γ(µ−q′+δ+δ). This
requires that q′ > 3µ+7δ

5 . Also, the lower value of the marginal revenue function at qd = µ− q′ + δ,
i.e., γ(µ− 2(µ− q′ + δ)), must be lower than marginal cost: γ(µ− q′ + δ + δ). This requires that
2µ+4δ
3 > q′. Thus, 3µ+7δ5 < q′ < 2

3(µ + 2δ), which holds since δ < µ. In addition, we need that
q′ − δ < µ− q′ + δ, i.e. q′ < µ

2 + δ. Nevertheless,
µ
2 + δ <

3µ+7δ
5 holds, which is a contradiction.

Case iv: the third segment of the marginal revenue curve passes through the jump of the
marginal cost curve. This requires that γ((q′ − δ) + δ) > γ(µ− 2(q′ − δ)), i.e., q′ > µ+2δ

3 , and that
γ(µ− 2(q′− δ)) > γ(q′− δ), i.e. q′ < µ

3 + δ. Both conditions can be rewritten as µ+2δ3 < q′ < µ
3 + δ.

In addition, we need that q′− δ > µ− q′+ δ, or, equivalently, if q′ > µ
2 + δ. However,

µ
3 + δ <

µ
2 + δ

holds.
Case v: The flat part of the marginal revenue curve passes through the jump of the marginal cost

curve. If so, the flat part of the marginal revenue curve at qd = q′−δ, i.e., γ2 (µ+q′−δ)−γ(q′−δ), must
be lower than the post-divestment marginal cost: γ (qd + δ) = γq′. This requires that q′ > µ+δ

3 .
Also, the marginal revenue curve at qd = q′ − δ must be higher than the pre-divestment marginal
cost: γ(q′−δ). This requires that q′ < µ

3+δ. In addition, we need that µ−q′+δ < q′−δ < µ−q′+δ,
or, equivalently, µ2 < q

′ < µ
2 + δ. These four conditions can be rewritten as: max{µ2 ,

µ+δ
3 } < q′ ≤

min
{
µ
2 + δ,

µ
3 + δ

}
or µ

2 < q′ ≤ µ
3 + δ provided that δ < µ

2 . Note that µ
3 + δ >

µ
2 if and only if

24



3

δµ +

3

2δµ +

( )δµ
µ

δ −≤
5

3
:

6
if

δµ
µ

δ +≥
5

3
:

25
if

( )δµ −
3

2

δµ
µ

δ +<
5

3
:

25
if

δµ +
3

2

Case I Case II
Case III

Case IV

3
:

6

µ
δ

µ
δ +>if

Case V

Case VI

q’
3

δµ +

3

2δµ +

( )δµ
µ

δ −≤
5

3
:

6
if

δµ
µ

δ +≥
5

3
:

25
if

( )δµ −
3

2

δµ
µ

δ +<
5

3
:

25
if

δµ +
3

2

Case I Case II
Case III

Case IV

3
:

6

µ
δ

µ
δ +>if

Case V

Case VI

q’

Figure 5: Equilibrium cases for intermediate divestments.

δ > µ
6 . Note also that for δ < µ

5 (which holds in this Proposition), the range of q′ where case v
holds is always contained within the range of Case III (i.e. µ

2 >
µ+2δ
3 and 2

3 (µ− δ) > δ + µ
3 ).

As we show below, for δ ≤
(
1− 2√

6

)
µ then Case III yields a greater level for profits for the

dominant firm than Case IV as long as q′ <
(
2
√
6
3 − 1

)
(µ− δ) . The condition δ ≤

(
1− 2√

6

)
µ

implies that
(
2
√
6
3 − 1

)
(µ− δ) > µ

3 + δ implying that for µ
2 < q

′ < µ
3 + δ Case III is always more

profitable than Case IV . Given that case v is a constrained version of Case IV (since revenues are
determined on the same segment of the residual demand curve, but total costs are constrained to
be set by the position of the jump in the marginal cost function, and cannot be optimally set along
the pre-divestment cost function as in case IV ), this implies that Case III also yields larger profits
than case v, which cannot be an equilibrium.

Profitable deviations and equilibria

Based on the conditions set out above, the following equilibrium cases can be identified (these
are illustrated in Figure 5 in this proof):

Case I: q′ < µ+δ
3 . Here, the candidate equilibrium, qId, is the unique equilibrium. The marginal

revenue is higher than the marginal cost for qd < qId, so decreasing the output is no profitable.
Conversely, the marginal cost is always higher than the marginal revenue for any qd > qId: the
marginal revenue curve, which is decreasing in qd, jumps up at µ − q′ − δ, however it does not
intersect with the marginal cost curve provided that δ < µ

2 (see infeasible Case i). Finally, the
marginal revenue curve jumps down at µ− q′ + δ.

Case II: µ+δ
3 ≤ q′ < µ+2δ

3 . Here, Cases I, III, IV and V I are not feasible. Notice that
q′ − δ < µ − q′ − δ ⇔ q′ < µ

2 , moreover µ+2δ
3 < µ

2 ⇔ δ < µ
4 . Therefore, if δ < µ

4 holds and q′

is inside of the region of Case II, we have that the first segment of the marginal revenue curve
passes through the jump of the marginal cost curve. The dominant firm does not have incentive to
produce more than q′− δ (the marginal cost is higher than the marginal revenue for any qd > q′− δ
since Case i is not feasible), and it does not have incentive to produce less than q′−δ (the marginal
cost is lower than the marginal revenue). Thus, in this region the dominant firm finds it optimal
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to set qIId = q′ − δ. From p = cf = γ(µ− qd − δ), we have that pII = γ(µ− q′).
Case III: µ+2δ

3 ≤ q′ < 2
3(µ − δ), and Case IV : 3

5(µ − δ) ≤ q′ ≤ 3
5µ + δ (if δ ≤ µ

6 ), or
δ + µ

3 ≤ q′ ≤ 3
5µ + δ (if δ > µ

6 ). Notice that 3
5(µ − δ) < 2

3(µ − δ), i.e., the regions always overlap
for δ ≤ µ

6 . Moreover, for δ < µ
5 the regions also overlap (since δ+ µ

3 <
2
3(µ− δ)). We can therefore

have the following cases (within the range of δ considered in this Proposition):
* If δ ≤ µ

6 and µ+2δ
3 < q′ < 3

5(µ − δ), only Case III occurs, implying that qIIId is the unique
equilibrium: the marginal revenue is higher than the marginal cost for any qd < qIIId , while the
marginal cost is higher than the marginal revenue for any qd > qIIId : at qd = µ−q′−δ the marginal
revenue curve jumps up, but it does not intersect with the pre-divestment marginal cost (this would
require that q′ ≥ 3

5(µ − δ)), and it does not with the post-divestment marginal cost curve either
since δ < µ

2 (see infeasible Case i).
* If δ ≤ µ

6 and µ+2δ
3 < q′ < δ + µ

3 , only Case III occurs and represents the unique equilibrium
(see above).

* If the previous conditions on q′ do not hold and q′ < min{23(µ− δ), 35µ+ δ}, then the Cases
III and IV can feasibly occur at the same time. In this case the dominant firm will choose
the equilibrium with the highest profits, i.e. Case III will represent the equilibrium outcome if
πIIId > πIVd , and Case IV will represent the equilibrium otherwise. From the expressions given
above note that πIIId does not depend on the value of q′ whilst πIVd is increasing in q′ (as we show
formally below). We can therefore identify an indifference value for q′ (defined as q̂) such that, for
q′ < q̂ we have πIIId > πIVd (i.e. Case III represents the equilibrium outcome), and for q′ > q̂ Case
IV is the equilibrium. q̂ is given by setting πIIId = πIVd . From the equilibrium prices and quantities
given above, πIIId can be expressed as follows:

πIIId = pIIId qIIId − γ
2

(
qIIId

)2
=
2

9
γ (µ− δ)2 − γ

18
(µ− δ)2 = γ

6
(µ− δ)2 .

To compute πIVd recall that in Case IV , the equilibrium price can be expressed as pIVd =
γ
2 (µ− δ + q′ − q). This implies that πIVd can be expressed as follows:

πIVd = pIVd q
IV
d − γ

2

(
qIVd

)2
=
γ

2

(
µ− δ + q′

)
qIVd − γ

(
qIVd

)2
=
γ

16

(
µ− δ + q′

)2 .

The indifference point q̂ is therefore given by the following quadratic condition (obtained by
simplifying the two expression for profits given above):

(µ− δ)2
3

=
(µ− δ + q′)2

8

3
(
q′
)2
+ 6 (µ− δ) q′ − 5 (µ− δ)2 = 0.

This yields a unique positive root in q′ given by:

q′ =
−6 (µ− δ) +

√
36(µ− δ)2 + 60(µ− δ)2
6

=

(
2
√
6

3
− 1

)
(µ− δ) ≈ 0.63 (µ− δ) .
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We therefore define q̂ ≡
(
2
√
6
3 − 1

)
(µ− δ). As we discuss in the main text, this identifies the

optimal divestment policy for the range of δ considered in this Proposition. Note that c(q̂) = γq̂ is
below p∗, as should be expected.

Note that for q′ = q̂ to be consistent with Case IV it needs to be contained within the range of
q′ that defines Case IV. This implies the following conditions on δ:

q̂ <
3

5
µ+ δ ⇒ δ >

(
1− 12

5
√
6

)
µ ≈ 1

50
µ,

for δ ≤ µ

6
: q̂ ≥ 3

5
(µ− δ) which is always satisfied,

for δ >
µ

6
: q̂ ≥ µ

3
+ δ ⇒ δ ≤

(
1− 2√

6

)
µ.

The two resulting conditions on δ are assumed to hold in this Proposition, and to define the
range of intermediate divestments.

* If 3
5µ + δ <

2
3(µ − δ) (i.e., δ <

µ
25) and 3

5µ + δ < q′ < 2
3(µ − δ), then the Cases III and

V (see below) occur at the same time. If this is the case, and if q̂ < 3
5µ + δ (which requires

δ >
(
1− 12

5
√
6

)
µ), then in the Case IV the maximum profit is achieved at q′ = 3

5µ+ δ (since πIVd
increases with q′), and πIIId > πIVd for q′ < q̂. In the Case V the maximum profit is achieved at
q′ = 2

3µ+δ since π
V
d increases with q′ (because higher values of q′ imply higher levels of the residual

demand curve on which the dominant firm is pricing). Therefore, πVd (q
′) > πVd (

3
5µ + δ) for any

q′ ∈ (35µ+ δ, 23µ+ δ). Moreover, πVd (
3
5µ+ δ) = π

IV
d (

3
5µ+ δ) > π

III
d = γ

6 (µ− δ)2 . Thus, for values
of q′ higher than 3

5µ+ δ, the Case V defines the equilibrium outcome rather than Case III (which
is also feasible).

* If 35µ + δ ≥ 2
3(µ − δ) (i.e., δ ≥

µ
25) and 2

3(µ − δ) < q′ < 3
5µ + δ, then only Case IV occurs,

implying that qIVd is the unique equilibrium: the marginal revenue is higher than the marginal cost
for any qd < qIVd , while the marginal cost is higher than the marginal revenue for any qd > qIVd .

Case V : the pre-divestment marginal cost curve passes through the second jump of the marginal
revenue curve. If so, the flat part of the marginal revenue curve at qd = µ−q′+δ, i.e., γ2 (µ+q′−δ)−
γ(µ− q′+ δ), must be higher than the marginal cost: γ(µ− q′+ δ). This requires that q′ > 3

5µ+ δ.
Also, the third step of the marginal revenue curve at qd = µ− q′+ δ, i.e., γ(µ−2(µ− q′+ δ)), must
be lower than the marginal cost: γ(µ− q′ + δ). This requires that 2

3µ+ δ > q
′. Therefore, we have

that 35µ+ δ < q
′ < 2

3µ+ δ. The dominant firm will not find it profitable to produce more/less than
q′ − δ, thus qVd = µ− q′ + δ. From p = cf = γ(µ− qd), we have that pV = γ(q′ − δ) = c− γδ.

Case V I: q′ > 2
3µ+ δ, here, q

V I
d is the unique equilibrium: the marginal revenue is higher than

the marginal cost for any qd < qV Id , while the marginal cost is higher than the marginal revenue for
any qd > qV Id . Recall that it is not feasible that the third step of the marginal revenue curve passes
through the jump of the marginal cost curve (see infeasible Case iv).

Optimal divestment

Notice that the minimum pII is achieved at q′ = µ+2δ
3 , where pII = p∗ − 2

3γδ. Therefore, for
a given δ, we have that pIII = min pII < pII < pI = p∗ − ∆p < pV I = p∗. The minimum pV

is achieved at q′ = 3
5µ + δ, where p

V = 3
5γµ. The price corresponding to Case IV equals the
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minimum pV for q′ = 3
5µ+ δ, and takes a lower value for q′ < 3

5µ+ δ (since it is decreasing in q′).
Note also that the price set by the dominant firm at the indifference point between Cases III and
IV is necessarily lower in Case IV than in Case III since when the firm deviates to Case IV it
prices on the flattest part of its residual demand curve, and it stops pricing on the segment of the
residual demand curve obtained when the fringe produces at lower cost. In order to do so it must
expand output. Since pIII = min pII < pII < pI , and pIV and pV are increasing in c, it follows
that the lowest price is achieved when the divestment is located at c = γq̂ ≡ γ

(
2
√
6
3 − 1

)
(µ− δ),

i.e. the indifference point between Case III and Case IV . The price at this point is as follows:
p(ĉ) =

√
6
4 γ (µ− δ).

A.2 Proof of Proposition 2

As it is established in Section 3.4, a sufficient condition for divestments to be welfare-increasing is
that the output of the dominant firm (net of the divested capacity) does not decrease. For this to
be the case, the marginal cost of the dominant firm in the post-divestment equilibrium must be
higher than its marginal cost pre-divestment. This condition can be expressed as follows:

γ
µ

3
≤ cd =

{
γqd if qd < q

′ − δ
γ(qd + δ) if qd ≥ q′ − δ

.

Note that in Cases I and II of the post-divestment equilibrium, we have that qd ≥ q′ − δ. A
sufficient condition for divestments to increase welfare in those two cases is therefore that qd ≥ µ

3−δ.

• From the proof of Proposition 1 we have that qId =
µ
3 − 2

3δ, which satisfies this condition.

• We also have that qIId = q′− δ. The minimum output in Case II is therefore given when q′ is
minimised within the range of Case II. This is so for q′ = µ+δ

3 , which implies qIId = µ
3 − 2

3δ,
which also satisfies the condition.

For other cases, we require qd ≥ µ
3 for welfare to increase. Taking the remaining four cases in

turn:

• In Case III, we have that qIIId = µ
3 − δ

3 , which does not satisfy the condition.

• In Case IV , we have that qIVd = µ−δ
4 + q′

4 . Output is increasing in q′, and is therefore
minimised for the lowest q′ within the range of Case IV . The lowest q′ within Case IV
is given by

(
2
√
6
3 − 1

)
(µ− δ), which is the location of the optimal divestment. Solving for

the corresponding output level yields qIVd = µ−δ√
6
, which is decreasing in δ. Solving for the

maximum feasible δ in the range of intermediate divestment (i.e. δ = 1− 2√
6
), we obtain that

qIVd = µ
3 , which satisfies the condition for welfare to increase.

• In Case V , we have that qVd = µ−q′+δ, which is decreasing in q′. The maximum q′ yields the
pre-divestment price in this case and no output change by the fringe. This implies qVd =

µ
3 ,

which satisfies the condition.
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• The condition is trivially satisfied in Case V I, where the divestment has no impact on market
outcomes.

The only case where divestments can lead to a reduction in welfare is therefore Case III. In
this case, the change in welfare is given by the following expression (recalling that pIII = p∗− 2

3γδ):

∆W III =

2
3
µ∫

2
3
µ− 2

3
δ

γxdx+

µ
3∫

µ
3
− δ
3

γxdx−
q′∫

q′−δ

γxdx.

This simplifies to the following: ∆W III = γδ
(
2
9δ +

5
9µ− q′

)
, which is decreasing in q′. Substi-

tuting for the highest value of q′ that is feasible in Case III (i.e. q′ =
(
2
√
6
3 − 1

)
(µ− δ) ) , yields

the following condition for ∆W III ≥ 0 :

δ

µ
≥ 6

√
6− 14

6
√
6− 7

≈ 0.09,

which is within the range of δ
µ
considered in the case of intermediate divestments. This proves that

for δ
µ
< 6

√
6−14

6
√
6−7 − and q′ high enough − divestments can reduce welfare.

A.3 Proof of Proposition 3

Case I (the option is always exercised)

The profit of the dominant firm is πd = pqd − γ
2 (qd)

2 +
∫ q′
q′−δ γxdx − pδ where p = γ(µ − qd).

Simplifying, we obtain
πd = pqd −

γ

2
(qd)

2 +
γ

2
(−δ2 + 2q′δ)− pδ.

The first-order derivative yields qd =
µ+δ
3 , and therefore p = γ

(
2µ−δ
3

)
. The feasibility conditions

are that p > γq′ and q′ ≥ δ. The former implies: q′ < 2µ−δ
3 ⇒ c < p∗ − γδ

3 . To satisfy the second
condition we require δ ≤ µ

2 .

Case II (only part of the option is exercised)

The profit of the dominant firm is πd = pqd − γ
2 (qd)

2 +
∫ µ−qd
q′−δ γxdx− p [(µ− qd)− (q′ − δ)] ,where

we have used that p/γ = qf = µ− qd. Simplifying,

πd = γ(µ− qd)(2qd + q′ − µ− δ) +
γ

2
(µ2 + 2q′δ − 2µqd − q′ − δ2).

The first-order condition yields qd =
µ
2 −

(
q′−δ
4

)
and therefore p = γ

(
µ
2 +

q′−δ
4

)
. For this solution

to be an equilibrium the following two feasibility conditions must hold i) qd > 0, or q′ < 2µ+ δ; ii)
γ(q′ − δ) < p < γq′, this condition can be rewritten as

2µ− δ
3

< q′ <
2µ

3
+ δ,
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which is stricter than condition i. The equivalent condition for c is: p∗ − γδ
3 < c < p

∗ + γδ.

A.4 Proof of Proposition 4

The welfare impact of a baseload VPP (which we define as ∆WB) is the same as the one of a
baseload divestment. It is given by the reduction in costs faced by the competitive fringe due to
its output reduction, minus the increase in cost for the dominant firm, due to its output increase:

∆WB =

2
3
µ∫

2
3
µ− δ

3

γxdx−

µ+δ
3∫

µ
3

γxdx,

which simplifies to γδ
9 (µ− δ).

Recall that at the optimal divestment the price and the output are given by p(ĉ) =
√
6
4 γ (µ− δ)

and qIVd = µ−δ√
6
. These results imply that the welfare impact of the optimal divestment (which we

define as ∆Ŵ ) is given by the following expression:

∆Ŵ =

2
3
µ∫

√
6
4
(µ−δ)

γxdx−

µ−δ√
6∫

µ
3

γxdx−

√
6
4
(µ−δ)∫

(
2
√
6

3
−1
)
(µ−δ)−δ

γxdx

= γ


 5
18
µ2 − 11(µ− δ)

2

24
+

((
2
√
6
3 − 1

)
(µ− δ)− δ

)

2




= γ

[(
119

72
− 2
3

√
6

)
µ2 +

7

8
δ2 −

(
7

4
− 2
3

√
6

)
δµ

]
.

We have that

∆Ŵ −∆WB = γ

[(
119

72
− 2
3

√
6

)
µ2 +

(
7

8
+
1

9

)
δ2 −

(
7

4
− 2
3

√
6 +

1

9

)
δµ

]

= γ

[(
119

72
− 2
3

√
6

)
µ2 +

71

72
δ2 −

(
67

36
− 2
3

√
6

)
δµ

]
.

The gradient of ∆Ŵ −∆WB is

� (µ, δ) =
(
d

dµ

(
∆Ŵ −∆WB

)
,
d

dδ

(
∆Ŵ −∆WB

))
,

with �(0, 0) = 0. The Hessian matrix of ∆Ŵ −∆WB is

H(∆Ŵ −∆WB) =

[
2
(
119
72 − 2

3

√
6
)
−
(
67
36 − 2

3

√
6
)

−
(
67
36 − 2

3

√
6
)

2
(
71
72

)
]
,

which is positive definite. Hence, µ = δ = 0 is a global minimum, where ∆Ŵ −∆WB = 0. For any
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positive µ > 0 and δ > 0, we thus have that ∆Ŵ −∆WB > 0.

A.5 Proof of Proposition 5

From the proof of Proposition 1 we have that for δ
µ ∈ (0, 1− 12

5
√
6
) the cases i, ii, iii, iv and v are

not feasible (case v requires that δ > µ/6), whereas Cases I, II, III, IV , V and V I are feasible
depending on the location of q′. Using the proof of Proposition 1, we have that, for a given q′,

• if q′ < µ+δ
3 , then qId is the unique equilibrium.

• if µ+δ3 ≤ q′ < µ+2δ
3 , then qIId is the unique equilibrium.

• if µ+2δ3 ≤ q′ < 3
5(µ− δ), then qIIId is the unique equilibrium.

• if 35(µ − δ) ≤ q′ ≤ 3
5µ + δ, then Cases III and IV overlap. From above, however, we have

that q̂, which is given by πIIId = πIVd , is not contained in the range of q′ that defines Case
IV . As case i is not feasible, here qIIId is the unique equilibrium.

• if 35µ + δ < q
′ < 2

3(µ− δ), then Cases III and V overlap (since δ < µ/25). In this case the
dominant firm will choose the equilibrium that yields the highest profit. Thus, Case III is
the equilibrium outcome if πIIId > πVd , and Case V is the equilibrium otherwise. Recall that
πIIId = γ

6 (µ− δ)2, whereas πVd is increasing in q′:

πVd = γ(q
′ − δ)(µ− q′ + δ)− γ

2
(µ− q′ + δ)2.

Let q̂′ be a value for q′ so that πIIId = πVd , then for q′ < q̂′ we have πIIId > πVd , and for q′ > q̂′

we have πVd > π
III
d , provided that 3

5µ+ δ < q̂
′ < 2

3(µ− δ). q̂′ is thus given by

γ(µ− q′ + δ)
[
(q′ − δ)− (µ− q

′ + δ)

2

]
=
γ

6
(µ− δ)2,

which can be rewritten as

−3q′2 + 2(3δ + 2µ)q′ − 2
3
(2µ2 + 5δ2 + 5δµ) = 0.

This yields two positive roots in q′, but only one of them is contained in the region where
Case V is feasible:18

q′ = q̂′ ≡ 2

3
µ+ δ − 1

3

√
δ(2µ− δ).

This root is contained in the region where Cases III and V overlap. This follows from the
fact that πVd > π

III
d at q′ = 2

3(µ−δ), and πIIId > πVd at q′ = 3
5µ+δ. Since π

III
d is constant and

πVd is increasing in q′, we have that 35µ+δ < q̂
′ < 2

3(µ−δ). The price is given by p = γ(q′−δ),
thus for q′ = q̂′ we have that p(γq̂′) = p∗ − γ

3

√
δ(2µ− δ).

• if 23(µ− δ) < q′ < 2
3µ+ δ, then only Case V applies, qVd is then the unique equilibrium.

18The second root is above the upper bound of the feasible region, i.e., 2
3µ+ δ +

1
3

√
δ(2µ− δ) > 2

3 (µ− δ).
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• if q′ > 2
3µ+ δ, then q

V I
d is the unique equilibrium.

Notice that the minimum pII is achieved at q′ = µ+2δ
3 , where pII = p∗ − 2

3γδ, and that the
minimum price achieved when Case V is the only case which applies (defined as min pV ) obtains
at q′ = 2

3(µ− δ), where pV = p∗ − 5
3γδ. Therefore, for a given δ, the minimum prices that can be

achieved in each region satisfy min pV < minpII = pIII < pI = p∗− 1
3γδ < p

V I = p∗. In the region
where Cases III and V overlap, q′ is lower than the lower bound of the region where only Case
V exists and, moreover, pV and πVd increase with q′, thus p(γq̂′) < min pV . Therefore, the optimal

divestment is located at c = ĉ ≡ γq̂′. Finally, R( δµ) =
p∗−p(γq̂′)

∆p
=
√
δ(2µ−δ)
δ =

√
2µ
δ − 1.

A.6 Proof of Proposition 6

From the proof of Proposition 1 we have that for δ
µ ∈ (1− 2√

6
, 12 ] the Cases i, ii, iii and iv are not

feasible, whereas Cases v, I, II, III, IV , V and V I are feasible. The range where Case v applies is
µ
2 < q

′ < µ
3+δ. As it is shown in the proof of Proposition 1, the output of the dominant firm in Case

v is given by qd = q′ − δ whilst the inverse demand curve is given by p(qd) =
γ
2

(
µ+ q′ − δ − qd

)
.

This in turn implies that pv = γµ
2 ≡ pc. This means that if for a given q′ Case v is the equilibrium

outcome, q′ also represents the optimal position of the divestment (though not necessarily unique),
since it delivers the competitive price pc.

Using the proof of Proposition 1, we have that, for a given q′,

• if δ ≥ µ
5 , then only the Case v exists, so pv is the unique equilibrium, for q′ ∈

(
2
3 (µ− δ) ,

µ
3 + δ

)
.

• if δ < µ
5 , then Cases III and v overlap for µ

2 < q
′ ≤ µ

3 + δ.

These conditions imply that if πvd > πIIId at q′ = µ
3 + δ, then setting q′ = µ

3 + δ achieves
the optimal divestment. As shown in the proof of Proposition 1, πIIId = γ

6 (µ− δ)
2 . Using the

expressions for price and quantity given above we also have that:

πvd =
γµ

2

(
q′ − δ

)
− γ
2

(
q′ − δ

)2
=
γ

2

(
q′ − δ

) (
µ− q′ + δ

)
.

Setting q′ = µ
3+δ we have that π

v
d > π

III
d if 19µ

2 > γ
6 (µ− δ)

2 , which is equivalent to 2
3µ
2 > (µ− δ)2.

In the range of δ considered here (i.e. for δ
µ ∈ (1 − 2√

6
, 12 ] ) this condition is satisfied, since the

right hand side of the inequality is decreasing in δ, and it equals 2
3µ
2 for δ =

(
1− 2√

6

)
µ. This

proves that setting q′ = µ
3 + δ achieves the optimal divestment in the range of δ

µ
considered in this

Proposition. For all other values of δ contained within the range considered in this Proposition (i.e.
for δ >

(
1− 2√

6

)
µ), there exists a lower value for q′ so that the equilibrium price is the competitive

price. To see this, notice that

dπVd
dδ

= −dπ
V
d

dq′
= pc − γ(q′ − δ),

which implies that for a slight increase in δ, there exists a slight decrease in q′ so that πVd keeps
constant. By contrast, for a slight increase in δ, πIIId decreases. Therefore, for a higher δ, there
exist multiple values for q′ for which pc is the equilibrium outcome (since πVd > π

III
d ).
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Figure 6: Position of the optimal divestment for δ = µ
20 .

A.7 Illustration of the position of the optimal divestment (for δ = µ

20
)

Figure 6 illustrates the position of the optimal divestment, relative to the pre-divestment marginal
cost and residual demand functions of the dominant firm, for the case of δ = µ

20 . As the figure shows
the cost range of the optimal divestment is between the pre-divestment price and the competitive
price. As it is explained in the main text, for divestments of intermediate size it is always the case
that ĉ ∈ (pc, p∗).
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