Market power across the Channel: Continental gas markets isolated?

Post-liberalization: emergence of spatially localized spot markets interconnected throughout a network. Are the arbitrages performed between these markets efficient?

Map 2: US natural gas spot prices at major trading hubs, 2006 (\$/MBtu)

Figure 1: European gas hubs and gas exchanges

The houndaries and names shown and the designations used on mans included in this publication do not imply official

Background

The resurfacing of supply security concerns in Europe

The EU regulatory debate emphasizes "the importance of short-term spatial arbitrages as a means to prevent balkanization" and insure an efficient supply of natural gas (Vazquez et al., 2012).

Objectives of the paper

Propose an empirical methodology to assess the arbitrages performed between two gas markets linked by a capacity-constrained pipeline system

This methodology is designed to:

© IFP

- (i) detect if markets are "integrated,"
 - *i.e., if all the spatial arbitrage opportunities are exploited*
- (ii) decompose the observed spatial price differences

into factors such as transportation costs, transportation bottlenecks, and the oligopolistic behavior of the arbitrageurs.

As an application, we study the spatial arbitrages in the UK-Belgium "Interconnector" pipeline

Previous empirical approaches

- Stigler and Sherwin (1985): Two geographical markets for a tradable good are integrated if the spatial price difference between these two markets equals the unit transportation cost.
- Earlier empirical analyses focus on co-movements among prices

e.g. Cointegration tests ; Granger causality tests; ECMs models; analyses based on the Kalman Filter approach to examine the degree of price convergence ; AR models of pairwise price differentials.

Some concerns:

A lack of theoretical connections with spatial economic models

Enke (1951); Samuelson (1952); Takayama and Judge (1971)

Existing empirical models cannot be used to test for the competitive nature of the observed arbitrages

Spatial equilibrium with a capacity-constrained infrastructure

Case A: Perfectly competitive spatial arbitrages

$$\begin{aligned} \underset{Q_{jit}}{Max} & \Pi_{jit}^{C} \left(Q_{jit} \right) = \left(P_{it} - P_{jt} - \tau_{jit} \right) Q_{jit} \\ \text{s.t.} & Q_{jit} \leq K_{jit} \end{aligned}$$

 $Q_{jit} \ge 0$

KKT:
$$0 \le Q_{jit} \perp P_{it} - P_{jt} - \tau_{jit} - \xi_{jit} \le 0$$

 $0 \le \xi_{jit} \perp Q_{jit} \le K_{jit}$

$$Max_{Q_{jit}} \qquad \Pi_{jit}^{M} \left(Q_{jit}\right) = \left(p_{it}\left(S_{it} + Q_{jit}\right) - p_{jt}\left(S_{jt} - Q_{jit}\right) - \tau_{jit}\right)Q_{jit}$$
s.t.
$$Q_{jit} \leq K_{jit}$$

$$Q_{jit} \geq 0$$

$$-\gamma Q_{jit}$$
KKT: $0 \leq Q_{jit} \perp P_{it} - P_{jt} - \tau_{jit} + \left(p_{it} + p_{jt}\right)Q_{jit} - \xi_{jit} \leq 0$

$$0 \leq \xi_{jit} \quad \perp \quad Q_{jit} \leq K_{jit}$$

A taxonomy of 7 regimes:

		Trade	No trade
		$0 < Q_{jit} \le K_{jit}$	$Q_{jit} = 0$
	= 0	Regime I	Regime II
Marginal profits to spatial arbitrages	> 0	$\label{eq:regime_line} \begin{split} & \textbf{Regime III}_a \\ & \text{iff } \textbf{Q}_{jit} < \textbf{K}_{jit} \\ & \textbf{Regime III}_b \\ & \text{iff } \textbf{Q}_{jit} = \textbf{K}_{jit} \end{split}$	Regime IV
	< 0	Regime V	Regime VI

© IFP

The ambition is to estimate λ_r the probabilities to observe these regimes

Empirical specification (2/4) A Parity Bounds Model

Assumptions and notations:

- the observable portion of the marginal rent to arbitrage is:

$$R_{jit} \equiv P_{it} - P_{jt} - T_{jit}$$

- the marginal arbitrage cost is $\tau_{iit} \equiv T_{iit} + \alpha_{ii} + Z_{iit}\beta_{ii}$

Modeling the marginal profits to arbitrage

- $R_{iit} (\alpha_{ii} + Z_{iit}\beta_{ii}) Q_{iit}\gamma = \varepsilon_{iit}$ Regimes I & II
- **Regimes III**_a, III_b & IV $R_{iit} (\alpha_{ii} + Z_{iit}\beta_{ii}) Q_{iit}\gamma = \varepsilon_{iit} + \mu_{iit}$

Regimes V & VI

$$R_{jit} - \left(\alpha_{ji} + Z_{jit}\beta_{ji}\right) - Q_{jit}\gamma = \varepsilon_{jit} - \upsilon_{jit}$$

where

$$\varepsilon_{jit} \sim N(0, \sigma_{\varepsilon}^2) \qquad \mu_{jit} \sim N^+(0, \sigma_{\mu}^2) \qquad \upsilon_{jit} \sim N^+(0, \sigma_{\upsilon}^2)$$

Empirical specification (3/4):

The joint density function for the observation at time t is the mixture distribution:

$$f_{jit} \left(\pi_{jit} \left| \left(\lambda, \theta \right) \right) = A_{jit} \left[\lambda_{I} f_{jit}^{I} \left(\pi_{jit} \right| \theta \right) + \left(\left(1 - B_{jit} \right) \lambda_{IIIa} + B_{jit} \lambda_{IIIb} \right) f_{jit}^{III} \left(\pi_{jit} \right| \theta \right) + \lambda_{V} f_{jit}^{V} \left(\pi_{jit} \right| \theta \right) \right]$$

$$+ \left(1 - A_{jit} \right) \left[\lambda_{II} f_{jit}^{II} \left(\pi_{jit} \right| \theta \right) + \lambda_{IV} f_{jit}^{IV} \left(\pi_{jit} \right| \theta \right) + \lambda_{VI} f_{jit}^{VI} \left(\pi_{jit} \right| \theta \right) \right]$$

• Estimation: $\begin{array}{l} \underset{(\lambda,\theta)}{\text{Max}} \quad \sum_{t=1}^{N} \log \left(f_{jit} \left(\pi_{jit} \middle| (\lambda,\theta) \right) \right) \\ \text{s.t.} \quad \sum_{r} \lambda_{r} = 1 \end{array}$ This is a nonconvex NLP

 $\lambda_r \in [0,1], \quad \forall r$

Empirical specification (4/4)

Correcting for serial correlation (Kleit, 2001)

Regimes I & II:

$$R_{jit} - \left(\alpha_{ji} + Z_{jit}\beta_{ji}\right) - Q_{jit}\gamma - \rho_{ji}E\left(\varepsilon_{ji(t-1)} | \eta_{ji(t-1)}\right) = \varepsilon_{jit}$$

- Regimes III_a, III_b & IV $R_{jit} - \left(\alpha_{ji} + Z_{jit}\beta_{ji}\right) - Q_{jit}\gamma - \rho_{ji}E\left(\varepsilon_{ji(t-1)} \middle| \eta_{ji(t-1)}\right) = \varepsilon_{jit} + \mu_{jit}$
- Regimes V & VI $R_{jit} - \left(\alpha_{ji} + Z_{jit}\beta_{ji}\right) - Q_{jit}\gamma - \rho_{ji}E\left(\varepsilon_{ji(t-1)} \middle| \eta_{ji(t-1)}\right) = \varepsilon_{jit} - \upsilon_{jit}$ where $E\left(\varepsilon_{ji(t-1)} \middle| \eta_{ji(t-1)}\right)$ is computed using: $P_{t-1}\left(r \middle| \eta_{ji(t-1)}, \theta_{1}\right) = \frac{\lambda_{r}f_{r}\left(\eta_{ji(t-1)} \middle| \theta_{1}\right)}{\sum_{k}\lambda_{k}f_{k}\left(\eta_{ji(t-1)} \middle| \theta_{1}\right)}$ the probability to observe regime r at time t-1

An application: the case of the IUK pipeline

۵

- prices: Platt's day-ahead natural gas prices (€/MWh).
- flows and transportation costs: IUK

Price (NBP) - Price (Zeebrugge) - Shipping cost (Belgium->UK)

Flow (UK->Belgium)

© IFP

Estimation results (1/2) Testing for perfect competition

	From UK to Belgium	From Belgium to UK
Mean parameters		
α	-0.3164***	-0.0990***
β_{time}	0.2019	-0.7017***
$\beta_{D_{2000-2005}}$	-0.0401	0.2442***
$\beta_{D_{2002-2006}}$	-0.2391**	0.5304***
γ	0.0012***	0.0026***
ρ	0.3396***	0.4860***
Log likelihood	-982.6623	-991.7400
LR tests		
$H_0: \gamma = 0$	128.868 (0.000)	115.345 (0.000)
Observations	723	723

Estimation results (2/2) On market integration...

	From UK to Belgium	From Belgium to UK
Probabilities (in %)		
λ_I	48.56***	41.60***
λ_{II}	41.16***	50.50***
$\lambda_{\pi I_a}$	2.45***	1.69***
λ_{π_b}	0.00	0.92**
λ_{IV}	2.88***	0.49
λ_{ν}	0.00	3.05***
λ ₁₀₇	4.96***	1.76
Probability of spatial market equilibrium conditions (in %) $(\lambda_I + \lambda_{II} + \lambda_{III_*} + \lambda_{VI})$	94.68	94.77

Model validation

- **For each observation, identify the regime with the highest probability.**
- Then, select the observations explained by regimes I & II

Figure 1. Q-Q plots of the standardized residual series (sample: $\hat{d}_{jit}^{I} + \hat{d}_{jit}^{II} = 1$)

Conclusion and implications

This paper provides

- an extension of the standard Parity Bound Model
 - to model the role of capacity constraints
 - a dynamic specification to account for serial correlation and a time-varying variance.
- a novel test for the presence of perfect competition in spatial arbitrages.
- An application to the IUK pipeline

Our findings

- document the efficiency of the spatial arbitrages observed between Belgium and the UK.
 - Spatial equilibrium conditions hold with a high probability
- document the presence of an unexplained transaction cost that is proportional to the trade flow
 - The assumption of competitive spatial arbitrages based on a constant unit transportation cost needs to be revised

Thank you for your attention!

