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Motivation

VAR models play a very important role in empirical
macroeconomics and �nance

VAR theory is well developed when the number of variables N
is small (6-7) and the number of time periods, T , is large

For many empirical application such as global macroeconomic
modelling, modelling of regions, �rms, households, �nancial
markets,... this theoretical framework is not appropriate

Panel data models focus on small T and resolve the curse of
dimensionality by dealing with homogeneous slope models
with no cross section error dependence. See, panel VAR in
Binder Hsiao and Pesaran (2005, ET)

Our aim is to develop a theory for the analysis of VARs when
both N and T are large
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Related Literature: dynamics and cross section dependence

Dealing with the curse of dimensionality:

(i) Data shrinkage (e.g. along the lines of index models or as
in GVAR approach) and
(ii) Shrinkage of the parameter space (e.g. in form of Bayesian
priors or spatial weights matrices).

Dealing with cross section dependence (CD):

(i) Spatial processes
(ii) Factor structures
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Spatial processes were pioneered by Whittle (1954), and later
by Cli¤ and Ord (1973). Anselin(1988), Kelejian and
Robinson (1995), Kelejian and Prucha (1999, 2004, 2007),
and Lee (2002, 2004, 2007) have made important
contributions in econometrics.

Factor models were introduced by Hotelling (1933), applied in
economics by Stone (1947), and recently extensively in
�nance and macroeconomics (Chamberlain and Rothschild
1983; Connor and Korajczyk, 1993; Kapetanios and Pesaran,
2007, Forni and Reichlin, 1998; Stock and Watson, 2002).

Chudik, Pesaran and Tosetti (2009) distinguish between weak
and strong, which will be useful in the analysis below.

Chudik and Pesaran (2009) consider an IVAR model without a
dominant unit. We extend this paper and allow for a
dominant unit.
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Weak and Strong Cross Section Dependence

Understanding concepts of weak and strong CS dependence is
important for the analysis of IVAR models.

Let zt = (z1t , ..., zNt )0, with E (zt jIt�1 ) = 0,
Var (zt jIt�1 ) = Σt , where It�1 is the information set at
time t � 1, and for each t where Σt has diagonal elements
0 < σii ,t � K , for i = 1, 2, ...,N.
Let wt = (w1t , ...,wNt )

0 be a vector of weights satisfying the
granularity conditions

kwtk2 = O
�
N�

1
2

�
,

wjt
kwtk2

= O
�
N�

1
2

�
for any j � N

(1)
An obvious example is equal weights, wi = N�1.
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The process fzitg is weakly cross sectionally dependent
(CWD) at a point in time t, if for all wt

lim
N!∞

Var(w0tzt jIt�1 ) = 0

The process fzitg is cross sectionally strongly dependent
(CSD) at a point in time t, if there exists wt such that

Var(w0tzt jIt�1 ) � K > 0

where K is a constant independent of N.
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The process fzitg is CSD at time t 2 T if and only if

lim
N!∞

1
N

λ1 (Σt ) = K > 0,

i.e. λ1 (Σt ) increases to in�nity at the rate N.

If λ1 (Σt ) = O(N1�ε) for any ε > 0, then

lim
N!∞

�
w0twt

�
λ1 (Σt ) = 0,

and the underlying process will be CWD. Hence, the bounded
eigenvalue condition is su¢ cient but not necessary for CWD.

CWD and CSD can be de�ned equally with respect to any
information set, such as I�M , for any �xed M, or as M tends
to in�nity (if the underlying process is stationary).
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Stationary In�nite Dimensional VAR Model

Suppose that for each N 2 N, vector of N endogenous variables

x(N ),t =
�
x(N ),1t , ..., x(N ),Nt

�0
is given by the following VAR model,

x(N ),t = Φ(N )x(N ),t�1 + u(N ),t , (2)

where Φ(N ) is N �N matrix of coe¢ cients, u(N ),t is N � 1 vector
of error terms given by

u(N ),t = δ(N )u1t + e(N ),t , and e(N ),t = R(N )ε(N ),t , (3)

where ε(N ),t = (0, ε2t , ..., εNt )
0, and the individual elements of the

double index array fεjt , j 2 f2, 3, ...g , t 2 Zg are IID.
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The results that follow hold irrespective of whether the
parameters φ(N ),ij , δ(N ),i , and r(N ),ij are assumed to be
varying with N or not.

Note that even if individual coe¢ cients do not change with N,
covariance between individual units, cov

�
x(N ),it , x(N ),jt

�
in

general must be changing with N, unless matrices Φ(N ) and
R(N ) are lower triangular.
Dependence on N is suppressed in the remainder of this
presentation to simplify the notations, but it is understood
that the parameters and the dimension of the random
variables xt and ut vary with N, unless otherwise stated.
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Dealing with the Curse of Dimensionality

The equation for unit i in system (2) is

xit =
N

∑
j=1

φijxj ,t�1 + uit .

We shall assume that the following absolute summability
condition holds,

N

∑
j=1

���φij ��� < K for any N 2 N and any i 2 f1, ..,Ng . (4)

This is not a restrictive condition, and is similar to the
concept of absolutely summability in the time series literature,
but the summing is over lagged values of cross section units
as opposed to AR terms of unit i , or MA terms.

Hashem Pesaran High Dimensional VARs Featuring a Dominant Unit



Introduction
Estimation and Inference in IVAR model

Monte Carlo Simulations
An Empirical Application

Conclusion

Model
Dealing with the Curse of Dimensionality
Assumptions
Large N representation
Consistent estimation

Similar constraint is used in �data mining�literature, in
particular Lasso (Tibshirani, 1996) and Ridge regression
shrinkage method. Using Lasso around 5-10% of the
regression coe¢ cients end up being exactly equal to zero.

The Lasso minimizes residual sum of squares subject to

∑N
j=1

���φij ��� � K .
Ridge regression minimizes residual sum of squares subject to
∑N
j=1 φ2ij � K .

We do not choose the value for K , as it is necessary in
shrinkage methods, but rather assume only its existence
instead.
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For each i we divide the units into a �nite number of
�neighbors�, denoted by Ni , that have �xed coe¢ cients���φij ��� < K for j 2 Ni , and nonneighbors
j 2 N c

i � f1, ..,Ng n Ni that have coe¢ cients that are of
order 1/N:

xit = ∑
j2Ni

φijxj ,t�1| {z }
Neighbors

+ ∑
j2N c

i

φijxj ,t�1| {z }
Nonneighbors

+ uit

=
�
φ
0
ixt�1 + ~φ

0
ixt�1 + uit ,

�
φi and ~φi are obtained from φi by replacing nonneighbors
and neighbors coe¢ cients with zeros.
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If it is possible to divide units in this way, then we no longer
have dimensionality problem.

Remark: This assumption could be relaxed without the loss of
generality by assuming more general restrictions in form of
spatial weights matrices as in Chudik and Pesaran (2009)

Consider aggregate spatiotemporal impact of nonneighbors
given by ~φ0ixt�1.
Notation: We use k.k∞ and k.k1 to denote maximum
absolute row and column sum matrix norms, respectively.

Note that
~φi


c = ∑j2N c

i

���φij ��� < K . Nonneighbors could
have large aggregate impact on unit i .
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However, the euclidean norm~φi

 � q~φi


∞

~φi


1 =

q
O
� 1
N

�
O (1) = O

�
N�

1
2

�
and

it follows that ~φ0ixt�1
q.m.! 0 if and only if fxitg is weakly CS

dependent.

If fxitg is strongly CS dependent process then
limN!∞ Var

�
~φ0ixt�1

�
is not necessarily zero.

Hence the aggregate spatiotemporal impact of nonneighbors is
nonnegligible and generally important only in the case of
strong CS dependence.

This paper allows for dominant unit, which is a source of
strong CS dependence.
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Assumptions

To simplify the exposition, we consider only the case where
Ni = f1, ig , that is only lagged dominant unit and own
lagged coe¢ cient are O (1), and the remaining elements are
nonneighbors:

Assumption 1: (In�uence of unit 1 on the rest of the system is
unrestricted.) There exists a constant K < ∞ (independent of N)
such that jφii j < K , jφi1j < K , andφ�1,�i


∞ <

K
N
, for any i ,N 2 N,

where φ�1,�i =
�
0, φi2, ..., φi ,i�1, 0, φi ,i+1, .., φiN

�0.
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Assumption 2 (Stationarity and bounded variances as N ! ∞)
There exists a constant 0 < ρ < 1� ε (independent of N) such
that for any N 2 N :

λ1 (Φ) < ρ,
Φ(�1)


∞
< ρ,

Φ(�1)

 < ρ, and kφ1k∞ < ρ,

where Φ(�1) is N �N matrix constructed from matrix Φ by
replacing its �rst column with a zero vector, and φ1 is the �rst
column vector of matrix Φ.
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Assumption 3 (Starting values) Available observations are
x0, x1, ..., xT with the starting values x0 = ∑∞

`=0 Φ`u (�`).
Assumption 4 (Errors) Vector of errors ut is given by (3), δ1 = 1,
kδk∞ = O (1), u1t and the individual elements of the double index
array fεjt , j 2 f2, 3, ...g , t 2 Zg are identically and independently
distributed with mean 0, unit variances and �nite fourth moments
uniformly bounded in j 2 N. Furthermore, matrix R has bounded
row and column matrix norms.

Hashem Pesaran High Dimensional VARs Featuring a Dominant Unit



Introduction
Estimation and Inference in IVAR model

Monte Carlo Simulations
An Empirical Application

Conclusion

Model
Dealing with the Curse of Dimensionality
Assumptions
Large N representation
Consistent estimation

Large N representation

Under Assumptions λ1 (Φ) < 1 and Assumptions 3-4 (only),
we have (for any N 2 N):

xt = Φ�1xt�1+φ1x1,t�1 + δu1t + et ,

=
∞

∑
`=0

Φ`
�1φ1x1,t�1�` +

∞

∑
`=0

Φ`
�1δu1,t�1 + υt

where υt = ∑∞
`=0 Φ`

(�1)Rεt�` is CWD, in particular

w0υt = Op
�
N�

1
2

�
.

As a consequence, we have (for any i)

xit = s0ixt = di (L) x1,t�1 + bi (L) u1t + υit , (5)

where di (L) = s0i ∑∞
`=0 Φ`

�1φ1L
`, and

bi (L) = s0i ∑∞
`=0 Φ`

�1δL
`.
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It follows that for i = 1,

(1� d1 (L) L) x1t = bi (L) u1t + υ1t , (6)

and for i > 1 it can be shown that

xit = φiixi ,t�1 + βi (L) x1t + eit +Op
�
N�

1
2

�
, (7)

where in general the polynomial βi (L) is a function of all
elements of Φ and δ.

Focus is on the consistent estimation of the unit-speci�c
unknown coe¢ cients φii for i > 1 and also on the estimation
of the impact of the dominant unit on the remaining units in
the system, captured by βi (L).

This paper does not deal with the pooled estimation of the
mean coe¢ cients over the cross section units.
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We allow for cross section dependence of innovations
et = Rεt , as characterized by matrix R, but we ignore this
matrix for estimation and therefore our estimators are not
necessarily e¢ cient in the presence of cross section
dependence induced by the matrix R.
Based on the asymptotic representation of unit i , we consider
the following auxiliary regression for i > 1:

xit = φiixi ,t�1 +
k

∑
`=0

βi`x1,t�` + εit

= g0itπ i + εit , (8)

where π i = (φii , βi0, ..., βik )
0.

Identi�cation requires Ci = E (gitg0it ) to be positive de�nite.
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Theorems

Theorem 1 (Consistency) Under Assumptions 1-4, and invertibility
of 1

T�k ∑T
t=k+1 gitg0it , we have

kbπ i �π ik∞
p! 0, for any i > 1,

as N,T
j! ∞ at any order, and k2/T ! 0 such that there exists

constants r1, r2 > 0 satisfying k > r1T r2 .

Remark: The number of regressors in the auxiliary regressions
cannot go to in�nity too fast, so that it is possible to
satisfactorily estimate all coe¢ cients, and not too slow, so
that the omitted variable problem is asymptotically negligible.
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Theorem 2. (Inference) Under assumptions of Theorem 1, for any
sequence of (k + 1)� 1 dimensional vectors ak such that
kakk = 1 and kakk1 = O (1), and as N,T

j! ∞, T/N ! { < ∞
({ � 0 is not necessarily nonzero), and k2/T ! 0 such that there
exists constants r1, r2 > 0 satisfying k > r1T r2 , we have

p
T � k 1

σi
a0kC

1
2
i (bπ i �π i )

d! N (0, 1) , for i > 1, (9)

where bπ i is LS estimator of π i in regression (8), matrix
Ci = E (gitg0it ) can be consistently estimated bybCi = 1

T�k ∑T
t=k+1 gitg0it , and σ2i = Var (eit ).
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Monte Carlo Simulations
Monte Carlo Design

We consider factor augmented IVAR model featuring
dominant unit,

(xt � γft ) = Φ (xt�1 � γft�1) + ut ,

ut = δu1t + et , and et = Rεt .

ft = 0.9ft�1 + εft , and εft � IIDN
�
0, 1� 0.92

�
.

We need to generate coe¢ cient matrix Φ, errors ut , and
factor loadings γ.
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Construction of Coe¢ cient Matrix

Neighbor for unit i is unit 1 (dominant unit), unit i + 1, and
unit i itself.

We generate Op(N�1) random variables λij such that
∑N
j=1 λij = 1 and λ1 = λi = λi+1 = 0 �rst.

Matrix Φ is then constructed as follows.

(Dominant unit i = 1) φ11 = 0.7, φ12 = 0.1, and φ1j = α1λ1j
for j = 3, ..,N, with α1 = 0.1.
(Unit i = 2) φ21 = 0.1, φ22 = 0.5, φ23 = 0.1, and
φ2j = α2λ2j for j = 4, ..,N, with α2 = 0.1.
(Remaining units i > 2) φii � IIDU (0.3, 0.5),
φi1 � IIDU (0, 0.1), φi ,i+1 � IIDU (�0.2, 0.2), φij = αiλij for
j /2 f1, i , i + 1g, where αi � IIDU (0.05, 0.15).
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Construction of Reduced Form Errors and Factor loadings

ut = δu1t + et , where u1t � IIDN (0, 0.15), we set δ1 = 1,
δ2 = 0.1 and generate δi � IIDU (0, 0.3) for i = 3, ..,N.
We set e1t = 0 and fe2t , ..., eNtg, are generated from a
stationary bilateral Spatial Autoregressive Model (SAR) in
order to show that our estimators are invariant to the weak
cross section dependence of innovations:

eit =
ae
2
(ei�1,t + ei+1,t ) + ϑeit ,

where ϑeit � IIDN
�
0, σ2ϑe

�
, and SAR parameter ae = 0.4

(this is CWD, see Pesaran and Tosetti, 2009)
Two sets of factor loadings are considered, γ = 0 (no
unobserved common factor) and γ 6= 0. Under the latter we
set γ1 = 1, γ2 = �0.5 and generate γi � IIDN (1, 1) for
i = 3, ..,N.
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Speci�cation of Auxiliary Regressions

We consider three di¤erent augmentations:
(i) by dominant unit, neighbor i + 1 and arithmetic cross
section averages fx1t , x t , xi+1,t�1,x1,t�1, x t�1g,
(ii) augmentation by dominant unit and neighbor i + 1,
xi+1,t�1 [ fx1,t�`gp`=0 with p being the largest integer smaller
than T 1/3/2, and
(iii) augmentation by neighbor i + 1 and arithmetic cross
section averages, xi+1,t�1 [ fx t�`gp`=0 with the number of
lags p chosen to grow with T in the same way.

Auxiliary regression for unit i = 2 corresponding to
augmentation of form (i) is:

x2t = c2+φ22x2,t�1+φ23x3,t�1+
1

∑
`=0

b1`x1,t�`+
1

∑
`=0

b2`x t�`+ ε2t .
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Table 1a: RMSE of bφ22 in the experiments zero factor loadings (γ = 0).
Auxiliary regressions are augmented by neighbor x3,t�1 and:
fx1,t�`g

p(T )
`=0 fx t�`g

p(T )
`=0 fx1,t�`, x t�`g1`=0

NnT 50 100 200 50 100 200 50 100 200

25 15.90 10.45 7.12 15.74 10.64 7.26 17.00 11.08 7.47

50 16.07 10.69 6.84 15.88 10.60 6.79 16.94 11.29 7.00

75 16.18 10.77 7.02 15.97 10.69 6.96 17.20 11.23 7.16

100 16.26 10.70 7.13 16.20 10.70 7.10 17.29 11.16 7.29

200 15.74 10.66 7.07 15.69 10.66 7.08 16.60 11.12 7.26
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Table 1b: Size (�100) (5% level, H0 : φ22 = 0.50) in experiments with
zero factor loadings (γ = 0).

Auxiliary regressions are augmented by neighbor x3,t�1 and:
fx1,t�`g

p(T )
`=0 fx t�`g

p(T )
`=0 fx1,t�`, x t�`g1`=0

NnT 50 100 200 50 100 200 50 100 200

25 7.30 6.35 6.20 7.15 6.90 6.50 8.45 7.35 6.65

50 7.15 6.60 5.25 7.45 6.80 5.40 8.80 7.90 5.50

75 7.55 6.80 5.75 7.45 6.50 5.95 8.70 7.65 6.20

100 7.40 6.30 5.90 7.85 6.75 6.45 8.85 6.90 6.50

200 6.60 6.35 5.95 6.60 6.45 5.95 7.55 6.95 6.45
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Table 1c: Power (�100) (5% level, H1 : φ22 = 0.70) in experiments
with zero factor loadings (γ = 0).

Auxiliary regressions are augmented by neighbor x3,t�1 and:
fx1,t�`g

p(T )
`=0 fx t�`g

p(T )
`=0 fx1,t�`, x t�`g1`=0

NnT 50 100 200 50 100 200 50 100 200

25 47.85 67.45 93.40 49.70 70.45 95.20 51.95 71.70 94.90

50 46.95 67.90 92.80 46.50 69.65 94.10 48.60 69.40 94.10

75 48.00 70.05 92.90 48.05 70.55 93.60 49.05 71.35 93.20

100 48.05 69.80 91.85 48.00 70.40 92.75 49.40 71.60 92.80

200 48.40 69.05 92.05 47.15 69.25 92.25 49.90 69.85 92.25
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Table 2a: RMSE of bφ22 in the experiments with nonzero factor loadings
(γ 6= 0).

Auxiliary regressions are augmented by neighbor x3,t�1 and:
fx1,t�`g

p(T )
`=0 fx t�`g

p(T )
`=0 fx1,t�`, x t�`g1`=0

NnT 50 100 200 50 100 200 50 100 200

25 14.38 12.59 12.82 14.40 11.88 11.09 15.48 10.18 7.45

50 14.31 12.70 12.78 14.57 11.44 10.39 16.35 10.54 6.77

75 14.02 12.58 12.61 14.55 10.93 10.16 17.18 10.27 6.86

100 14.38 12.54 12.81 14.29 11.00 10.05 17.45 10.97 6.79

200 14.22 12.83 12.91 14.58 11.13 10.25 17.87 11.08 7.08
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Table 2b: Size (�100) (5% level, H0 : φ22 = 0.50) in experiments with
nonzero factor loadings (γ 6= 0).

Auxiliary regressions are augmented by neighbor x3,t�1 and:
fx1,t�`g

p(T )
`=0 fx t�`g

p(T )
`=0 fx1,t�`, x t�`g1`=0

NnT 50 100 200 50 100 200 50 100 200

25 9.15 22.90 49.20 8.30 17.30 35.20 7.20 7.10 10.60

50 9.40 21.70 49.20 7.55 14.10 29.60 7.45 6.35 6.25

75 8.70 23.20 48.15 6.90 12.40 28.30 9.50 5.60 6.15

100 9.00 22.70 48.65 6.40 12.95 26.75 9.10 7.20 5.00

200 9.55 23.40 49.85 7.40 14.00 28.80 10.65 6.50 5.85
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Table 2c: Power (�100) (5% level, H1 : φ22 = 0.70) in experiments
with nonzero factor loadings (γ 6= 0).

Auxiliary regressions are augmented by neighbor x3,t�1 and:
fx1,t�`g

p(T )
`=0 fx t�`g

p(T )
`=0 fx1,t�`, x t�`g1`=0

NnT 50 100 200 50 100 200 50 100 200

25 25.00 26.80 33.50 25.75 30.70 43.60 39.25 51.20 75.85

50 24.25 25.80 34.40 27.25 33.05 48.40 44.70 61.70 88.25

75 24.15 25.95 33.35 29.15 33.25 51.70 49.40 66.80 90.00

100 24.85 25.55 34.00 27.50 35.55 50.40 49.85 67.85 91.50

200 24.00 26.45 34.30 28.25 34.10 49.00 52.80 69.20 91.65
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Modelling Returns on Equity Futures

We model weekly returns on equity futures across the globe,
where we assume that S&P is dominant unit.

N = 26, and T = 308 observations of weekly returns (06
January 2003 - 24 November 2008)

The equity series refer to futures contracts downloaded from
Datastream. Daily returns were calculated allowing for
contract rollovers. Weekly returns were calculated from daily
returns by summing working days (Monday to Friday).
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It is assumed that xt (vector of returns) is given by the
following VAR model,

xt = d+Φxt�1 + ut ,

and ut = δu1t + et ,where et = Rεt is CWD.

The neighbors of unit i are S&P (unit 1), unit i itself, and the
following spatial weighted average:

xwit =
N

∑
j=2

wij
1� wi1

xjt ,

where wij are �nancial weights constructed according to
average of assets and liabilities holdings for equities during
2001-2007 period (wii = 0). Source: IMF CPIS database.
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Financial weights matrix (selected countries)

US UK France Germany NL Japan

US - 20.9% 7.4% 6.6% 8.3% 15.0%

UK 45.4% - 7.2% 6.1% 5.6% 8.9%

France 31.3% 14.1% - 13.2% 6.7% 4.9%

Germany 32.3% 13.8% 15.2% - 7.0% 3.8%

NL 44.0% 13.7% 8.4% 7.6% - 4.2%

Japan 56.7% 15.5% 4.3% 2.9% 3.0% -
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The following conditional models are estimated

xit = ci +
koi

∑
`=1

φii ,`xi ,t�1 +
kdi

∑
`=0

βi`x1,t�` +
ksi

∑
`=1

hi`xwi ,t�` + εit ,,

for i = 2, ..,N, and for i = 1 (S&P), we estimate the
following marginal model,

x1t = c1 +
ko1

∑
`=1

a`x1,t�` +
ks1

∑
`=1

b`xw 1,t�` + ε1t ,

Truncation lags were chosen according to SBC criterion with
the maximum lag set to 4.
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Formal tests of global dominance in IVAR models are yet to
be developed.

Nevertheless, the assumption that x1t is weakly exogenous in
the equation xit , i = 2, ..,N, can be tested using the
procedure advanced by Wu (1973) and Hausman (1978).

Wu�s approach is to test the statistical signi�cance of the S&P
residuals bε1t in the equation for remaining units. This test is
asymptotically equivalent to using Hausman�s procedure.
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SP Cont. SP Lag Own Lag Spatial Lag

Unit Coef t Coef. t Coef. t Coef. t R
2

Wu-H.
Dominant Unit
S&P - - - - 0.563 3.6 -0.543 -4.3 0.067 -
Advanced European Countries
AEX 1.086 24.3 0.441 4.5 -0.538 -4.0 0.469 2.4 0.695 1.44
BEL 0.946 21.8 0.718 6.4 -0.046 -0.5 -0.241 -1.8 0.665 2.00
CAC 0.959 28.0 0.328 4.5 -0.274 -2.5 0.027 0.2 0.749 -0.23
DAX 1.089 26.9 0.461 4.3 -0.294 -3.8 0.061 0.6 0.753 0.91
FTSE 0.833 27.4 0.292 3.2 -0.181 -2.4 -0.062 -0.8 0.751 0.54
FOX 0.900 20.7 0.612 4.7 -0.209 -2.2 -0.208 -1.8 0.638 0.04
GRX 0.880 13.8 0.616 3.6 -0.095 -1.6 0.225 1.6 0.461 -1.61
IBE 0.857 20.9 0.433 4.1 0.034 0.4 -0.303 -2.8 0.651 2.59
KFX 0.837 18.6 0.603 4.9 -0.114 -1.7 -0.111 -0.9 0.590 -2.53
MIB 0.852 25.6 0.326 4.5 -0.328 -2.7 0.185 1.4 0.722 0.33
OBX 0.928 15.5 0.649 5.1 0.049 0.8 -0.334 -2.2 0.510 -1.90
OMX 0.969 23.2 0.337 3.8 -0.190 -2.5 0.052 0.5 0.656 -0.54
PSI 0.619 14.9 0.325 3.7 0.036 0.6 0.036 0.4 0.504 -1.16
SMI 0.855 22.8 0.211 2.7 -0.268 -3.4 0.038 0.4 0.685 -0.38
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SP Cont. SP Lag Own Lag Spatial Lag

Unit Coef t Coef t Coef t Coef t R
2

Wu-H.
Other Advanced Countries
TSX 0.751 21.9 0.161 2.3 -0.095 -1.5 0.054 0.7 0.633 0.16
NK 0.919 17.4 0.323 2.8 -0.108 -1.7 0.107 0.8 0.539 -0.42
ASX 0.600 16.5 0.284 3.7 -0.115 -1.8 0.019 0.2 0.503 -1.84
Latin America
BRX 1.210 18.7 0.327 1.8 -0.109 -1.9 0.107 0.7 0.571 -0.07
Emerging Europe
HUX 0.831 13.3 0.399 3.0 -0.018 -0.2 0.193 1.2 0.458 1.14
POX 0.898 13.1 0.180 1.2 -0.023 -0.4 0.100 0.7 0.370 -1.96
SAX 0.756 12.9 0.217 2.2 -0.152 -2.5 -0.031 -0.3 0.361 -1.92
Emerging Asia
HKX 0.707 11.7 0.713 4.5 -0.206 -3.2 0.003 0.0 0.391 -2.30
KOX 0.768 11.2 0.050 0.4 -0.551 -5.7 1.047 5.9 0.409 -1.17
SIX 0.718 14.3 1.127 7.2 -0.386 -4.0 -0.122 -0.9 0.493 1.12
TWX 0.717 10.4 0.772 4.2 -0.380 -4.2 0.007 0.0 0.358 0.70
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Conclusion

This paper considered the problem of estimation of high
dimensional VARs featuring a dominant unit.
We showed that the asymptotic normality of the cross section
augmented least squares estimator continues to hold (once
the individual auxiliary regressions are correctly speci�ed).
How to correctly specify the individual regressions is an
important topic, and the correct speci�cation depends on the
assumption about the presence of dominant units, observed
and unobserved common factors and the (local)
spatiotemporal neighborhood e¤ects.
The framework developed here can be applied to model
spatio-temporal dependence. See "Spatial and Temporal
Di¤usion of House Prices in the UK" by Holly, Pesaran and
Yamagata (2009, forthcoming).
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