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Introduction Outline
Motivation

Motivation

@ VAR models play a very important role in empirical
macroeconomics and finance

@ VAR theory is well developed when the number of variables N
is small (6-7) and the number of time periods, T, is large

@ For many empirical application such as global macroeconomic
modelling, modelling of regions, firms, households, financial
markets,... this theoretical framework is not appropriate

@ Panel data models focus on small T and resolve the curse of
dimensionality by dealing with homogeneous slope models
with no cross section error dependence. See, panel VAR in
Binder Hsiao and Pesaran (2005, ET)

@ Our aim is to develop a theory for the analysis of VARs when
both N and T are large
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Related Literature: dynamics and cross section dependence

@ Dealing with the curse of dimensionality:

o (i) Data shrinkage (e.g. along the lines of index models or as
in GVAR approach) and

o (ii) Shrinkage of the parameter space (e.g. in form of Bayesian
priors or spatial weights matrices).

@ Dealing with cross section dependence (CD):

o (i) Spatial processes
o (ii) Factor structures
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@ Spatial processes were pioneered by Whittle (1954), and later
by Cliff and Ord (1973). Anselin(1988), Kelejian and
Robinson (1995), Kelejian and Prucha (1999, 2004, 2007),
and Lee (2002, 2004, 2007) have made important
contributions in econometrics.

@ Factor models were introduced by Hotelling (1933), applied in
economics by Stone (1947), and recently extensively in
finance and macroeconomics (Chamberlain and Rothschild
1983; Connor and Korajczyk, 1993; Kapetanios and Pesaran,
2007, Forni and Reichlin, 1998; Stock and Watson, 2002).

@ Chudik, Pesaran and Tosetti (2009) distinguish between weak
and strong, which will be useful in the analysis below.

e Chudik and Pesaran (2009) consider an IVAR model without a
dominant unit. We extend this paper and allow for a
dominant unit.
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Weak and Strong Cross Section Dependence

@ Understanding concepts of weak and strong CS dependence is
important for the analysis of IVAR models.

o Let Zy — (Z]_t, ...,Z/\/t>,, with E (Zt |It—1) = 0,
Var (z; |Zi—1) = X, where Z;_; is the information set at
time t — 1, and for each t where X; has diagonal elements
0< Tij ¢ < K, fori=1,2,.. N.

o Let wy = (wyy, ..., W/\/t)/ be a vector of weights satisfying the
granularity conditions

Wit

[l we |

=0 (N_%) forany j < N
(1)

well, = 0 (N7H),

An obvious example is equal weights, w; = N~
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@ The process {z;} is weakly cross sectionally dependent
(CWD) at a point in time t, if for all w;

lim Var(wiz; |Z;—1) =0

N—oo

The process {zj;:} is cross sectionally strongly dependent
(CSD) at a point in time t, if there exists w; such that

Var(wiz; |Z;—1) > K >0

where K is a constant independent of N.
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Some i’roperties of éWD and CSD processes

@ The process {z;} is CSD at time t € 7 if and only if

1
lim — ;) =K
Nﬁnoo NAl ( t) > 0,
i.e. A1 (X;) increases to infinity at the rate N.
o If A1 (X;) = O(N'€) for any € > 0, then
lim (w’twt) A (Zy) =0,

N—co

and the underlying process will be CWD. Hence, the bounded
eigenvalue condition is sufficient but not necessary for CWD.

@ CWD and CSD can be defined equally with respect to any
information set, such as Z_, for any fixed M, or as M tends
to infinity (if the underlying process is stationary).
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Estimation and Inference in IVAR model

Stationary Infinite Dlmen5|onal VAR Model

Suppose that for each N € IN, vector of N endogenous variables
/
X(N),t = (x(,\,)vlt, X(N)th) is given by the following VAR model,

X(nye = PvyX(ny,e—1 + U ¢ (2)

where @y is N X N matrix of coefficients, u(y) ; is N x 1 vector
of error terms given by

u(N),t = (S(N)Uu» —|—e(/\/)’t, and e(N),t = R(N)S(N),t’ (3)

where EN) e = (0, e2¢, ...,sNt)/, and the individual elements of the
double index array {ej,j € {2,3,...}, t € Z} are IID.
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Estimation and Inference in IVAR model

@ The results that follow hold irrespective of whether the
parameters 4’(N),ij' O(n),i» and ry) ;i are assumed to be
varying with N or not.

@ Note that even if individual coefficients do not change with N,
covariance between individual units, cov (x(,\,),,-t,x(,v)'jt) in

general must be changing with N, unless matrices ® ) and
R(y) are lower triangular.

@ Dependence on N is suppressed in the remainder of this
presentation to simplify the notations, but it is understood
that the parameters and the dimension of the random
variables x; and u; vary with N, unless otherwise stated.
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Assumptions

@ The equation for unit i in system (2) is

N
Xit = Z $iiXj -1 + Uit
j=1
@ We shall assume that the following absolute summability
condition holds,

N
Y. |#
j=1

@ This is not a restrictive condition, and is similar to the
concept of absolutely summability in the time series literature,
but the summing is over lagged values of cross section units
as opposed to AR terms of unit i/, or MA terms.

< K forany Ne N andanyie {1,..,N}. (4)
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Ass

@ Similar constraint is used in ‘data mining’ literature, in
particular Lasso (Tibshirani, 1996) and Ridge regression
shrinkage method. Using Lasso around 5-10% of the
regression coefficients end up being exactly equal to zero.

@ The Lasso minimizes residual sum of squares subject to
|0y < K
° Ridge regression minimizes residual sum of squares subject to
Zj 1"bu <
@ We do not choose the value for K, as it is necessary in

shrinkage methods, but rather assume only its existence
instead.

Hashem Pesaran High Dimensional VARs Featuring a Dominant Unit



Estimation and Inference in IVAR model

@ For each i we divide the units into a finite number of
‘neighbors’, denoted by N, that have fixed coefficients

‘([)U‘ < K for j € N; , and nonneighbors

Jj €N ={1,.,N}\N; that have coefficients that are of
order 1/ N:

Xjt = Z PiiXj -1+ E $iiXj, -1 + Uit
JEN; JENF

Neighbors Nonneighbors

o/

~1
¢ xt—1+ P Xe—1 + Ujt,

@, and @, are obtained from ¢, by replacing nonneighbors
and neighbors coefficients with zeros.
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Estimation and Inference in IVAR model

If it is possible to divide units in this way, then we no longer
have dimensionality problem.
Remark: This assumption could be relaxed without the loss of
generality by assuming more general restrictions in form of
spatial weights matrices as in Chudik and Pesaran (2009)
Consider aggregate spatiotemporal impact of nonneighbors

. ~/
given by ¢, x; 1.
Notation: We use ||.||,, and ||.||; to denote maximum
absolute row and column sum matrix norms, respectively.

Note that Hgb,-HC = ZJGM_C (Pij
have large aggregate impact on unit /.

< K. Nonneighbors could
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Estimation and Inference in IVAR model

However, the euclidean norm

- = = _1
180 < 1l 18,0, = /o (&) 0(1) = 0 (N) and
it follows that J)?xt_l 50 if and only if {x;} is weakly CS
dependent.

If {xit} is strongly CS dependent process then
limpy_e Var (J’;Xt—l) is not necessarily zero.
Hence the aggregate spatiotemporal impact of nonneighbors is

nonnegligible and generally important only in the case of
strong CS dependence.

This paper allows for dominant unit, which is a source of
strong CS dependence.
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Estimation and Inference in IVAR model ea e Curse of Dimensionality

Assumptions

@ To simplify the exposition, we consider only the case where
N; ={1,i}, that is only lagged dominant unit and own
lagged coefficient are O (1), and the remaining elements are
nonneighbors:

Assumption 1: (Influence of unit 1 on the rest of the system is
unrestricted.) There exists a constant K < co (independent of N)
such that ¢, | < K, |¢,41] < K, and

H(P—l,—iHoo < % for any i, N € IN,

/
where @ | ;= (0,01 ;i 1.0, i1 biny) -
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Estimation and Inference in IVAR model ith the Curse of Dimensionality
Assumptions

N repr ation
ent e tion

Assumption 2 (Stationarity and bounded variances as N — o)
There exists a constant 0 < p < 1 — € (independent of N) such
that for any N € IN :

M (@) <p @y <o @] <p.and 9]l <p,

where @) is N x N matrix constructed from matrix ® by
replacing its first column with a zero vector, and ¢, is the first
column vector of matrix ®.
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Estimation and Inference in IVAR model

Assumption 3 (Starting values) Available observations are

X0, X1, ..., X7 with the starting values xg = ) 7, ®‘u (—0).
Assumption 4 (Errors) Vector of errors u; is given by (3), 1 = 1,
|6]lo = O (1), u1¢ and the individual elements of the double index
array {¢gjt,j € {2,3,...} ,t € Z} are identically and independently
distributed with mean 0, unit variances and finite fourth moments
uniformly bounded in j € IN. Furthermore, matrix R has bounded
row and column matrix norms.
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Estimation and Inference in IVAR model

Consistent estimation

Large N representation

@ Under Assumptions A; (®) < 1 and Assumptions 3-4 (only),
we have (for any N € IN):

Xr = ®_ix 1+ x1-1+ Surr + e,
= Z ¢£_1¢1X]_’t_]__é + Z ¢€_15U1’t,1 + Ut
=0 (=0

where v, = Y CIJf_l)Rst_g is CWD, in particular
w'v, = 0, (N_%>.
@ As a consequence, we have (for any i)
Xit = Sf'xt =d; (L) x1,e—1 + bj (L) ur¢ + vje, (5)
where d; (L) = s/ Y% , ®" ¢, L¢, and
bi(L) =8y, ®" 5L
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Estimation and Inference in IVAR model

Consistent estimation

o It follows that for i = 1,
(1—di (L)L) x1e = bi (L) u1¢ + v1e, (6)
and for / > 1 it can be shown that
Xie = Ppie1 B (Dxe e+ 0p (N2),(7)

where in general the polynomial B, (L) is a function of all
elements of ® and §.

@ Focus is on the consistent estimation of the unit-specific
unknown coefficients ¢; for i > 1 and also on the estimation
of the impact of the dominant unit on the remaining units in
the system, captured by B, (L).

@ This paper does not deal with the pooled estimation of the
mean coefficients over the cross section units.
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mpti

N representation
ent estimation

@ We allow for cross section dependence of innovations
e; = Rg;, as characterized by matrix R, but we ignore this
matrix for estimation and therefore our estimators are not
necessarily efficient in the presence of cross section
dependence induced by the matrix R.

@ Based on the asymptotic representation of unit /, we consider
the following auxiliary regression for i > 1:

K
Xit = ¢;Xjt-1+ Z Bix1,e—¢ + €it
(=0
= gy 7T+ e€ir, (8)

where 77; = (¢;:, Bjgr - Bi)-
o Identification requires C; = E (g;:g/,) to be positive definite.
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Estimation and Inference in IVAR model the Curse of Dimensionality
mptions
N representation
Consistent estimation

Theorems

Theorem 1 (Consistency) Under Assumptions 1-4, and invertibility
of ﬁ ZtT:kH gitgft, we have

|17ti — 7i|| o 2.0, for any i > 1,

as N, T L oo at any order, and k?/ T — 0 such that there exists
constants r;, r» > 0 satisfying k > n T".

@ Remark: The number of regressors in the auxiliary regressions
cannot go to infinity too fast, so that it is possible to
satisfactorily estimate all coefficients, and not too slow, so
that the omitted variable problem is asymptotically negligible.
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Estimation and Inference in IVAR model the Curse of Dimensionality
mptions

N representation
Consistent estimation

Theorem 2. (Inference) Under assumptions of Theorem 1, for any
sequence of (k4 1) x 1 dimensional vectors ay such that

|lak|| = 1 and HakHl =0(1),andas N, T ER 0o, T/N — 3 < 00
(3 > 0 is not necessarily nonzero), and k?/T — 0 such that there
exists constants r1, r» > 0 satisfying k > 1 T", we have

1 1 .
VT —k—alC} (7 — ) < N(0,1), fori>1,  (9)

where 7T; is LS estimator of 7T; in regression (8), matrix
C; = E (gi:g/,) can be consistently estimated by

o~

_ _1 T / 2
C,’ = Tk Zt:k+1 gitgit’ and U.I' = Var <e,'t).
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Monte Carlo Simulations Monte Carlo Results

Monte Carlo Simulations
Monte Carlo Design

@ We consider factor augmented IVAR model featuring
dominant unit,

(x¢ — yfy) = ® (x¢—1 — yfe—1) + Uy,

U = 5U1t + ey, and e; = RSt.

o f =0.9f_1 +€n, and er ~ [IDN (0,1 —0.92).

@ We need to generate coefficient matrix ®, errors u;, and
factor loadings +.
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Monte Carlo Simulations Monte Carlo Results

Construction of Coefficient Matrix

@ Neighbor for unit i is unit 1 (dominant unit), unit / 4+ 1, and
unit / itself.

o We generate O,(N~1) random variables A; such that
YA =1and Ay = A; = Ajyq =0 first,
@ Matrix @ is then constructed as follows.

o (Dominant unit i = 1) ¢; = 0.7, ¢15 = 0.1, and ¢y; = a1Ay;
for j =3,.., N, with a; = 0.1

o (Unit i =2) ¢p; = 0.1, ¢y = 0.5, ¢p3 = 0.1, and
4)2] = a2)\2j forj=4,.., N, with ap = 0.1.

o (Remaining units i > 2) ¢;; ~ 1IDU (0.3,0.5),
¢ ~ IDU(0,0.1), ¢, ;1 ~ IIDU (—0.2,0.2), ¢ = a;A for
J&{1.i,i+1}, where a; ~ /IDU (0.05,0.15).
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Monte Carlo Simulations Monte Carlo Results

Construction of Reduced Form Errors and Factor loadings

@ u; = duy + e, where uye ~ IIDN (0,0.15), we set 61 = 1,
d, = 0.1 and generate §; ~ /IDU (0,0.3) for i = 3,.., N.

o We set e;¢ = 0 and {ey, ..., ent }, are generated from a
stationary bilateral Spatial Autoregressive Model (SAR) in
order to show that our estimators are invariant to the weak
cross section dependence of innovations:

de

? (ei—l,t + ei+1,t) + Veit,

where d.; ~ IIDN (0,03,), and SAR parameter a. = 0.4
(this is CWD, see Pesaran and Tosetti, 2009)

@ Two sets of factor loadings are considered, v = 0 (no
unobserved common factor) and 7 # 0. Under the latter we
set v; = 1, 7, = —0.5 and generate 7; ~ /IDN (1,1) for
i=3 ., N.

€it =
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Monte Carlo Simulations Monte Carlo Results

Specification of Auxiliary Regressions

@ We consider three different augmentations:

e (/) by dominant unit, neighbor i 4 1 and arithmetic cross
section averages {x1¢, Xt, Xj 41 t—1,X1,t—1, Xt—1 }+

o (/i) augmentation by dominant unit and neighbor i + 1,
Xi11,e-1 U {x1,e—¢})_o with p being the largest integer smaller
than T1/3/2, and

o (iii) augmentation by neighbor i 4+ 1 and arithmetic cross
section averages, xjt1,¢—1 U {Xt_¢})_o with the number of
lags p chosen to grow with T in the same way.

@ Auxiliary regression for unit i = 2 corresponding to
augmentation of form (i) is:
1 1
Xt = 2+ PooXot—1+ Po3x3 -1+ Z byxie—¢+ Z boyXi_¢ + €2t
(=0 (=0
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Monte Carlo Results

Table 1a: RMSE of @22 in the experiments zero factor loadings (y = 0).
Auxiliary regressions are augmented by neighbor X3 ;1 and:
T — T _

{300 {xe_ )0 e 0 %e i}y

N\T 50 100 200 50 100 200 50 100 200
25 1590 1045 7.12 | 15.74 10.64 7.26 | 17.00 11.08 7.47
50 16.07 10.69 6.84 | 15.88 10.60 6.79 | 16.94 11.29 7.00
75 16.18 10.77 7.02 | 1597 10.69 6.96 | 17.20 11.23 7.16
100 | 16.26 10.70 7.13 | 16.20 10.70 7.10 | 17.29 11.16 7.29
200 | 15.74 1066 7.07 | 1569 1066 7.08 | 16.60 11.12 7.26
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Monte Carlo Results

Table 1b: Size (X100) (5% level, Hy : ¢,, = 0.50) in experiments with
zero factor loadings (7y = 0).

Auxiliary regressions are augmented by neighbor X3 + 1 and:
{000} Fe )iy Do Fei}hg
N\T | 50 100 200 | 50 100 200 | 50 100 200
25 730 635 6.20 | 7.15 690 6.50 | 845 7.35 6.65
50 7.15 6.60 5.25 | 7.45 6.80 5.40 | 8.80 7.90 5.50
75 7.55 6.80 5.75 | 7.45 6.50 5.95 | 8.70 7.65 6.20
100 | 7.40 6.30 5.90 | 7.85 6.75 6.45 | 8.85 6.90 6.50
200 | 6.60 6.35 5.95 | 6.60 6.45 595 | 7.55 6.95 6.45
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Monte Carlo Results

Table 1c: Power (x100) (5% level, Hy : ¢,, = 0.70) in experiments
with zero factor loadings (7 = 0).

Auxiliary regressions are augmented by neighbor X3 ¢+ 1 and:
{xe-e}iY) Feo}iy) (v %eidig
N\T 50 100 200 50 100 200 50 100 200
25 47.85 67.45 93.40 | 49.70 70.45 9520 | 51.95 71.70 94.90
50 46.95 67.90 92.80 | 46.50 69.65 94.10 | 48.60 69.40 94.10
75 48.00 70.05 92.90 | 48.05 70.55 93.60 | 49.05 71.35 93.20
100 | 48.05 69.80 91.85 | 43.00 70.40 92.75 | 49.40 71.60 92.80
200 | 48.40 69.05 92.05 | 47.15 69.25 92.25 | 49.90 69.85 92.25
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Monte Carlo Results

Table 2a: RMSE of (/,522 in the experiments with nonzero factor loadings

(v #0).
Auxiliary regressions are augmented by neighbor X3 ;1 and:
{xu-c}isg) {Ki-c}itg) X1 e%ecHoo

NA\T 50 100 200 50 100 200 50 100 200
25 1438 1259 1282 | 1440 11.88 11.09 | 1548 10.18 7.45
50 1431 1270 12.78 | 1457 11.44 10.39 | 16.35 10.54 6.77
75 14.02 1258 12.61 | 1455 10.93 10.16 | 17.18 10.27 6.86
100 | 14.38 1254 12.81 | 1429 11.00 10.05 | 17.45 10.97 6.79
200 | 1422 12.83 1291 | 1458 11.13 10.25 | 17.87 11.08 7.08
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Monte Carlo Results

Table 2b: Size (X 100) (5% level, Hp : ¢,, = 0.50) in experiments with
nonzero factor loadings (77 # 0).

Auxiliary regressions are augmented by neighbor X3 ;1 and:
Paer )iy e }2) {1t Xe—thy
N\T | 50 100 200 | 50 100 200 50 100 200
25 9.15 2290 49.20 | 8.30 17.30 35.20 7.20 7.10 10.60
50 9.40 21.70 49.20 | 7.55 14.10 29.60 7.45 6.35 6.25
75 8.70 2320 48.15 | 6.90 12.40 28.30 9.50 5.60 6.15
100 | 9.00 22.70 48.65 | 6.40 12.95 26.75 9.10 7.20 5.00
200 | 955 2340 49.85 | 7.40 14.00 28.80 | 10.65 6.50 5.85
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Monte Carlo Results

Table 2c: Power (x100) (5% level, Hy : ¢,, = 0.70) in experiments
with nonzero factor loadings (77 # 0).
Auxiliary regressions are augmented by neighbor X3 ¢+ 1 and:
Per )iy e} [T
N\T 50 100 200 50 100 200 50 100 200
25 25.00 26.80 33.50 | 25.75 30.70 43.60 | 39.25 51.20 75.85
50 2425 2580 34.40 | 27.25 33.05 48.40 | 44.70 61.70 88.25
75 2415 2595 3335 | 20.15 33.25 51.70 | 49.40 66.80 90.00
100 | 24.85 25,55 34.00 | 27.50 35.55 50.40 | 49.85 67.85 91.50
200 | 24.00 26.45 3430 | 28.25 34.10 49.00 | 52.80 69.20 91.65
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Modelling Equity Returns

- B Estimation Results
An Empirical Application sHmation esd

Modelling Returns on Equity Futures

@ We model weekly returns on equity futures across the globe,
where we assume that S&P is dominant unit.

e N =26, and T = 308 observations of weekly returns (06
January 2003 - 24 November 2008)

@ The equity series refer to futures contracts downloaded from
Datastream. Daily returns were calculated allowing for
contract rollovers. Weekly returns were calculated from daily
returns by summing working days (Monday to Friday).
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Modelling Equity Returns
Estimation Results

An Empirical Application

@ It is assumed that x; (vector of returns) is given by the
following VAR model,

xr =d+ ®Px; 1+ uy,

and u; = duys + er,where e; = Re; is CWD.

@ The neighbors of unit i are S&P (unit 1), unit 7 itself, and the
following spatial weighted average:

N

- W
Xwit = Z 1—w Xjt
j=2 il

where wj; are financial weights constructed according to
average of assets and liabilities holdings for equities during
2001-2007 period (wj; = 0). Source: IMF CPIS database.
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Modelling Equity Returns
Estimation Results

An Empirical Application

Financial weights matrix (selected countries)

us UK France Germany NL Japan

us - 20.9% 7.4% 6.6% 8.3% 15.0%

UK | 45.4% - 7.2% 6.1% 5.6% 8.9%
France | 31.3% 14.1% - 132% 6.7% 4.9%
Germany | 32.3% 13.8% 15.2% - 7.0% 3.8%
NL | 44.0% 13.7% 8.4% 7.6% - 4.2%
Japan | 56.7% 15.5%  4.3% 29% 3.0% -
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Modelling Equity Returns

- B Estimation Results
An Empirical Application o ! &

@ The following conditional models are estimated

Kdi
Xlt—Cl+Z¢,,pX/t I+Z,B1/Xlt €+thXWIt ¢+ E€ity,
(=0 (=1

for i =2,..,N, and for i = 1 (S&P), we estimate the
following marginal model,

kol ksl
Xyt = ¢+ Z agxy,t—¢ + Z beXw1,t—¢ + €1t
(=1 (=1

@ Truncation lags were chosen according to SBC criterion with
the maximum lag set to 4.
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Modelling Equity Returns
Estimation Results

An Empirical Application

@ Formal tests of global dominance in IVAR models are yet to
be developed.
o Nevertheless, the assumption that xj; is weakly exogenous in

the equation xj;, i = 2, .., N, can be tested using the
procedure advanced by Wu (1973) and Hausman (1978).

@ Wu's approach is to test the statistical significance of the S&P
residuals €1; in the equation for remaining units. This test is
asymptotically equivalent to using Hausman's procedure.
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Modelling Equity Returns
Estimation Results

An Empirical Application

SP Cont. SP Lag Own Lag Spatial Lag
Unit Coef t  Coef. t  Coef. t  Coef. t R® Wu-H.
Dominant Unit

S&P - - -
Advanced European Countries
AEX 1.086 243 0441 45 -0538 -4.0 0.469 2.4 0.695 1.44
BEL 0946 218 0.718 6.4 -0.046 -05 -0.241 -1.8 0.665 2.00
CAC 0.959 28.0 0.328 45 -0.274 -25 0.027 0.2 0.749 -0.23
DAX 1.089 269 0461 43 -0.294 -338 0.061 0.6 0.753 0.91
FTSE 0.833 274 0292 32 -0.181 -2.4 -0.062 -0.8 0.751 0.54
FOX 0.900 20.7 0.612 4.7 -0.209 -22 -0.208 -1.8 0.638 0.04
GRX 0.880 13.8 0.616 3.6 -0.095 -1.6 0.225 16 0461 -1.61
IBE 0.857 209 0433 41 0.034 0.4 -0.303 -2.8 0.651 2.59
KFX 0.837 186 0.603 49 -0.114 -1.7 -0.111 -0.9 0.590 -2.53
MIB 0.852 256 0.326 45 -0.328 -2.7 0.185 1.4 0722 0.33
OBX 0.928 155 0.649 5.1 0.049 0.8 -0.334 -2.2 0.510 -1.90
OMX 0969 232 0.337 38 -0.190 -25 0.052 0.5 0.656 -0.54
PSI 0.619 149 0.325 3.7 0.036 0.6 0.036 0.4 0.504 -1.16
SMI 0.855 22.8 0.211 2.7 -0.268 -3.4 0.038 0.4 0.685 -0.38

- 0.563 36 -0543 -43 0.067 -
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SP Cont. SP Lag Own Lag Spatial Lag

Unit Coef t Coef t Coef t Coef t R
Other Advanced Countries

TSX 0.751 219 0.161 23 -0.095 -15 0.054 0.7 0.633 0.16
NK 0.919 174 0323 28 -0.108 -1.7 0.107 0.8 0.539 -0.42
ASX 0.600 16.5 0.284 3.7 -0.115 -1.8 0.019 0.2 0.503 -1.84
Latin America

BRX 1.210 187 0327 1.8 -0.109 -1.9 0.107 0.7 0.571 -0.07
Emerging Europe

HUX 0.831 133 0.399 3.0 -0.018 -0.2 0.193 1.2 0.458 1.14
POX 0.898 13.1 0.180 1.2 -0.023 -04 0.100 0.7 0.370 -1.96
SAX 0.756 129 0.217 2.2 -0.152 -25 -0.031 -0.3 0.361 -1.92
Emerging Asia

HKX 0.707 11.7 0.713 45 -0.206 -3.2 0.003 0.0 0.391 -2.30
KOX 0.768 11.2 0.050 0.4 -0.551 -5.7 1.047 59 0.409 -1.17
SIX 0.718 14.3 1.127 7.2 -0.386 -4.0 -0.122 -0.9 0.493 1.12
TWX 0717 104 0772 42 -0.380 -4.2 0.007 0.0 0.358 0.70

Z

Wu-H.
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Conclusion

Conclusion

@ This paper considered the problem of estimation of high
dimensional VARs featuring a dominant unit.

@ We showed that the asymptotic normality of the cross section
augmented least squares estimator continues to hold (once
the individual auxiliary regressions are correctly specified).

@ How to correctly specify the individual regressions is an
important topic, and the correct specification depends on the
assumption about the presence of dominant units, observed
and unobserved common factors and the (local)
spatiotemporal neighborhood effects.

@ The framework developed here can be applied to model
spatio-temporal dependence. See "Spatial and Temporal
Diffusion of House Prices in the UK" by Holly, Pesaran and
Yamagata (2009, forthcoming).

Hashem Pesaran High Dimensional VARs Featuring a Dominant Unit



	Introduction
	Outline
	Motivation
	Related Literature
	Weak and Strong Cross Sectional Dependence
	Some Properties of CWD and CSD processes

	Estimation and Inference in IVAR model
	Model
	Dealing with the Curse of Dimensionality
	Assumptions
	Large N representation
	Consistent estimation

	Monte Carlo Simulations
	Monte Carlo Design
	Monte Carlo Results

	An Empirical Application
	Modelling Equity Returns
	Estimation Results

	Conclusion

