

# Electricity Production with Intermittent Sources of Energy



#### Stefan Ambec

(stefan.ambec@tse-fr.eu)

**Claude Crampes** 

(claude.crampes@tse-fr.eu)





#### motivation

- Electricity is not storable,
  - ... but primary fuels are,
  - ... except for along-the-river water, photovoltaic energy, wind energy,
  - ... and the latter additionally are available according to random processes.
- Nevertheless, solar and wind energies
  - are available for free,
  - are not under the control of aggressive foreigners,
  - and do not emit pollutants.





## political momentum

- Green energy is promoted both by national governments and the EC authorities
  - Directive 2001/77/EC on the promotion of the electricity produced from renewable energy sources
  - Directive 2003/30/EC on the promotion of the use of biofuels or other renewable fuels for transport
  - Renewable Energy Road Map January 2007
  - and more to come ...



## economic analysis of intermittent sources



- > we (economists) are a bit late
- questions to address
  - by how much is it economically efficient to substitute intermittent sources for non-intermittent sources?
  - which type of public intervention is best adapted to approximate first best?
  - can market mechanisms implement the optimal level of substitution?
  - how to inject intermittent energies into the grid whereas it has been designed for non random energy sources?
  - **\***
- ➤ this paper only addresses the problem of the cost of guarantying electricity supply when wind-power is available.





### model setting

 $S\left(q_f+q_i
ight)$  gross surplus, increasing and concave

 $q_f \le K_f$  fuel production at costs c and  $r_f$ 

 $q_i \le K_i$  wind production at costs 0 and  $r_i$ 

w state of nature with wind, proba v

 $\overline{w}$  state of nature without wind, proba (1-v)





## capacity and energy

$$K_f, K_i$$
 "long run" decisions

$$q_f^w, q_i^w$$
 dispatch in state  $w$ 

$$q_f^{\overline{w}}, q_i^{\overline{w}}$$
 dispatch in state  $\overline{w}$ 

but 
$$q_i^{\overline{w}} \equiv 0$$
,  $q_i^w \equiv K_i$ ,  $q_f^{\overline{w}} = K_f$ ,

then only three unknowns remain:  $K_i, K_f, q_f^w$ 





### first best problem

$$\max_{K_{i},K_{f}} v \left[ \max_{q_{f}^{w}} S(K_{i} + q_{f}^{w}) - cq_{f}^{w} \right] \\ + (1 - v)[S(K_{f}) - cK_{f}] \\ - r_{f}K_{f} - r_{i}K_{i} \\ s.t. \quad q_{f}^{w} \ge 0, \quad q_{f}^{w} \le K_{f}, \quad K_{i} \ge 0$$



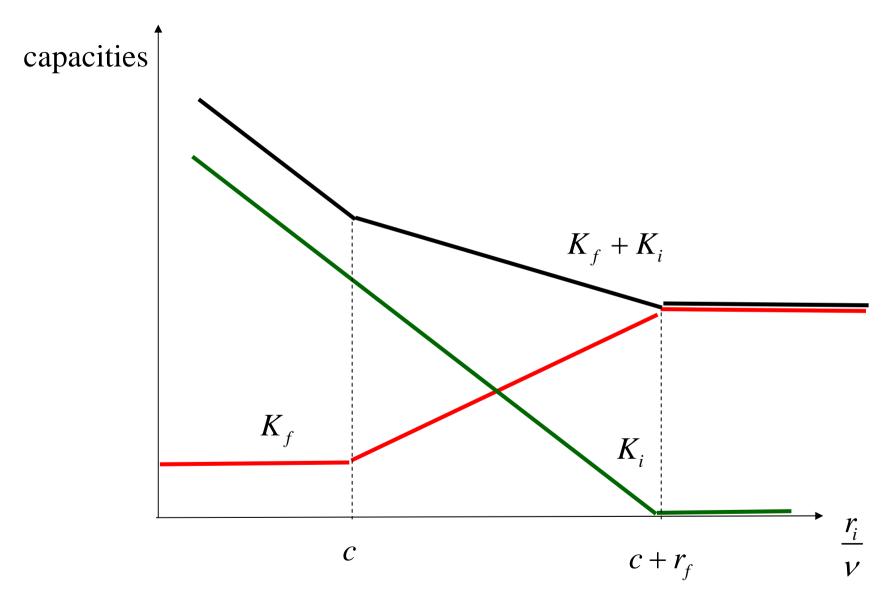


#### first best solution

for 
$$\frac{r_i}{v} > c + r_f$$

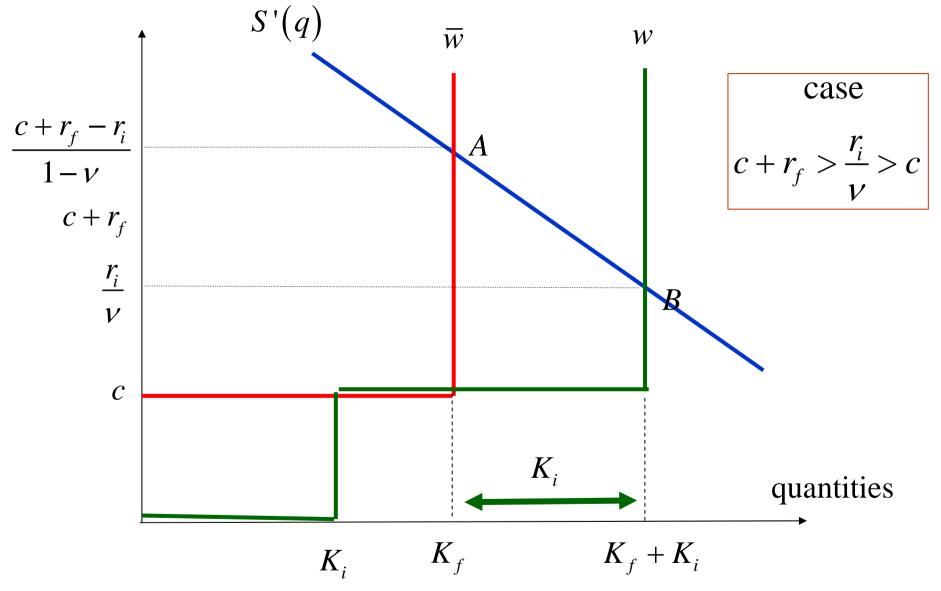
$$q_f^w = q_f^{\overline{w}} = K_f = S^{'-1}(c + r_f), \qquad q_i^w = K_i = 0$$

$$q_f^w = 0 < q_f^{\overline{w}} = K_f = S^{'-1} \left( c + \frac{r_f}{1 - v} \right), \quad q_i^w = K_i = S^{'-1} \left( \frac{r_i}{v} \right)$$


$$q_{f}^{w} = q_{f}^{\overline{w}} = K_{f} = S'^{-1} \left( \frac{c + r_{f} - r_{i}}{1 - \nu} \right), \quad q_{i}^{w} = K_{i} = S'^{-1} \left( \frac{r_{i}}{\nu} \right) - S'^{-1} \left( \frac{c + r_{f} - r_{i}}{1 - \nu} \right)$$

SA/CC

January 2010














SA/CC

January 2010







$$p^{w} = p^{\overline{w}} = c + r_{f}$$

$$\Leftrightarrow$$
 for  $c > \frac{r_i}{v}$ 

• for 
$$c + r_f > \frac{r_i}{v} > c$$
,  $p^w = \frac{r_i}{v}$ ,  $p^{\bar{w}} = \frac{c + r_f - r_i}{1 - v}$ 

allow to implement first best and balance the expected budget of producers.

drawback: when the two technologies are installed, prices must be state contingent  $p^w > p^w$ 

$$p^{\overline{w}} > p^{w}$$





## consumers are not price reactive

- \* « no smart meters » means uniform price, which means  $q_i^w + q_f^w = q_f^{\overline{w}}$
- then, in state w the two technologies are perfect substitutes
- ❖ consequently  $q_i^w > 0$  AND  $q_f^w > 0$  cannot be efficient at the optimum constrained by uniform pricing.





#### second best solution

- $ightharpoonup ext{If } c < rac{r_i}{v} ext{ only technology } f ext{ is installed and } S'(K_f) = c + r_f = \tilde{p}^w = \tilde{p}^{\overline{w}}.$
- If  $c > \frac{r_i}{\nu}$ , both technologies are installed but only technology i is used in state w with  $S^{'}(K_f) = S^{'}(K_i) = (1-\nu)c + r_f + r_i = \tilde{p}^w = \tilde{p}^{\overline{w}}$ .







- \* When  $c > \frac{r_i}{\nu}$  both technologies are installed, but the budget is only globally balanced:  $\nu \tilde{p}^w r_i + (1 \nu)(\tilde{p}^{\overline{w}} c) r_f = 0$
- Thus the division operating technology i obtains positive cash flows

$$v\tilde{p}^{w} - r_{i} = v \left[ (1 - v)(c - \frac{r_{i}}{v}) + r_{f} \right] > 0$$

\* whereas the fossil energy f division incurs financial losses  $(1-\nu)(\tilde{p}^{\bar{w}}-c)-r_f<0$ .

#### integration or subsidization?





## uniform prices distort capacities

$$\Rightarrow$$
 since  $p^{\overline{w}^*} = c + \frac{r_f}{1 - v} > \tilde{p}^w = \tilde{p}^{\overline{w}} > p^{w^*} = \frac{r_i}{v}$  and prices signal

investment opportunities, the capacity of intermittent energy installed under uniform price is smaller than at first-best whereas the opposite stands for fossil energy

$$ilde{K}_i < K_i^*$$
 and  $ilde{K}_f > K_f^*$  .





## extension: two sources of intermittent energy

- four states of nature:
  - in state 1 only the intermittent source of energy 1 is available,
  - in state 2 only the intermittent source of energy 2 is available,
  - > in state 12 both are available
  - $\triangleright$  in state  $\overline{w}$  none of them are available



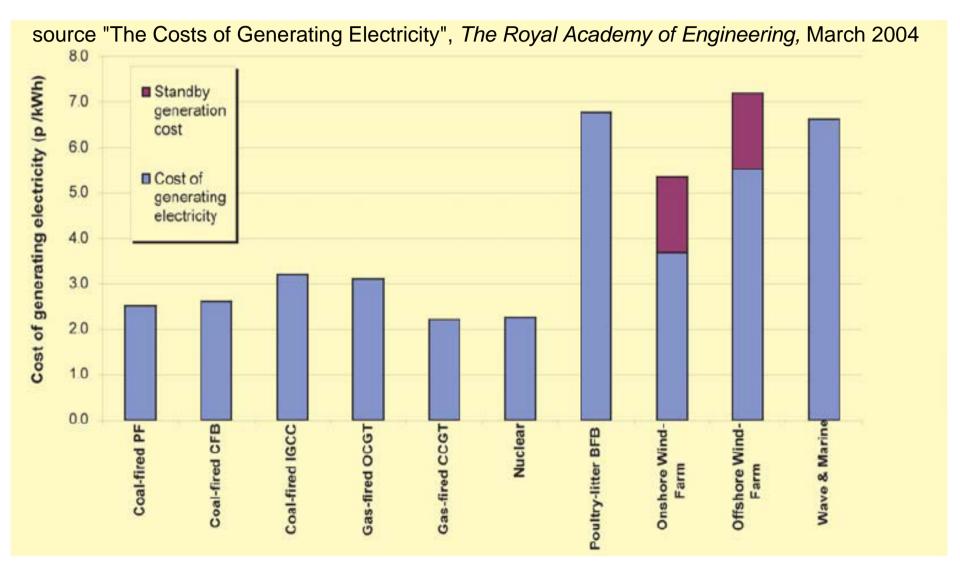


#### 1 or 2 turbines?

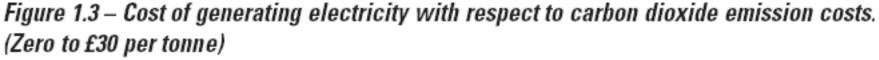
- If sources 1 and 2 are only available at the same time (perfect positive correlation  $v_1 = v_2 = 0$ ), only the most efficient source of intermittent energy will be installed.
- Formally, even though  $\frac{r_i}{v_{12}} < c$  for i = 1, 2 so that the two sources of intermittent energy are more efficient than f in state 12,  $r_1 < r_2 \Rightarrow K_1 > 0, K_2 = 0$ .
- ❖ By contrast, if sources 1 and 2 are never available at the same time (perfect negative correlation  $\nu_{12} = 0$ ), as long as  $\frac{r_i}{\nu_i} < c$  for i = 1, 2 both sources of intermittent energy is to be installed. In particular, source 2 must be built even if  $r_2 > r_1$ .



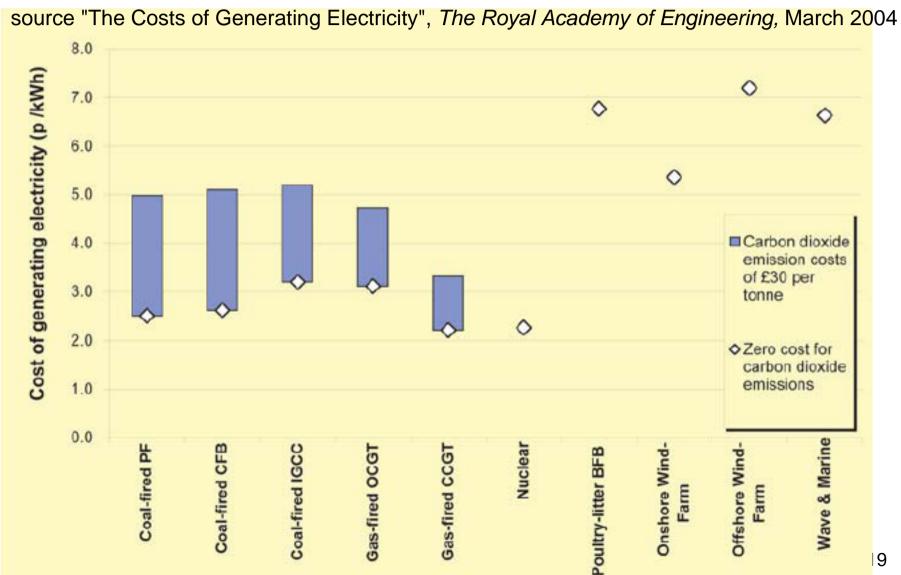





- normative economics are lacking whereas political and technical arguments are leading the wind and photovoltaic momentum
- other extensions
  - day ahead commitment in wholesale markets
  - CO<sub>2</sub> savings and public aids
  - market power
  - network and smart meters
  - and so on







Figure 1.1 – Cost of generating electricity (pence per kWh) with no cost of CO₂ emissions included.









