The Cake-Eating problem: Non-linear sharing rules

Eugenio Peluso1 and Alain Trannoy2

Conference In Honor of Louis Eeckhoudt

June 2012

1Department of Economics, University of Verona (Italy)
2Aix-Marseille School of Economics, EHESS
Outline of the talk

1 The model
Outline of the talk

1. The model
2. The stories
Outline of the talk

1. The model
2. The stories
3. The results
The Model
A program P with identical utility

\[
\max_x \sum_{i=1}^{n} a_i v(x_i)
\]

s.t. \(p'x = y \). (1)

- \(v : \mathbb{R}_+ \rightarrow \mathbb{R} \) strictly increasing and concave, satisfies "Inada conditions" and is the same for each attribute;
- The goods are ranked such that the "kernel prices" \(\frac{p_i}{a_i} \) are decreasing with \(i \)
The aim of the paper

The FOC

\[
\frac{v'(x_i^*)}{v'(x_j^*)} = \frac{p_i a_j}{p_j a_i} = \pi_{ij} \quad \forall i, j
\]

\[x_i^* < x_j^* \iff \pi_{ij} > 1 \Leftrightarrow i < j\] (2)

- Exploring integrability conditions

- How is the shape of the demand of the least demanded good related to the properties of the utility function?
Stories

- Individual wealth sharing:

 Arrow Debreu securities, Standard Portfolio (tax evasion n=2)
Individual wealth sharing:

Investor who allocates wealth over assets carrying different risk

Arrow Debreu securities, Standard Portfolio (tax evasion n=2)
Individual wealth sharing:

- Investor who allocates wealth over assets carrying different risk
 Arrow Debreu securities, Standard Portofolio (tax evasion n=2)

- Consumer choosing a consumption plan over n periods
Stories

- Individual wealth sharing:
 - Investor who allocates wealth over assets carrying different risk
 - Arrow Debreu securities, Standard Portofolio (tax evasion n=2)
 - Consumer choosing a consumption plan over n periods
 - Individual deciding her optimal insurance coverage (n=2)
Stories

- Individual wealth sharing:

- Investor who allocates wealth over assets carrying different risk
 Arrow Debreu securities, Standard Portofolio (tax evasion n=2)

- Consumer choosing a consumption plan over n periods

- Individual deciding her optimal insurance coverage (n=2)

- Group sharing problem(same utility but unequal weights)
Stories

- Individual wealth sharing:

 - Investor who allocates wealth over assets carrying different risk: Arrow Debreu securities, Standard Portofolio (tax evasion n=2)

- Consumer choosing a consumption plan over n periods

- Individual deciding her optimal insurance coverage (n=2)

- Group sharing problem (same utility but unequal weights)

- Household sharing a given wealth among its members
Stories

- Individual wealth sharing:

- Investor who allocates wealth over assets carrying different risk
 Arrow Debreu securities, Standard Portofolio (tax evasion n=2)

- Consumer choosing a consumption plan over n periods

- Individual deciding her optimal insurance coverage (n=2)

- Group sharing problem (same utility but unequal weights)

- Household sharing a given wealth among its members

- Group sharing risks
Applications to individual decision-making

1- Arrow Debreu contingency claims

\[y = \text{initial wealth}, \quad v = \text{state independent utility} \]

\[x_1(y, p; a) = \text{demand of the contingent claim with "kernel price" } p_1 a. \]

2- Intertemporal consumption choice

Ingredients: Initial wealth \(y \), interest rate \(r \), intertemporal separable utility \(v(x_1) + \beta v(x_2) \) with discount factor \(\beta \).

\[x_1 = 1 + \beta + x_2 \]

Peluso & Trannoy (Conference In Honor of Louis Eeckhoudt)
1- Arrow Debreu contingency claims

<table>
<thead>
<tr>
<th>states</th>
<th>prob</th>
<th>demand.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>x₁</td>
<td>p₁</td>
</tr>
<tr>
<td>2</td>
<td>1 − a</td>
<td>x₂</td>
<td>p₂</td>
</tr>
</tbody>
</table>

- Initial wealth, \(y \)
- State independent utility \(v(x_1) + \beta v(x_2) \) with discount factor \(\beta \)
- Time weights prices \(p_1 \) and \(p_2 \)
Applications to individual decision-making

1- Arrow Debreu contingency claims

<table>
<thead>
<tr>
<th>states</th>
<th>prob</th>
<th>demand.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>x₁</td>
<td>p₁</td>
</tr>
<tr>
<td>2</td>
<td>1 − a</td>
<td>x₂</td>
<td>p₂</td>
</tr>
</tbody>
</table>

\[y = \text{initial wealth}, \ v = \text{state independent utility} \]
Applications to individual decision-making

1- Arrow Debreu contingency claims

<table>
<thead>
<tr>
<th>states</th>
<th>prob</th>
<th>demand.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>x_1</td>
<td>p_1</td>
</tr>
<tr>
<td>2</td>
<td>$1-a$</td>
<td>x_2</td>
<td>p_2</td>
</tr>
</tbody>
</table>

$y = \text{initial wealth}, \ \nu = \text{state independent utility}$

$x_1^*(y, p; a) = \text{demand of the contingent claim with "kernel price" } \frac{p_1}{a}$.
Applications to individual decision-making

1- Arrow Debreu contingency claims

<table>
<thead>
<tr>
<th>states</th>
<th>prob</th>
<th>demand.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a)</td>
<td>(x_1)</td>
<td>(p_1)</td>
</tr>
<tr>
<td>2</td>
<td>(1-a)</td>
<td>(x_2)</td>
<td>(p_2)</td>
</tr>
</tbody>
</table>

\(y = \) initial wealth, \(v = \) state independent utility
\(x_1^*(y, p; a) = \) demand of the contingent claim with "kernel price" \(\frac{p_1}{a}\).

2- Intertemporal consumption choice
Applications to individual decision-making

1- Arrow Debreu contingency claims

<table>
<thead>
<tr>
<th>states</th>
<th>prob</th>
<th>demand.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>x_1</td>
<td>p_1</td>
</tr>
<tr>
<td>2</td>
<td>$1-a$</td>
<td>x_2</td>
<td>p_2</td>
</tr>
</tbody>
</table>

$y = \text{initial wealth, } v = \text{state independent utility}$

$x_1^*(y, p; a) = \text{demand of the contingent claim with "kernel price" } \frac{p_1}{a}$.

2- Intertemporal consumption choice

Ingredients: Initial wealth y, interest rate r, intertemporal separable utility $v(x_1) + \beta v(x_2)$ with discount factor $\beta \leq 1$. Then
1- Arrow Debreu contingency claims

<table>
<thead>
<tr>
<th>states</th>
<th>prob</th>
<th>demand.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>(x_1)</td>
<td>(p_1)</td>
</tr>
<tr>
<td>2</td>
<td>1 - a</td>
<td>(x_2)</td>
<td>(p_2)</td>
</tr>
</tbody>
</table>

\(y = \text{initial wealth}, \, v = \text{state independent utility}\)

\(x_1^*(y, p; a) = \text{demand of the contingent claim with "kernel price" } \frac{p_1}{a}\).

2- Intertemporal consumption choice

Ingredients: Initial wealth \(y\), interest rate \(r\), intertemporal separable utility \(v(x_1) + \beta v(x_2)\) with discount factor \(\beta \leq 1\). Then

<table>
<thead>
<tr>
<th>time</th>
<th>weights</th>
<th>prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a = \frac{1}{1+\beta})</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(1 - a = \frac{\beta}{1+\beta})</td>
<td>(\frac{1}{1+r})</td>
</tr>
</tbody>
</table>
Intra-household allocation: No prices, Samuelson’s household welfare function.

$$\max_{x_1,x_2} av(x_1) + (1 - a)v(x_2)$$

s.t. \quad \begin{align*} p_1x_1 + p_2x_2 &= y \\ z_1(\theta) + z_2(\theta) &= y(\theta) = x_1(\theta) + x_2(\theta) \end{align*}$$
Group decision-making

- **Intra-household allocation:** No prices, Samuelson’s household welfare function.

\[
\max_{x_1, x_2} \ a v(x_1) + (1 - a) v(x_2)
\]

s.t. \(p_1 x_1 + p_2 x_2 = y \)

- **Risk-sharing:** \(\theta \in \Theta \) states of the world, risk: \(F: \Theta \rightarrow [0, 1] \), while \(v(x) \) are the identical vNM utility of the two individuals.

\[
\max_{x_1, x_2} \ a \int_{\Theta} v(x_1(\theta))dF(\theta) + (1 - a) \int_{\Theta} v(x_2(\theta))dF(\theta), \quad \text{with } a \in (0, \frac{1}{2}]
\]

s.t. \(z_1(\theta) + z_2(\theta) = y(\theta) = x_1(\theta) + x_2(\theta), \ \forall \theta \in \Theta; \quad x_1 \geq 0; \quad x_2 \geq 0. \)

Borch (1960): the consumption in each state of the world only depends on the total wealth in that state. Wealth is not transferable from one state to another.

Solving the risk-sharing problem then reduces to solve the intra-household allocation for any feasible \(y \).
Group decision-making

- **Intra-household allocation:** No prices, Samuelson’s household welfare function.

\[
\max_{x_1, x_2} av(x_1) + (1 - a)v(x_2)
\]
\[
\text{s.t. } p_1 x_1 + p_2 x_2 = y
\]

- **Risk-sharing:** \(\theta \in \Theta \) states of the world, risk: \(F: \Theta \rightarrow [0, 1] \), while \(v(x) \) are the identical vNM utility of the two individuals.

\[
\max_{x_1, x_2} a \int_{\Theta} v(x_1(\theta)) dF(\theta) + (1 - a) \int_{\Theta} v(x_2(\theta)) dF(\theta), \quad \text{with } a \in (0, \frac{1}{2}]
\]
\[
\text{s.t. } z_1(\theta) + z_2(\theta) = y(\theta) = x_1(\theta) + x_2(\theta), \quad \forall \theta \in \Theta; \quad x_1 \geq 0; \quad x_2 \geq 0.
\]

- Borch (1960): the consumption in each state of the world only depends on the total wealth in that state. Wealth is not transferable from one state to another.
Intra-household allocation: No prices, Samuelson’s household welfare function.

\[
\max_{x_1, x_2} a v(x_1) + (1 - a) v(x_2)
\]

\[
\text{s.t. } p_1 x_1 + p_2 x_2 = y
\]

Risk-sharing: \(\theta \in \Theta \) states of the world, risk: \(F : \Theta \rightarrow [0, 1] \), while \(v(x) \) are the identical vNM utility of the two individuals.

\[
\max_{x_1, x_2} a \int_{\Theta} v(x_1(\theta)) dF(\theta) + (1 - a) \int_{\Theta} v(x_2(\theta)) dF(\theta), \text{ with } a \in (0, \frac{1}{2}]
\]

\[
\text{s.t. } z_1(\theta) + z_2(\theta) = y(\theta) = x_1(\theta) + x_2(\theta), \forall \theta \in \Theta; \hspace{1cm} x_1 \geq 0; \hspace{1cm} x_2 \geq 0.
\]

Borch (1960): the consumption in each state of the world only depends on the total wealth in that state. Wealth is not transferable from one state to another.

Solving the risk-sharing problem then reduces to solve the intra-household allocation for any feasible \(y \).
We normalize \(a = 1/2, \ p_1 = p > 1 \) and \(p_2 = 1 \). Then
\[
x_1^*(y, p, a) \equiv x(y, p).
\]
We normalize $a = 1/2, \ p_1 = p > 1$ and $p_2 = 1$. Then $x_1^*(y, p, a) \equiv x(y, p)$.

Let $h(x, p)$ be the demand of good 2 as a function of good 1 and p.
We normalize $a = 1/2$, $p_1 = p > 1$ and $p_2 = 1$. Then
$x_1^*(y, p, a) \equiv x(y, p)$.

Let $h(x, p)$ be the demand of good 2 as a function of good 1 and p.

$h(x, p) = g(x, p) - px$, where $g(x, p)$ is the inverse function of $x(y, p)$ wrt y using the fact that the two goods are normal.
Integrability conditions

Proposition

A function $x(y, \pi)$, strictly increasing with y and decreasing with p is a solution of program P for all $y \in \mathbb{R}_+$ and for all $p > 1$, iff there exist a positive function $A(x)$ such that:

$$\frac{h_x(x, p)}{h_p(x, p)} = A(x)p$$

(3)

Then A represents the Arrow-Pratt absolute risk aversion coefficient, that is $v'(x) = \exp \int_0^x A(s)ds$.
Integrability conditions: examples

- \(x_1^*(y, p) = \frac{1}{2p} y^\gamma \), for \(\gamma < 1 \) does not satisfy the integrability conditions.

- If \(h(x, p) = (1 + x)^p - 1 \), we get \(\frac{h_x}{h_p} = \frac{p}{(1 + x) \ln(1 + x)} \). Then \(h \) is the solution of \(\mathbf{P} \) with the log-integral utility function
 \[
 v(x) = \int_0^x \frac{1}{\ln(1+s)} \, ds
 \]

- If \(h(x, p) = \ln(1 + e^x - p) - \ln p \), we get \(\frac{h_x}{h_p} = \frac{e^x}{1 + e^x} p \), solution of \(\mathbf{P} \) under the linex utility function \(v(x) = x - e^{-x} \).
Integrability without prices
The "group" case

- Group decision-making set-up: prices are fixed (eventually equal to 1) and weights are fixed
Integrability without prices

The "group" case

- Group decision-making set-up: prices are fixed (eventually equal to 1) and weights are fixed
- Does identical utility impose more restrictions on the class of non-linear sharing functions generated by P beyond $x_1 < x_2$ for all y?
Integrability without prices
The "group" case

- Group decision-making set-up: prices are fixed (eventually equal to 1) and weights are fixed

- Does identical utility impose more restrictions on the class of non-linear sharing functions generated by P beyond $x_1 < x_2$ for all y?

- Answer: No for $n = 2$, Yes for $n > 2$ but \ldots

Proposition
For all $f(y)$ and $a \in (0, 1/2)$, there exists a continuous differentiable utility function v such that, for all $y \in \mathbb{R}^+$, from Program (1) we get $x_1(y; a) = f(y)$.
Integrability without prices

The "group" case

- Group decision-making set-up: prices are fixed (eventually equal to 1) and weights are fixed
- Does identical utility impose more restrictions on the class of non-linear sharing functions generated by P beyond $x_1 < x_2$ for all y?
- Answer: No for $n = 2$,
- Answer: Yes for $n > 2$ but ?.
Integrability without prices
The "group" case

- Group decision-making set-up: prices are fixed (eventually equal to 1) and weights are fixed.

- Does identical utility impose more restrictions on the class of non-linear sharing functions generated by P beyond $x_1 < x_2$ for all y?

 - Answer: No for $n = 2$,
 - Answer: Yes for $n > 2$ but ?.

Proposition
Integrability without prices
The "group" case

- Group decision-making set-up: prices are fixed (eventually equal to 1) and weights are fixed.

- Does identical utility impose more restrictions on the class of non-linear sharing functions generated by P beyond $x_1 < x_2$ for all y?

 - Answer: No for $n = 2$,
 - Answer: Yes for $n > 2$ but ?.

Proposition

- For all $f(y)$ and $a \in (0, 1/2)$, there exists a continuous differentiable utility function v such that, for all $y \in \mathbb{R}_+$, from Program (1) we get $x_1^*(y; a)) = f(y)$.
The sharing function

- A *sharing function* f maps wealth y into the quantity consumed or invested in one good $x_1 = f(y)$
A **sharing function** f maps wealth y into the quantity consumed or invested in one good $x_1 = f(y)$

From $p_1 x_1 + p_2 x_2 = y$ we know $x_1 = x_2 \implies x_1 = \frac{y}{p_1 + p_2}$
Three classes of diverging sharing functions

Type 1: Class \mathcal{M}, or "Moving Away" sharing functions
Type 2: Class \mathcal{P}, or "progressive" sharing functions
Type 3: Class C, or "concave"
2.d Remark

The classes are nested

\[C \subset P \subset M \]
A characterization result for the first good

Proposition

- Suppose that \(x_1^*(y; \cdot) \) is twice continuously differentiable. Then:

 i) \(\nu \in \text{DARA} \iff x_1^*(y; \cdot) \in M \) for all \(\pi \geq 1 \)

 ii) \(\nu \in \text{DRRA} \iff x_1^*(y; \cdot) \in P \) for all \(\pi \geq 1 \)

 iii) \(\nu \in \text{CT} \iff x_1^*(y; \cdot) \in C \) for all \(\pi \geq 1 \)

Where

- DARA = Decreasing Absolute Risk Aversion
- DRRA = Decreasing Relative Risk Aversion
- CT = Convex Tolerance
A characterization result for the first good

Proposition

Suppose that \(x_1^*(y; \cdot) \) is twice continuously differentiable. Then:

i) \(\nu \in \text{DARA} \iff x_1^*(y; \cdot) \in M \text{ for all } \pi \geq 1 \)

ii) \(\nu \in \text{DRRA} \iff x_1^*(y; \cdot) \in P \text{ for all } \pi \geq 1 \).

iii) \(\nu \in \text{CT} \iff x_1^*(y; \cdot) \in C \text{ for all } \pi \geq 1 \).

Where

- \(\text{DARA} = \text{Decreasing Absolute Risk Aversion} \)
A characterization result for the first good

Proposition

- Suppose that $x_1^*(y; \cdot)$ is twice continuously differentiable. Then:
 1. $\nu \in \text{DARA} \iff x_1^*(y; \cdot) \in M$ for all $\pi \geq 1$
 2. $\nu \in \text{DRRA} \iff x_1^*(y; \cdot) \in P$ for all $\pi \geq 1$.
 3. $\nu \in \text{CT} \iff x_1^*(y; \cdot) \in C$ for all $\pi \geq 1$.

Where

- **DARA** = Decreasing Absolute Risk Aversion
- **DRRA** = Decreasing Relative Risk Aversion
A characterization result for the first good

Proposition

Suppose that $x_1^*(y; \cdot)$ is twice continuously differentiable. Then:

1. $v \in DARA \iff x_1^*(y; \cdot) \in M$ for all $\pi \geq 1$
2. $v \in DRRA \iff x_1^*(y; \cdot) \in P$ for all $\pi \geq 1$.
3. $v \in CT \iff x_1^*(y; \cdot) \in C$ for all $\pi \geq 1$.

Where

- **DARA** = Decreasing Absolute Risk Aversion
- **DRRA** = Decreasing Relative Risk Aversion
- **CT** = Convex Tolerance
Proposition (3bis)

Let P represent an intertemporal consumption choice, with $n = T$ periods and initial wealth y. Let us consider the associated dynamic programming problem where at time t the consumer chooses the optimal consumption pattern $c_t, c_{t+1}, ..., c_T$ of the remaining $T - t$ periods as a function of the current wealth y_t. Then the conditions of the previous proposition apply to the sharing function linking the current consumption c_t to the current wealth y_t for each period $t = 1, ..., T - 1$.
Among CT utility functions, an interesting and general family: *linHARA* utility functions, obtained by adding a linear term to HARA utility functions.
Among CT utility functions, an interesting and general family: *linHARA* utility functions, obtained by adding a linear term to HARA utility functions.

- The *linex* \(v(x) = \alpha x - e^{-\beta x} \) is well known in the risk literature.
Among CT utility functions, an interesting and general family: *linHARA* utility functions, obtained by adding a linear term to HARA utility functions.

- The *linex* $v(x) = \alpha x - e^{-\beta x}$ is well known in the risk literature.
- *linpower* $v(x) = \frac{k}{1-a} x^{1-a} + bx$, with parameters $a > 1$, b and $k > 0$.

(the corresponding $h(x, p) = x \left[\frac{pk}{k - (\lambda - 1)bx^a} \right]^{\frac{1}{a}}$ is bounded)

\[x < \left(\frac{k}{(p-1)b} \right)^{\frac{1}{a}} \]
Among CT utility functions, an interesting and general family: linHARA utility functions, obtained by adding a linear term to HARA utility functions.

- The linex $v(x) = \alpha x - e^{-\beta x}$ is well known in the risk literature.

- linpower $v(x) = \frac{k}{1-a}x^{1-a} + bx$, with parameters $a > 1$, b and $k > 0$

 (the corresponding $h(x, p) = x \left[\frac{pk}{k - (\lambda - 1)bx^a} \right]^{\frac{1}{a}}$ is bounded

 $x < \left(\frac{k}{(p-1)b} \right)^{\frac{1}{a}}$)

- linlog utility function $v(x) = \alpha x + \beta \log x$.
Applications: Individual Choice
1- Arrow Debreu contingency claims

<table>
<thead>
<tr>
<th>states</th>
<th>prob</th>
<th>demand.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>x_1</td>
<td>p_1</td>
</tr>
<tr>
<td>2</td>
<td>$1-a$</td>
<td>x_2</td>
<td>p_2</td>
</tr>
</tbody>
</table>

- $y =$ initial wealth, $v =$ state independent utility
Applications: Individual Choice
1- Arrow Debreu contingency claims

<table>
<thead>
<tr>
<th>states</th>
<th>prob</th>
<th>demand.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>x_1</td>
<td>p_1</td>
</tr>
<tr>
<td>2</td>
<td>$1-a$</td>
<td>x_2</td>
<td>p_2</td>
</tr>
</tbody>
</table>

- $y =$ initial wealth, $v =$ state independent utility
- $x_1^*(y, p; a) =$ demand for the contingent claim with the highest "kernel price" $\frac{p_1}{a}$.
Applications: Individual Choice

1- Arrow Debreu contingency claims

<table>
<thead>
<tr>
<th>states</th>
<th>prob</th>
<th>demand.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a)</td>
<td>(x_1)</td>
<td>(p_1)</td>
</tr>
<tr>
<td>2</td>
<td>(1-a)</td>
<td>(x_2)</td>
<td>(p_2)</td>
</tr>
</tbody>
</table>

- \(y = \) initial wealth, \(v = \) state independent utility
- \(x_1^*(y, p; a) = \) demand for the contingent claim with the highest "kernel price" \(\frac{p_1}{a}\).
- Results:
Applications: Individual Choice

1- Arrow Debreu contingency claims

<table>
<thead>
<tr>
<th>states</th>
<th>prob</th>
<th>demand.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>x_1</td>
<td>p_1</td>
</tr>
<tr>
<td>2</td>
<td>$1-a$</td>
<td>x_2</td>
<td>p_2</td>
</tr>
</tbody>
</table>

- $y =$ initial wealth, $v =$ state independent utility
- $x_1^*(y, p; a) =$ demand for the contingent claim with the highest "kernel price" $\frac{p_1}{a}$.
- Results:
 - $v \in DARA \iff x_2^* - x_1^*$ is increasing with y
Applications: Individual Choice

1- Arrow Debreu contingency claims

<table>
<thead>
<tr>
<th>states</th>
<th>prob</th>
<th>demand.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>x_1</td>
<td>p_1</td>
</tr>
<tr>
<td>2</td>
<td>$1 - a$</td>
<td>x_2</td>
<td>p_2</td>
</tr>
</tbody>
</table>

- $y =$ initial wealth, $v =$ state independent utility
- $x_1^*(y, p; a) =$ demand for the contingent claim with the highest "kernel price" $\frac{p_1}{a}$.

Results:
- $v \in DARA \iff x_2^* - x_1^*$ is increasing with y
- $v \in DRRA \iff \frac{p_1 x_1^*}{y}$ is decreasing with y
Applications: Individual Choice

1- Arrow Debreu contingency claims

<table>
<thead>
<tr>
<th>states</th>
<th>prob</th>
<th>demand.</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>x_1</td>
<td>p_1</td>
</tr>
<tr>
<td>2</td>
<td>$1 - a$</td>
<td>x_2</td>
<td>p_2</td>
</tr>
</tbody>
</table>

- \(y \) = initial wealth, \(v \) = state independent utility
- \(x_1^*(y, p; a) \) = demand for the contingent claim with the highest "kernel price" \(\frac{p_1}{a} \).

Results:
- \(\nu \in DARA \iff x_2^* - x_1^* \) is increasing with \(y \)
- \(\nu \in DRRA \iff \frac{p_1 x_1^*}{y} \) is decreasing with \(y \)
- \(\nu \in CT \iff x_1^* \) is concave in \(y \) (the marginal share of the less demanded attribute decreases with wealth)
Individual choice

Insurance

- Initial wealth Y; risk of a loss $-X$ in state 1 with probability a.

Insurance contract where $0 < C < X$. The premium βC is proportional to the coverage, with $\beta < 1$.

Results: $v_2(\cdot)(\cdot)$ is increasing with \cdot, proportion of uninsured wealth is increasing with \cdot, uninsured wealth is concave with \cdot.
Individual choice

Insurance

- Initial wealth Y; risk of a loss $-X$ in state 1 with probability a.
- Insurance contract where $0 \leq C \leq X$.

Results:

$\nu_2(DRA)(z_1)$ is increasing with y

$\nu_2(DRA)$ proportion of uninsured wealth is increasing with y

$\nu_2(CT)(uinsured)$ wealth is concave with y.

Peluso & Trannoy (Conference In Honor of Louis Eeckhoudt)
Initial wealth Y; risk of a loss $-X$ in state 1 with probability a.

Insurance contract where $0 \leq C \leq X$.

The premium βC is proportional to the coverage, with $\beta < 1$.
Individual choice

Insurance

- Initial wealth Y; risk of a loss $-X$ in state 1 with probability a.
- Insurance contract where $0 \leq C \leq X$.
- The premium βC is proportional to the coverage, with $\beta < 1$.

<table>
<thead>
<tr>
<th>states</th>
<th>prob.</th>
<th>final wealth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>$x_1 = Y - X + (1 - \beta)C$</td>
</tr>
<tr>
<td>2</td>
<td>$1 - a$</td>
<td>$x_2 = Y - \beta C$</td>
</tr>
</tbody>
</table>
Individual choice

Insurance

- Initial wealth Y; risk of a loss $-X$ in state 1 with probability a.
- Insurance contract where $0 \leq C \leq X$.
- The premium βC is proportional to the coverage, with $\beta < 1$

<table>
<thead>
<tr>
<th>states</th>
<th>prob.</th>
<th>final wealth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>$x_1 = Y - X + (1 - \beta)C$</td>
</tr>
<tr>
<td>2</td>
<td>$1-a$</td>
<td>$x_2 = Y - \beta C$</td>
</tr>
</tbody>
</table>

- Uninsured loss $z_1 = x_2 - x_1$
Individual choice

Insurance

- Initial wealth Y; risk of a loss $-X$ in state 1 with probability a.
- Insurance contract where $0 \leq C \leq X$.
- The premium βC is proportional to the coverage, with $\beta < 1$

<table>
<thead>
<tr>
<th>states</th>
<th>prob.</th>
<th>final wealth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>$x_1 = Y - X + (1 - \beta)C$</td>
</tr>
<tr>
<td>2</td>
<td>$1 - a$</td>
<td>$x_2 = Y - \beta C$</td>
</tr>
</tbody>
</table>

- Uninsured loss $z_1 = x_2 - x_1$
- Results:
Initial wealth Y; risk of a loss $-X$ in state 1 with probability a.

Insurance contract where $0 \leq C \leq X$.

The premium βC is proportional to the coverage, with $\beta < 1$

<table>
<thead>
<tr>
<th>states</th>
<th>prob.</th>
<th>final wealth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>$x_1 = Y - X + (1 - \beta)C$</td>
</tr>
<tr>
<td>2</td>
<td>$1 - a$</td>
<td>$x_2 = Y - \beta C$</td>
</tr>
</tbody>
</table>

Uninsured loss $z_1 = x_2 - x_1$

Results:

$\nu \in DARA \iff z_1^* \text{ is increasing with } y$
Individual choice

Insurance

- Initial wealth Y; risk of a loss $-X$ in state 1 with probability a.
- Insurance contract where $0 \leq C \leq X$.
- The premium βC is proportional to the coverage, with $\beta < 1$

<table>
<thead>
<tr>
<th>states</th>
<th>prob.</th>
<th>final wealth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>$x_1 = Y - X + (1 - \beta)C$</td>
</tr>
<tr>
<td>2</td>
<td>$1 - a$</td>
<td>$x_2 = Y - \beta C$</td>
</tr>
</tbody>
</table>

- Uninsured loss $z_1 = x_2 - x_1$

Results:

- $v \in DARA \iff z^*_1$ is increasing with y
- $v \in DRRA \iff$ proportion of uninsured wealth is increasing with y
Individual choice

Insurance

- Initial wealth Y; risk of a loss $-X$ in state 1 with probability a.
- Insurance contract where $0 \leq C \leq X$.
- The premium βC is proportional to the coverage, with $\beta < 1$

<table>
<thead>
<tr>
<th>states</th>
<th>prob.</th>
<th>final wealth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>$x_1 = Y - X + (1 - \beta)C$</td>
</tr>
<tr>
<td>2</td>
<td>$1 - a$</td>
<td>$x_2 = Y - \beta C$</td>
</tr>
</tbody>
</table>

- Uninsured loss $z_1 = x_2 - x_1$

Results:

- $\nu \in DARA \iff z_1^* \text{ is increasing with } y$
- $\nu \in DRRA \iff \text{ proportion of uninsured wealth is increasing with } y$
- $\nu \in CT \iff \text{ uninsured wealth is concave with } y$
3.4 Individual Choice
4- Intertemporal Consumption

- **Given the model**

<table>
<thead>
<tr>
<th>time</th>
<th>weights</th>
<th>prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a = \frac{1}{1+\beta}$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$1 - a = \frac{\beta}{1+\beta}$</td>
<td>$\frac{1}{1+r}$</td>
</tr>
</tbody>
</table>
3.4 Individual Choice
4- Intertemporal Consumption

Given the model

<table>
<thead>
<tr>
<th>time</th>
<th>weights</th>
<th>prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a = \frac{1}{1+\beta}$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$1 - a = \frac{\beta}{1+\beta}$</td>
<td>$\frac{1}{1+r}$</td>
</tr>
</tbody>
</table>

The initial condition $\lambda = \frac{p_1(1-a)}{p_2a} \geq 1$ becomes $\beta \geq \frac{1}{1+r}$. The marginal opportunity cost of saving is lower than the intertemporal MRS \implies lower consumption in the first period.
3.4 Individual Choice
4- Intertemporal Consumption

- **Given the model**

<table>
<thead>
<tr>
<th>time</th>
<th>weights</th>
<th>prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a = \frac{1}{1+\beta})</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(1-a = \frac{\beta}{1+\beta})</td>
<td>(\frac{1}{1+r})</td>
</tr>
</tbody>
</table>

- The initial condition \(\lambda = \frac{p_1(1-a)}{p_2 a} \geq 1 \) becomes \(\beta \geq \frac{1}{1+r} \). The marginal opportunity cost of saving is lower than the intertemporal MRS \(\implies \) lower consumption in the first period.

- Results:
3.4 Individual Choice

4. Intertemporal Consumption

- **Given the model**

<table>
<thead>
<tr>
<th>time</th>
<th>weights</th>
<th>prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a = \frac{1}{1+\beta}$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$1 - a = \frac{\beta}{1+\beta}$</td>
<td>$\frac{1}{1+r}$</td>
</tr>
</tbody>
</table>

- The initial condition $\lambda = \frac{p_1(1-a)}{p_2a} \geq 1$ becomes $\beta \geq \frac{1}{1+r}$.

 The marginal opportunity cost of saving is lower than the intertemporal MRS \rightarrow lower consumption in the first period.

- Results:
 - $\nu \in DARA \iff$ saving increasing with y
3.4 Individual Choice

4- Intertemporal Consumption

- **Given the model**

<table>
<thead>
<tr>
<th>time</th>
<th>weights</th>
<th>prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[a = \frac{1}{1+\beta}]</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>[1 - a = \frac{\beta}{1+\beta}]</td>
<td>[\frac{1}{1+r}]</td>
</tr>
</tbody>
</table>

- The initial condition \(\lambda = \frac{p_1(1-a)}{p_2 a} \geq 1 \) becomes \(\beta \geq \frac{1}{1+r} \).
 The marginal opportunity cost of saving is lower than the intertemporal MRS \(\implies \) lower consumption in the first period.

- **Results:**
 - \(v \in DARA \iff \) saving increasing with \(y \)
 - \(v \in DRRA \iff \) decreasing average propensity to consume with wealth (Keynes)
3.4 Individual Choice

4- Intertemporal Consumption

- **Given the model**

<table>
<thead>
<tr>
<th>time</th>
<th>weights</th>
<th>prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a = \frac{1}{1+\beta}$</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$1 - a = \frac{\beta}{1+\beta}$</td>
<td>$\frac{1}{1+r}$</td>
</tr>
</tbody>
</table>

The initial condition $\lambda = \frac{p_1(1-a)}{p_2a} \geq 1$ becomes $\beta \geq \frac{1}{1+r}$. The marginal opportunity cost of saving is lower than the intertemporal MRS \Rightarrow lower consumption in the first period.

- **Results:**
 - $v \in DARA \iff$ saving increasing with y
 - $v \in DRRA \iff$ decreasing average propensity to consume with wealth (Keynes)
 - $v \in CT \iff x_1^*$ is concave with y
Samuelson’s household welfare function, with balance of power among the members given by a.
Samuelson’s household welfare function, with balance of power among the members given by \(a \).

If individual 1 is the "weaker" individual \((a \leq \frac{1}{2}) \) then \(x_1^*(y, a) \leq \frac{1}{2} y \).
Samuelson’s household welfare function, with balance of power among the members given by a.

If individual 1 is the "weaker" individual ($a \leq \frac{1}{2}$) then $x_1^*(y, a) \leq \frac{1}{2} y$.

Immediate interpretation of the Proposition 1, for the risk-sharing too.