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ABSTRACT

We study the problem of estimating the parameters of a linearmedian regression without any as-
sumption on the shape of the error distribution – including no condition on the existence of moments
– allowing for heterogeneity (or heteroskedasticity) of unknown form, noncontinuous distributions,
and very general serial dependence (linear and nonlinear).This is done through areverse inference
approach, based on a distribution-free testing theory [Coudin and Dufour (2009,The Economet-
rics Journal)], from which confidence sets and point estimators are subsequently generated. The
estimation problem is tackled in two complementary ways.First, we show howconfidence distri-
butionsfor model parameters can be applied in such a context. Such distributions – which can be
interpreted as a form offiducial inference– provide a frequency-based method for associating prob-
abilities with subsets of the parameter space (like posterior distributions do in a Bayesian setup)
without the introduction of prior distributions. We consider generalized confidence distributions
applicable to multidimensional parameters, and we suggestthe use of a projection technique for
confidence inference on individual model parameters.Second, we propose point estimators, which
have a natural association with confidence distributions. These estimators are based on maximiz-
ing testp-values and inherit robustness properties from the generating distribution-free tests. Both
finite-sample and large-sample properties of the proposed estimators are established under weak
regularity conditions. We show they are median unbiased (under symmetry and estimator unicity)
and possess equivariance properties. Consistency and asymptotic normality are established without
any moment existence assumption on the errors, allowing fornoncontinuous distributions, hetero-
geneity and serial dependence of unknown form. These conditions are considerably weaker than
those used to show corresponding results for LAD estimators. In a Monte Carlo study of bias and
RMSE, we show sign-based estimators perform better than LAD-type estimators in heteroskedastic
settings. We present two empirical applications, which involve financial and macroeconomic data,
both affected by heavy tails (non-normality) and heteroskedasticity: a trend model for the S&P
index, and an equation used to studyβ-convergence of output levels across U.S. States.

Key words: sign-based methods; median regression; test inversion; Hodges-Lehmann estimators;
confidence distributions;p-value function; least absolute deviation estimators; quantile regres-
sions; sign test; simultaneous inference; Monte Carlo tests; projection methods; non-normality;
heteroskedasticity; serial dependence; GARCH; stochastic volatility.
Journal of Economic Literature classification: C13, C12, C14, C15.
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RÉSUMÉ

Cet article propose des outils d’estimation et d’inférencedans le cadre d’une régression linéaire
sur la médiane, valides à distance finie sans recourir à des hypothèses paramétriques sur la dis-
tribution des erreurs. Nous introduisons la fonction p-value qui associe un degré de confiance à
chaque valeur testée du paramètre étant donnée la réalisation de l’échantillon. Nous calculons des
fonctions p-value simulées à partir de tests de Monte Carlo simultanés, puis des versions projetées
pour chaque composante individuelle du paramètre. Nous suivons ensuite le principe d’inversion
de test de Hodges et Lehmann [Hodges et Lehmann (1963)] et proposons d’utiliser comme esti-
mateur, la valeur du paramètre associée au plus haut degré deconfiance (à la plus forte p-value).
L’estimateur de signe hérite des propriétés de robustesse des statistiques dont il est issu et peut être
associé la procédure d’inférence à distance finie décrite dans Coudin and Dufour (2009). Il est aussi
sans biais pour la médiane quand les erreurs sont symétriques, et partage les propriétés d’invariance
de l’estimateur des moindres valeurs absolues (« Least Absolute Deviations, LAD »). Il est enfin
convergent et asymptotiquement normal sous des conditionsplus faibles que l’estimateur LAD. En
échantillon fini, les simulations suggèrent qu’il est plus performant en termes de biais et d’erreur
quadratique moyenne pour des processus très hétérogènes.

Mots clés : méthodes de signes ; régression sur la médiane ; inversion de test; estimateurs de
Hodges-Lehmann ; distribution de confiance ; fonctionp-values ; esimateur LAD ; régressions
quantiles ; tests de signe ; inférence simultanée ; tests de Monte Carlo ; méthodes de projection ;
non normalité ; hétéroscédasticité ; dependance sérielle ;GARCH ; volatilité stochastique.
Journal of Economic Literature classification: C13, C12, C14, C15.
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1. Introduction

A basic problem in statistics and econometrics consists in studying the relationship between a de-
pendent variable and a vector of explanatory variables under weak distributional assumptions. For
that purpose, the Laplace-Boscovich median regression provides an attractive approach because it
can yield estimators and tests, which are considerably morerobust to non-normality and outliers
than least squares methods; see Dodge (1997). The least absolute deviation (LAD) estimator is
the reference estimation method in this context. Quantile regressions [Koenker and Bassett (1978),
Koenker (2005)] can be viewed as extensions of median regressions. An important reason why such
methods yield more robust inference comes from the fact thathypotheses about moments are not
generally testable in nonparametric setups, while hypotheses about quantiles remain testable under
similar conditions [see Bahadur and Savage (1956), Dufour (2003), Dufour, Jouneau and Torrès
(2008)].

The distributional theory of LAD estimators and their extensions usually postulates moment
conditions on model errors, such as the existence of momentsup to a given order, as well as other
regularity conditions, such as continuity, independence or identical distributions; see for instance
Knight (1998), El Bantli and Hallin (1999), and Koenker (2005). Further, this theory and the as-
sociated tests and confidence sets are typically based on asymptotic approximations. The same
remark applies to work on LAD-type estimation in models involving heteroskedasticity and au-
tocorrelation [Zhao (2001), Weiss (1990)], endogeneity [Amemiya (1982), Powell (1983), Hong
and Tamer (2003)], censored models [Powell (1984, 1986)] and nonlinear functional forms [Weiss
(1991)]. By contrast, provably valid tests can be derived insuch models, under appreciably weaker
conditions, which do not require the existence of moments and allow for arbitrary heterogeneity (or
heteroskedasticity); see Coudin and Dufour (2009).

In this paper, we exploit this feature of testing theory in the context of median regression to
derive more robust estimation methods. Specifically, we study the problem of estimating the para-
meters of a linear median regression without any assumptionon the shape of the error distribution
– including no condition on the existence of moments at any order – allowing for heterogeneity (or
heteroskedasticity) of unknown form, noncontinuous distributions, and very general serial depen-
dence (linear and nonlinear). This is done through areverse inference approach, which starts from
a distribution-free testing theory [Coudin and Dufour (2009)], which is subsequently exploited to
derive confidence sets and point estimators. Using the testsproposed in Coudin and Dufour (2009),
the estimation problem is tackled in two complementary ways.

First, we show howconfidence distributionsfor model parameters [Schweder and Hjort (2002)]
can be applied in such a context. Such distributions – which can be interpreted as a form offiducial
inference[Fisher (1930), Buehler (1983), Efron (1998)] – provide a frequency-based method for
associating probabilities with subsets of the parameter space (like posterior distributions do in a
Bayesian setup) without the introduction of a prior distribution. In the one-dimensional model, the
confidence distribution is defined as a distribution whose quantiles span all the possible confidence
intervals [Schweder and Hjort (2002)]. In this paper, we considergeneralized confidence distribu-
tionsapplicable to multidimensional parameters, and we suggestthe use of a projection technique
for confidence inference on individual model parameters. The latter are exact – in the sense that
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the parameters considered are covered with known probablities (or larger) – under the mediangale
assumption considered in Coudin and Dufour (2009). Further, if more general linear dependence is
allowed – , the proposed method remains valid asymptotically.

Second, we propose point estimators, which bear a natural association with the above confi-
dence distributions. These Hodges-Lehmann estimators arebased on maximizing testp-values and
inherit several robustness properties from the distribution-free tests used to generate them [Hodges
and Lehmann (1963)]. In particular, both finite-sample and large-sample properties are established
under very weak regularity conditions. We show they are median unbiased (under symmetry and es-
timator unicity) and possess equivariance properties withrespect to linear transformations of model
variables. Consistency and asymptotic normality are established without any moment existence
assumption on the errors, allowing noncontinuous distributions, heterogeneity and general serial
dependence of unknown form. These conditions are considerably weaker than those usually used to
obtain corresponding results for LAD estimators.

The conjunction of sign-based tests, projection-based confidence regions, projection-basedp-
values and sign-based estimators thus constitute a whole system of inference valid for any given
sample size under very weak distributional assumptions andasymptotically valid if linear depen-
dence for linear dependent errors.

Fisher’s fiducial distributions and other fiducial inference arguments [Fisher (1930), Buehler
(1983), Efron (1998), Hannig (2006)] are not commonly used in econometrics because they require
the availability of pivotal test statistics with known distributions. This condition is not fulfilled
in general, especially in semiparametric or non-parametric settings. However, in the context of
median regression, sign-based methods provide a way to construct such pivots and fiducial infer-
ence tools can be developed. For any given sample size, the sign transform enables one to con-
struct test statistics with known nuisance-parameter-free distribution without additional parametric
restrictions. This enables us to construct fiducial inference tools adapted to multidimensional pa-
rameters. We exploit realizedp-value functions, which are constructed by testing hypotheses of
the formH0(β0) : β = β0, whereβ is the vector of the regression coefficients. Specifically, we
combine sign-based tests for such joint hypotheses [as given in Coudin and Dufour (2009)] with
projection techniques. For each component, a projectedp-value function provides a representation
of the evidence for each possible value of that component.

Using the abovep-values (as a function ofβ0), we then derive estimators and study their prop-
erties. Hodges and Lehmann (1963) proposed a general principle to directly derive estimators from
test procedures. They suggest to invert a test forH0(β0) : β = β0, and to choose the value ofβ0

which is “least rejected” by the test. First applied to the Wilcoxon’s signed rank-statistic for esti-
mating a shift or a location, this principle was adapted to regression models by deriving so-called
R-estimators from rank or signed-rank statistics [Jureckova (1971), Jaeckel (1972), Koul (1971)].
In a multidimensional context, this leads one to select the value ofβ0 with the highestdegree of
confidence, i.e.with the highestp-value.

Sign-based estimators are generated by sign-based tests, and they inherit several attractive prop-
erties of the latter (e.g., robustness to non-normality and heterogeneity). We will see that they al-
ternatively can be computed by minimizing quadratic forms of the constrained signs. So they have
a classical GMM form [Hansen (1982), and Honore and Hu (2004)for GMM statistics involving
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signs]. We show that sign-based estimators are consistent and asymptotically normal under regu-
larity conditions weaker than the ones required by the LAD estimator [Bassett and Koenker (1978),
Bloomfield and Steiger (1983), Powell (1984), Phillips (1991), Pollard (1991), Weiss (1991), Fitzen-
berger (1997), Knight (1998), El Bantli and Hallin (1999) and the references therein]. In particular,
asymptotic normality and consistency hold for heavy-tailed disturbances that may not possess finite
variance. This interesting property is entailed by the signtransformation. Signs of residuals always
possess finite moments, so no further restriction on the disturbance moments is required to complete
the proofs. Except for Knight (1989) and Phillips (1991), who considered the case of autoregressive
models, the distribution of LAD estimators in regressions where the error variances may not exist
has received little attention. In general, LAD estimators and the sign-based estimators proposed
here follow from quite different optimization rules and they can be very different.

The class of sign-based estimators we derive includes somei.i.d. cases studied in the literature:
Boldin, Simonova and Tyurin (1997) derivedsign-estimatorsfrom locally most powerful test sta-
tistics for i.i.d. errors and fixed regressors. Similarly, the procedures proposed by Hong and Tamer
(2003) and Honore and Hu (2004) rely on thei.i.d. assumption.

However, a major advantage of signs over ranks consists in dealing transparently with het-
eroskedastic (or heterogeneous) disturbances. In this paper, we do not assumei.i.d. disturbances.
We derive various sign-based statistics and associated sign-based estimators depending on the setup.
Many heteroskedastic and possibly dependent schemes are covered and, when needed, an het-
eroskedasticity and autocorrelation correction is included in the estimator criterion function.

The derivation of sign-based estimators as Hodges-Lehmannestimators makes these a natural
complement of the finite-sample tests used to generate them [Coudin and Dufour (2009)]. The latter,
based on the exact distribution of the corresponding sign-based test statistics does not depend on
any nuisance parameter and does control test levels in finitesamples under heteroskedasticity and
nonlinear dependence of unknown form. It combines Monte Carlo tests [Dwass (1957), Barnard
(1963) and Dufour (2006)], test inversion, and projection techniques [Dufour (1990, 1997), Dufour
and Kiviet (1998), Abdelkhalek and Dufour (1998), Dufour and Jasiak (2001), Dufour and Taamouti
(2005)].1 There is no need to estimate the error density at zero in contrast with tests that rely on
kernel estimates of the LAD asymptotic covariance matrix.2 Furthermore, when the test criteria are
modified to cover linear dependence, the resulting inference is asymptotically valid.

The performance of the proposed estimators is also studied in a Monte Carlo study that allows
for various non-Gaussian and heteroskedastic settings. Wefind that sign-based estimators are com-
petitive (in terms of bias and RMSE) when errors arei.i.d., while they are substantially more reliable
than usual methods (LS, LAD) when arbitrary heterogeneity or serial dependence is present in the
error term.

1For an alternative finite-sample inference exploiting a quantile version of the same sign pivotality result, which holds
if the observations areX-conditionally independent, see Chernozhukov, Hansen andJansson (2008).

2In the toi.i.d. error case, Honore and Hu (2004) observed in simulations that kernel-based estimates of the asymptotic
standard error of the median-based estimator tend to be too small, so the associated tests tend to overreject the null
hypothesis. Other estimates of the LAD asymptotic covariance matrix can be obtained by bootstrap procedures [design
matrix bootstrap in Buchinsky (1995, 1998), block bootstrap in Fitzenberger (1997), Bayesian bootstrap in Hahn (1997)]
and resampling methods [Parzen, Wei and Ying (1994)]. But the justification of these also rely on usual asymptotic
regularity conditions.
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Finally we present two empirical applications, which involve financial and macroeconomic data.
In the first one, we study a trend model for the Standard and Poor’s Composite Price Index, over the
period 1928-1987 as well as the 1929 crash period (which is characterized by huge price volatilities).
In the second application, we consider an equation used to study β-convergence of output levels
across U.S. States, with a small size. In both cases, the dataare affected by heavy tails (non-
normality) and heteroskedasticity.

The paper is organized as follows. Section 2 presents the model, the sign-based statistics and
the Monte Carlo tests. Section 3 is dedicated to confidence distributions andp-value functions. In
section 4, we introduce the sign-based estimators, which are obtained by maximizing thep-value
function. The finite-sample properties of the sign-based estimators are studied in section 5, while
their asymptotic properties are considered in section 6. Insection 7, we present the results of
our simulation study of bias and RMSE. The empirical applications are reported in section 8. We
conclude in section 9. Appendix A contains the proofs.

2. Framework

We will now summarize the distributional assumptions we shall consider and define the test statistics
on which the estimation methods we propose are based.

2.1. Model

We consider a stochastic process{(yt, x
′
t) : Ω → R

p+1 : t = 1, 2, . . . } defined on a probability
space(Ω,F , P), such thatyt andxt satisfy a linear model of the form

yt = x′
tβ + ut, t = 1, . . . , n, (2.1)

whereyt is a dependent variable,xt = (xt1, . . . , xtp)
′ is ap-vector of explanatory variables, andut

is an error process. Thext’s may be random or fixed. In the sequel,y = (y1, . . . , yn)′ ∈ R
n will

denote the dependent variable vector,X = (x1, . . . , xn)′ ∈ R
n×p then × p matrix of explanatory

variables, andu = (u1, . . . , un)′ ∈ R
n the disturbance vector. Moreover,Ft( · |x1, . . . , xn) repre-

sents the distribution function ofut conditional onX. This framework is also used in Coudin and
Dufour (2009).

The traditional form of a median regression assumes the disturbancesu1, . . . , un arei.i.d. with
median zero

Med(ut|x1, . . . , xn) = 0, t = 1, . . . , n. (2.2)

Here, we relax the assumption that theut are i.i.d. and we consider moment conditions based on
residual signs where the sign operators : R → {−1, 0, 1} is defined ass(a) = 1[0, +∞)(a) −
1(−∞, 0](a), with 1A(a) = 1 if a ∈ A and1A(a) = 0 if a /∈ A. For convenience, ifu ∈ R

n, we
will note s(u), then-vector of the signs of the components. We make the followingassumptions.
First, we assume thats(ut) is uncorrelated withxt.

Assumption 2.1 SIGN MOMENT CONDITION. E[s(ut)xt] = 0, for t = 1, . . . , n.

4



Assumption 2.1 is fulfilled when the disturbances arei.i.d. and independent ofX. Let us now
consideradapted sequencesS(v, F) = {vt, Ft : t = 1, 2, . . . } wherevt is any measurable
function of Wt = (yt, x

′
t)
′, Ft is a σ-field in Ω, Fs ⊆ Ft for s < t, σ(W1, . . . ,Wt) ⊂ Ft

andσ(W1, . . . , Wt) is theσ-algebra spanned byW1, . . . ,Wt. Assumption 2.1 is also fulfilled if
the signs satisfy a martingale difference with respect to the currentxt and the past information,
Ft = σ(W1, . . . ,Wt, xt+1):

E[s(ut)|Ft−1] = 0, ∀t ≥ 1. (2.3)

It covers many weakly dependent processes including usual linear dependent processes, such as
AR(1) disturbances with normal innovations and mean zero [see Fitzenberger (1997)]. Assump-
tion 2.1 also holds whenu satisfies the conditional mediangale condition defined in Coudin and
Dufour (2009), i.e. when {s(ut) : t = 1, 2, . . .} is a martingale difference with respect to
Ft = σ(W1, . . . , Wt, X).

Assumption 2.2 WEAK CONDITIONAL MEDIANGALE . LetFt = σ(u1, . . . , ut,X), for t ≥ 1.
u in the adapted sequenceS(u,F) is a strict mediangale conditional onX with respect to{Ft :
t = 1, 2, . . . } iff P[u1 < 0|X] = P[u1 > 0|X] and

P[ut < 0|u1, . . . , ut−1, X] = P[ut > 0|u1, . . . , ut−1, X], for t > 1. (2.4)

This setup allows for discrete distributions with mass at zero. When the distributions ofut

possess a mass at zero, the sign operator is redefined ass̃(a, V ) = s(a) +
[
1 − s(a)2

]
s(V −

0.5), where V ∼ U(0, 1) and is independent ofa. With no mass at zero and no matrixX, this
mediangale concept coincides with the one defined in Linton and Whang (2007) together with other
quantilegales.3

2.2. Sign-based statistics and Monte Carlo tests

For testingH0(β0) : β = β0 vs. H1(β0) : β 6= β0 in model (2.1), we consider general quadratic
forms involving the vectors(y − Xβ0) of the constrained signs:

DS(β0, Ωn) = s(y − Xβ0)
′XΩn(s(y − Xβ0),X)X ′s(y − Xβ0) (2.5)

whereΩn(s(y − Xβ0),X) is ap × p positive definite weight matrix that may depend on the con-
strained signs. If the disturbances satisfy the mediangaleAssumption 2.2, sign-based statistics of
the form constitute pivotal functions underH0(β0); see Coudin and Dufour (2009). The distribution
of the statistic conditional on the realization ofX is perfectly specified and can be simulated.

Monte Carlo tests with controlled levels are constructed inthe following way. For testing
H0(β0) vs. H1(β0) with level α ∈ [0, 1], we denoteD(0)

S = DS(β0) the observed statistic,

(D
(1)
S , . . . ,D

(N)
S )′ an N -vector of independent replicates drawn from the same distribution as

3Linton and Whang (2007) define thatut is a mediangale ifE(ψ 1

2

(ut)|Ft−1) = 0, ∀t, where Ft−1 =

σ(ut−1, ut−2, . . .) andψ 1

2

(x) = 1
2
− 1(−∞,0)(x). The specification of the sign function which does not make dif-

ference between a positive and a null number is clearly adapted to continuous distributions.
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DS(β0) and (W (0), . . . ,W (N))′, a (N + 1)-vector of i.i.d. uniform variables. A Monte Carlo
test forH0(β0) consists in rejecting the null hypothesis whenever the empirical p-value

p̃DS

N (x) =
NG̃N (x) + 1

N + 1
(2.6)

is smaller thanα, whereG̃N (x) = 1− 1
N

∑N
i=1 s+(x−T (i))+ 1

N

∑N
i=1 δ(T (i)−x)s+(W (i)−W (0)),

with s+(x) = 1[0,∞)(x), δ(x) = 1{0}. The empiricalp-value is based on a randomized tie-breaking
procedure which allows one to control the level when the statistics are discrete. When the number
of replicatesN is such thatα(N + 1) is an integer, the level of the Monte Carlo test is equal to
α for any sample sizen [see Dufour (2006)]. Next, simultaneous confidence regionsfor the entire
parameterβ are obtained by inverting those simultaneous tests. The simultaneous confidence region

C1−α(β) = {β∗|p̃DS

N (β∗) ≥ α},

which contains all the valuesβ∗ with empirical p-value p̃DS

N (β∗) [associated with the test of
H0(β

∗) : β = β∗] higher thanα has by construction level1−α for any sample size. It is then pos-
sible to derive general (and possibly nonlinear) tests and confidence sets by projection techniques.
For example, conservative individual confidence intervalsare obtained in such a way. Finally, if
DS is an asymptotically pivotal function all previous resultshold asymptotically. For a detailed
presentation, see Coudin and Dufour (2009).

3. Confidence distributions

In the one-parameter model, statisticians have defined the confidence distribution notion that sum-
marizes a family of confidence intervals; see Schweder and Hjort (2002). By definition, the quantiles
of a confidence distribution span all the possible confidenceintervals of a realβ. The confidence
distribution is a reinterpretation of the Fisher fiducial distributions and provides, in a sense, an ana-
logue of Bayesian posterior probabilities in a frequentistsetup [see also Fisher (1930), Neyman
(1941) and Efron (1998)]. This statistical notion is not commonly used in the econometric litera-
ture, for two reasons. First, it is only defined in the one-parameter case. Second, it requires that the
test statistic be a pivot with known exact distribution. Below we extend that notion (or an equiv-
alent) to multidimensional parameters. The sign transformation enables one to construct statistics
which are pivots with known distribution without imposing parametric restrictions on the sample.
Consequently, our setup does not suffer from the second restriction. In that section, we briefly recall
the initial statistical concept and apply it to an example inunivariate regression. Then, we address
the extension to multidimensional regressions.

3.1. Confidence distributions in univariate regressions

Schweder and Hjort (2002) defined the confidence distribution for the real parameterβ such a
distribution depending on the observations(y, x), whose cumulative distribution function evaluated
at the true value ofβ has a uniform distribution whatever the true value ofβ. In a formalized way,
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this can be expressed as follows:

Definition 3.1 CONFIDENCE DISTRIBUTION. Any distribution with cumulativeCD(β) and quan-
tile functionCD−1(β), such that

Pβ[β ≤ CD−1(α; y;x)] = Pβ[CD(β; y;x) ≤ α] = α (3.1)

for all α ∈ (0, 1) and for all probability distributions in the statistical model, is called a confidence
distribution ofβ.

(−∞, CD−1(α)] is a one-sided stochastic confidence interval with coverageprobability α,4

and the realized confidenceCD(β0; y;x) is thep-value of the one-sided hypothesisH∗
0 (β0) : β ≤

β0 versusH∗
1 (β0) : β > β0 when the observed data arey, x. The realizedp-value when testing

H0(β0) : β = β0 versusH1(β0) : β 6= β0 is 2min{CD(β0), 1 − CD(β0)}. Those relations are
stated in Lemma 2 of Schweder and Hjort (2002):the confidence of the statement “β ≤ β0” is the
degree of confidenceCD(β0) for the confidence interval

(
− ∞, CD−1

(
CD(β0)

)]
, and is equal

to thep-value of a test ofH∗
0 (β0) : β ≤ β0 vs. H∗

1 (β0) : β > β0. Hence, tests and confidence
intervals onβ are contained in the confidence distribution. Schweder and Hjort (2002) also note
that, since the cumulative functionCD(β) is an invertible function ofβ and is uniformly distributed,
CD(β) constitutes a pivot conditional onx. Reciprocally, whenever a pivot increases withβ (for
example a continuous statisticT (β) with cumulative distribution functionF that is independent of
β and free of any nuisance parameter),F

(
T (β)

)
is uniformly distributed and satisfies conditions

for providing a confidence distribution. LetT (β) be such a continuous real statistic increasing with
β with a free of nuisance parameter distribution. A test ofH0 : β ≤ β0 is rejected whenT obs(β0)
is large, withp-valuePβ0

[T (β0) > T obs(β0)]. Then,

Pβ0
[T (β0) > T obs(β0)] = 1 − Fβ0

(T obs(β0)) = CD(β0) (3.2)

whereFβ0
(.) is the sampling distribution ofT (β0) underβ = β0. Consequently, simulated sam-

pling distributions and simulated realizedp-values as presented previously yield a way to construct
simulated confidence distributions.

The sampling distribution and the confidence distribution are fundamentally different theoreti-
cal notions. The sampling distribution is the probability distribution ofT (β) obtained by repeated
samplings whereas the confidence distribution is an ex-postobject that contains the confidence
statements one can have on the value ofβ giveny, x, T obs(β).

Randomized confidence distributions for discrete statistics. A last remark relates to discrete sta-
tistics. Confidence distributions based on discrete statistics cannot lead to a continuous uniform
distribution. Approximations must be used. Schweder and Hjort (2002) proposed half correction.

4For continuous distributions, just note thatPβ [β ≤ CD−1(α)] = Pβ{CD(β) ≤ CD
(
CD−1(α)

)
} =

Pβ{CD(β) ≤ α]} = α
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For discrete statistics, they used

CD(β0) = Pβ0
[T (β0) > T obs(β0)] +

1

2
Pβ0

[T (β0) = T obs(β0)], (3.3)

We rather use randomization as in section 2. The discrete statistic T (β) is associated with an
auxiliary oneUT , which is independently, uniformly and continuously distributed over[0, 1]. Lexi-
cographical order is used to order ties.

CD(β0) = Pβ0
[T (β0) > T obs(β0)] + P [UT (β0) > UT obs(β0)]Pβ0

[T (β0) = T obs(β0)]. (3.4)

Simulated confidence distributions and illustration.Let us consider a simple example to illustrate

those notions. In the modelyi = βxi + ui, i = 1, . . . , n, (ui, xi)
iid∼ N (0, I2), the Student sign-

based statistic

SST (β) =

∑
s(yi − xiβ)xi

(
∑

x2
i )

1/2

is a pivotal function and decreases withβ. The simulated confidence distribution ofβ given the
realizationy, x is

ĈD(β0) = 1 − F̂β0
(SST (β0)), (3.5)

with F̂β0
a Monte Carlo estimate of the sampling distribution ofSST underH0(β0) : β = β0. Fig-

ure 1 presents a simulated confidence distribution cumulative function forβ, given 200 realizations
of (ui, xi) based onSST . The Monte Carlo estimate of̂Fβ0

is obtained from 9999 replicates of
SST underH0(β0).TestingH∗

0 : β ≤ .1 at 10% can be done by readingCD(.1) here .92. The test
acceptsH∗

0 . Further,(−∞, .23] constitutes a one-sided confidence interval forβ with level .95.
Realizedp-value functions for discrete statistics.Another interesting object is the realizedp-value
function when testing point hypothesesH0(β0). The latter is a simple transformation of theCD
cumulative function. The simulated realizedp-value is given by

p̂SST (β0) = 2min{ĈDSST (β0), 1 − ĈDSST (β0)}. (3.6)

Consider now the statisticSF = SST 2. SF is a pivotal function but not a monotone function
of β contrary toSST . An entire confidence distribution cannot be recovered fromSF because
of this lack of monotonicity. However, thep-value function can be constructed using equation
(2.6). Figures 2 (a) and (b) comparep-value functions based onSST andSF . Inverting thep-
value function allows one to recover half of the confidence distribution and consequently half of the
inference results,i.e. the two-sided confidence intervals. For example, in Figure 2(a), [−.17, .24]
constitutes a confidence interval with level90% for both statistics. Thep-value function provides
then an interesting summary on the available inference. Especially, it gives the confidence degree
one can have in the statementβ = β0. Finally, thep-value function has an important advantage
over the confidence distribution: it is straightforwardly extendable to multidimensional parameters.

The spread of thep-value function is also related to themodel specificationand theparameter
identification. When thep-value function is flat, one may expect the parameter to be badly identified
either because there exists a set of observationally equivalent parameters, then, thep-values are high
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Figure 1. Simulated confidence distribution cumulative function based on SST.

for a wide set of values; either because there does not exist any value satisfying the model and then
thep-values are small everywhere. To illustrate that point, letus consider another example (example

2) where the firstn1 observations satisfyyi = β1xi + ui, i = 1, . . . , n1, (ui, xi)
iid∼ N (0, I2) and

then2 followings, yi = β2xi + ui, i = n1 + 1, . . . , n1 + n2, (ui, xi)
iid∼ N (0, I2), with β1 = −.5

andβ2 = .5. The modelyi = βxi + ui, i = 1, . . . , n1 + n2, is misspecified. In Figure 2 (b), we
notice the spread of thep-value function based onSF is large: the set of observationally equivalent
β is not reduced to a point.

3.2. Simultaneous and projection-basedp-value functions in multivariate regression

If p ≥ 2, the confidence distribution notion is not defined anymore. However, simulated real-
ized p-values for testingH0(β0) can easily be constructed from theSF statistic and more gen-
erally from any sign-based statistic which satisfies equation (2.5). Simulatedp-values lead to
a mapping for which we have a 3-dimensional representation for p = 2. Consider the model:

yi = β1x1i + β2x2i + ui, i = 1, . . . , n, (ui, x1i, x2i)
iid∼ N (0, I3), β = (β1, β2) = (0, 0)′, y =

(y1, . . . , yn)′, u = (u1, . . . , un)′, x1 = (x11, . . . , x1n)′, x2 = (x21, . . . , x2n)′ andX = (x1, x2).
Let DS

(
β, (X ′X)−1

)
= s′(y − Xβ)X(X ′X)−1X ′s(y − Xβ). In Figure 3, we compute the sim-

ulatedp-value functionp̃DS

N (β0) for testingH0(β0) on a grid of values ofβ0, usingN replicates
of the sign vector.̃pDS

N (β0) allows one to construct simultaneous confidence sets forβ = (β1, β2)
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(a) Example 1: well identified case
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(b) Example 2: misspecified case

Figure 2. Simulatedp-value functions based on SST and SF

with any level. By construction, the confidence regionC1−α(β) defined as

C1−α(β) = {β|p̃DS

N (β0) ≥ α}, (3.7)

has level1 − α [see Dufour (2006)]. Hence, by construction,C1−α(β) corresponds to the intersec-
tion of the horizontal plan at ordinateα with the envelope of̃pDS

N (β0).
For higher dimensions (p > 2), a complete graphical representation is not available anymore.

However, one can consider projection-based realizedp-value functions for each individual compo-
nent of the parameter of interest in a similar way than projection-based confidence intervals. For
this, we apply the general strategy of projection on the complete simultaneousp-value function. The
projected-based realizedp-value function for the componentβ1 is given by:

Proj.p̃β1

N (β1
0) = max

β2
0∈R

p̃DS

N [(β1
0, β

2
0)]. (3.8)

Figure 4 presents projection-based confidence intervals for the individual parameters of the previous
2-dimensional example.[−.22, .21] is a95% (conservative) confidence interval forβ1. [−.38, .02]
is a95% (conservative) confidence interval forβ2. Testingβ1 = 0 is accepted at5% with p-value
1.0. Testingβ2 = 0 is accepted at5% with p-value.06.

Controlled inference using simulated confidence distributions and realizedp-values. Simulated
confidence distribution and realizedp-values are Monte Carlo-based tools. Hence derived tests
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Figure 3. Simulatedp-value functions based on SF (n = 200, N = 9999).
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Figure 4. Projection-basedp-values.
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(a) Projection-basedpvalues forβ1
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(b) Projection-basedpvalues forβ2

control the nominal size only forα’s such thatα(N + 1) ∈ N; see Dufour (2006):

P [p̃DS

N (β0) ≤ α] = α ∀α such thatα(N + 1) ∈ N.

If α(N + 1) /∈ N, only bounds on the significance level are known, but they arevery close toα
whenN is sufficiently large:

I(α(N + 1) − 1)

N + 1
≤ P [p̃DS

N (β0) ≤ α] < α ∀α such thatα(N + 1) /∈ N.

Contrary to tests, simulated confidence distributions and realizedp-values are not evaluated at a
given significance levelα but rather on a range of significance levels(α1, . . . , αA). Hence, one
must choose carefullyN the number of replicates in order to control the significancelevel for all
the αi’s, i.e. chooseN sufficiently large to have(N + 1)αi ∈ N, ∀αi ∈ (α1, . . . , αA). In the
previous illustrations,N = 9999 which insures that the significance levels are controlled at.0001.

4. Sign-based estimators

Sign-based estimators complete the above system of inference. Intuition suggests to consider values
with the highest confidence degree,i.e, with the highestp-values. Estimators obtained by that sort
of test inversion constitute multidimensional extensionsof the Hodges-Lehmann principle.
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4.1. Sign-based estimators as maximizers of ap-value function

Hodges and Lehmann (1963) presented a general principle to derive estimators by test inversion; see
also Johnson, Kotz and Read (1983). Supposeµ ∈ R andT (µ0,W ) is a statistic for testingµ = µ0

againstµ > µ0 based on the observationsW . Suppose further thatT (µ,W ) is nondecreasing in
the scalarµ. Given a known central value ofT (µ0,W ), saym(µ0) [for exampleEW T (µ0,W )],
the test rejectsµ = µ0 whenever the observedT is larger than, say,m(µ0). If that is the case, one
is inclined to prefer higher values ofµ. The reverse holds when testing the opposite. Ifm(µ0) does
not depend onµ0 [m(µ0) = m0], an intuitive estimator ofµ (if it exists) is given byµ∗ such that
T (µ∗,W ) equalsm0 (or is very close tom0). µ∗ may be seen as the value ofµ which is most
supported by the observations.

This principle can be directly extended to multidimensional parameter setups throughp-value
functions. Letβ ∈ R

p. Consider testingH0(β0) : β = β0 versusH1(β0) : β = β1 with the
positive statisticT . A test based onT rejectsH0(β0) whenT (β0) is larger than a certain critical
value that depends on the test level. The estimator ofβ is chosen as the value ofβ least rejected
when the levelα of the test increases. This corresponds to the highestp-value. If the associated
p-value forH0(β0) is p(β0) = G

(
DS(β0)|β0

)
, whereG(x|β0) is the survival function ofDS(β0),

i.e. G(x|β0) = P[DS(β0) > x], the set

M1 = arg max
β∈Rp

p(β) (4.1)

constitutes a set of Hodges-Lehmann-type estimators. HL-type estimators maximize thep-value
function. There may not be a unique maximizer. In that case, any maximizer is consistent with the
data.

4.2. Sign-based estimators as solutions of a nonlinear generalized least-squares
problem

When the distribution ofT (β0) and the correspondingp-value function do not depend on the tested
value β0, maximizing thep-value is equivalent to minimizing the statisticT (β0). This point is
stated in the following proposition. Let us denoteF̄ (x|β0) the distribution ofT (β0) whenβ = β0

and assume this distribution is invariant toβ (Assumption 4.1).

Assumption 4.1 INVARIANCE OF THE DISTRIBUTION FUNCTION.

F̄ (x|β0) = F̄ (x) ∀x ∈ R
+, ∀β0 ∈ R

p.

Let us define
M1 = argmax

β∈Rp

p(β). (4.2)

M2 = arg min
β∈Rp

T (β). (4.3)

Then, the following proposition holds.
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Proposition 4.1 If Assumption 4.1 holds, thenM1 = M2 with probability one.

Maximizing p(β) is equivalent (in probability) to minimizingT (β) if Assumption 4.1 holds.
Under the mediangale Assumption 2.2, any sign-based statistic DS does satisfy Assumption 4.1.
Consequently,

β̂n(Ωn) ∈ arg min
β∈Rp

s′(Y − Xβ)XΩn

(
s(Y − Xβ), X

)
X ′s(Y − Xβ) = M2(Y,X,DΩn

S ) (4.4)

equals (with probability one) a Hodges-Lehmann estimator based onDS(Ωn, β). SinceDS(Ωn, β)
is non-negative, problem (4.4) always possesses at least one solution. As signs can only take 3
values, for fixedn, the quadratic function can take a finite number of values, which entails the
existence of the minimum. If the solution is not unique, one may add a choice criterion. For
example, one can choose the smallest solution in terms of a norm or use a randomization. Under
conditions of point identification, any solution of (4.4) isa consistent estimator.

In models with sets of observationally equivalent values ofβ, any inference approach relying on
the consistency of a point estimator (which assumes point identification), gives misleading results
whereas a whole estimator set remains informative. The approach of Chernozhukov, Hong and
Tamer (2007) can be applied here. Let us remind that the MonteCarlo sign-based inference method
[Coudin and Dufour (2009)] does not rely on identification conditions and leads to valid results in
any case.

The sign-based estimators studied by Boldin et al. (1997) are solutions of

β̂n(Ip) ∈ argmin
β∈Rp

s′(Y − Xβ)XX ′s(Y − Xβ) = arg min
β∈R

SB(β), (4.5)

and

β̂n((X ′X)−1) ∈ arg min
β∈ R

p
s′(Y − Xβ)X(X ′X)−1X ′s(Y − Xβ) = arg min

β∈R

SF (β). (4.6)

For heteroskedastic independent disturbances, we introduce weighted versions of sign-based esti-
mators that can be more efficient than the basic ones defined in(4.5) or (4.6). Weighted sign-based
estimators are sign-based analogues to weighted LAD estimator [see Zhao (2001)]. The weighted
LAD estimator is given by

βWLAD
n = argmin

β∈Rp

∑

i

di|yi − x′
iβ|. (4.7)

The weighted sign-based estimators are solutions of

β̂
DX
n ∈ argmin

β∈Rp

s′(Y − Xβ)X̃(X̃ ′X̃)−1X̃ ′D′s(Y − Xβ) (4.8)
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whereX̃ = diag(d1, . . . , dn)X and(di), i = 1, . . . , n ∈ R
+∗. Weighted sign-based estimators

that involve optimal estimating functions in the sense of Godambe (2001) are solutions of

β̂
DX∗

n ∈ argmin
β∈Rp

s′(Y − Xβ)X∗(X∗′X∗)−1X∗′D′s(Y − Xβ) (4.9)

whereX̃ = diag
(
f1(0|X), . . . , fn(0|X)

)
X andft(0|X), t = 1, . . . , n, are the conditional distur-

bance densities evaluated at zero. The inherent problem of such a class of estimators is to provide
good approximations offi(0|X)’s. Densities of normal distributions can be used.

4.3. Sign-based estimators as GMM estimators

Sign-based estimators have been interpreted in the literature as GMM estimators exploiting the or-
thogonality condition between the signs and the explanatory variables [see Honore and Hu (2004)].
In our opinion, a strictly GMM interpretation hides the linkwith the testing theory. That is the rea-
son why we first introduced sign-based estimators as Hodges-Lehmann estimators. The quadratic
form (4.4) refers to quite unusual moment conditions. The sign transformation evacuates the un-
known parameters that affect the error distribution. It validates nonparametric finite-sample-based
inference when mediangale Assumption holds. However, in settings where only the sign-moment
condition 2.1 is satisfied, the GMM interpretation of sign-based estimators still applies and entails
useful extensions.

For autocorrelated disturbances, an estimator based on a HAC sign-based statisticDS(β, Ĵ−1
n )

can be used:

β̂n(Ĵ−1
n ) ∈ arg min

β∈Rp
s′(Y − Xβ)X[Ĵn(s(Y − Xβ),X)]−1X ′s(Y − Xβ), (4.10)

whereĴn(s(Y − Xβ),X) accounts for the dependence among the signs and the explanatory vari-
ables. β appears twice, first in the constrained signs, second in the weight matrix. In practice,
optimizing (4.10) requires one to invert a new matrixĴn for each value ofβ whereas problem (4.6)
only requires one inversion ofX ′X. In practice, this numerical problem may quickly become cum-
bersome similarly to continuously updating GMM. We advocate to use a two-step method: first,
solve (4.6) and obtain̂βn((X ′X)−1); compute then̂J−1

n

(
s(Y − Xβ̂n((X ′X)−1)),X

)
and finally

solve,

β̂
2S
n (Ĵ−1

n ) ∈ arg min
β∈Rp

s′(Y − Xβ)X[Ĵn(s(Y − Xβ̂n),X)]−1X ′s(Y − Xβ). (4.11)

The 2-step estimator is not a Hodges-Lehmann estimator anymore. However, it is still consistent and
share some interesting finite-sample properties with classical sign-based estimators. The properties
of sign-based estimators are studied in the next section.
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5. Finite-sample properties of sign-based estimators

In this section, finite sample properties of sign-based estimators are studied. Sign-based estimators
share invariance properties with the LAD estimator and are median-unbiased if the disturbance
distribution is symmetric and some additional assumptionson the form of the solution set. The
topology of the argmin set of the optimization problem 4.4 does not possess a simple structure. In
some cases it is reduced to a single point like the empirical median of2p + 1 observations. In other
cases, it is a set. More generally, the argmin set is a union ofconvex sets but it is nota priori either
convex nor connected. To see that it is a union of convex sets just remark that the reciprocal image
of n fixed signs is convex.

5.1. Invariance

Sign-based estimators share some attractive equivarianceproperties with LAD and quantile estima-
tors [see Koenker and Bassett (1978)]. It is straightforward to see that the following proposition
holds.

Proposition 5.1 INVARIANCE. If β̂(Y,X) ∈ M2(Y,X,DΩn

S ), i.e. is a solution of (4.4), then

λβ̂(Y,X) ∈ M2(λY,X,DΩn

S ), ∀λ ∈ R (5.1)

β̂(Y,X) + γ ∈ M2(Y + Xγ,X,DΩn

S ), ∀γ ∈ R
p (5.2)

A−1β̂(Y,X) ∈ M2(Y,XA,DΩn

S ), for any nonsingulark × k matrixA. (5.3)

To prove this property, it is sufficient to write down the different optimization problems. Equa-
tion (5.1) states a form of scale invariance: ify is rescaled by a certain factor,β̂, rescaled by the
same one is solution of the transformed problem. Equation (5.2) states a form of location invariance,
while (5.3) states a reparameterization invariance with respect to the design matrix: the transforma-
tion on β̂ is given by the inverse of the reparameterization scheme.

5.2. Median unbiasedness

Moreover, if the disturbance distribution is assumed to be symmetric and the optimization problems
to have a unique solution then sign-estimators are median unbiased.

Proposition 5.2 MEDIAN UNBIASEDNESS. If u ∼ −u and the sign-based estimatorβ̂ is the
unique solution of minimization problem (4.4), thenβ̂ is median unbiased, that is,

Med(β̂ − β0) = 0

whereβ0 is the true value.
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6. Asymptotic properties

We demonstrate consistency when the parameter is identifiedunder weaker assumptions than the
LAD estimator, which validates the use of sign-based estimators even in settings when the LAD
estimator fails to converge. Finally, sign-based estimators are asymptotically normal. For results on
the LAD estimator asymptotic theory, the reader is referredamongst others to Bassett and Koenker
(1978), Knight (1989), Phillips (1991), Pollard (1991), Weiss (1991), Fitzenberger (1997), Knight
(1998), El Bantli and Hallin (1999), or Koenker (2005).

6.1. Identification and consistency

We show that the sign-based estimators (4.4) and (4.11) are consistent under the following set of
assumptions:

Assumption 6.1 M IXING . {Wt = (yt, x
′
t)}t=1,2,... is α-mixing of size−r/(r − 1) with r > 1.

Assumption 6.2 BOUNDEDNESS. xt = (x1t, . . . , xpt)
′ and E|xht|r+1 < ∆ < ∞, h =

1, . . . , p, t = 1, . . . , n, ∀n ∈ N.

Assumption 6.3 COMPACTNESS. β ∈ Int(Θ), whereΘ is a compact subset ofR
p.

Assumption 6.4 REGULARITY OF THE DENSITY.

1. There are positive constantsfL andp1 such that, for alln ∈ N,

P [ft(0|X) > fL] > p1, ∀t = 1, . . . , n, a.s.

2. ft(.|X) is continuous, for alln ∈ N for all t, a.s.

Assumption 6.5 POINT IDENTIFICATION CONDITION. ∀δ > 0,∃τ > 0 such that

lim inf
n→∞

1

n

∑

t

P [|x′
tδ| > τ |ft(0|x1, . . . , xn) > fL] > 0.

Assumption 6.6 UNIFORMLY POSITIVE DEFINITE WEIGHT MATRIX. Ωn(β) is symmetric defi-
nite positive for allβ in Θ.

Assumption 6.7 LOCALLY POSITIVE DEFINITE WEIGHT MATRIX. Ωn(β) is symmetric definite
positive for allβ in a neighborhood ofβ0.

Then, we can state the consistency theorem. The assumptionsare interpreted just after.
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Theorem 6.1 CONSISTENCY. Under model(2.1) with the assumptions 2.1 and 6.1-6.6, any
sign-based estimator of the type,

β̂n(Ωn) ∈ argmin
β∈Rp

s′(Y − Xβ)XΩn

(
s(y − Xβ),X

)
X ′s(Y − Xβ) (6.1)

or
β̂

2S
n (Ωn) ∈ argmin

β∈Rp

s′(Y − Xβ)XΩ̂n

(
s(y − Xβ̂),X

)
X ′s(Y − Xβ), (6.2)

whereβ̂ stands for any (first step) consistent estimator ofβ, is consistent.̂β
2S
n defined in equation

(6.2) is still consistent if Assumption 6.6 is replaced by Assumption 6.7.

Let us interpret precisely Assumptions 6.1-6.7 and comparethem to the ones required for LAD
and quantile estimator consistency [see Fitzenberger (1997) and Weiss (1991) for general setups].
Assumptions on mixing (6.1), compactness (6.3) and point identification (6.4, 6.5, 6.6) are classical.
The mixing setup 6.1 is needed to apply a generic weak law of large numbers [see Andrews (1987)
and White (2001)]. It was used by Fitzenberger (1997) to showLAD and quantile estimator con-
sistency with stationary linearly dependent processes. Itcovers, among other processes, stationary
ARMA disturbances with continuously distributed innovations. Point identification is provided by
Assumptions 6.5 and 6.4. Assumption 6.5 is similar to Condition ID in Weiss (1991). Assumption
6.4 is usual in the LAD estimator asymptotics.5 It is analogous to Fitzenberger (1997)’s conditions
(ii.b and c) and Weiss (1991)’s CD condition. It implies thatthere is enough variation around zero to
identify the median. It restricts the setup for some “bounded” heteroskedasticity in the disturbance
process but not in the usual (variance-based) way. So-called diffusivity, 1

2f(0) , can indeed be seen as
an alternative measure of dispersion adapted to median-unbiased estimators. It measures the verti-
cal spread of a density rather than its horizontal spread andis involved in Cramér-Rao-type lower
bound for median-unbiased estimators [see Sung, Stangenhaus and David (1990) and So (1994)].
Besides, in Assumptions 6.6 and 6.7, the weight matrixΩn is supposed to be invertible for estima-
tors obtained in one step whereas only a local invertibilityis needed for two-step sign-estimators.
One difference with the LAD asymptotic properties relies onAssumption 6.2. For sign consistency,
only the second-order moments ofxt have to be finite, which differs from Fitzenberger (1997) who
supposed the existence of at least third-order moments. Andabove all, we do not assume the ex-
istence of second-order moments on the disturbancesut. The disturbances indeed appear in the
objective function only through their sign transforms which possess finite moments up to any order.
Consequently, no additional restriction should be imposedon the disturbance process (in addition
to regularity conditions on the density). Those points willentail a more general CLT than the one
stated for the LAD/quantile estimators in Fitzenberger (1997) and Weiss (1991). The only works
we are aware of that study LAD estimators properties in case of infinite variance errors are those
of Knight (1989) and Phillips (1991) who derive LAD asymptotic properties for an autoregressive
model with infinite variance errors, which are in the domain of attraction of a stable law.

5Assumption 6.4 can be slightly relaxed covering error termswith mass point if the objective function involves ran-
domized signs instead of usual signs.
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6.2. Asymptotic normality

Sign-based estimators are asymptotically normal. This also holds under weaker assumptions than
the ones needed for LAD estimator asymptotic normality as presented in Weiss (1991) and Fitzen-
berger (1997). Sign-based estimators are specially adapted for heavy-tailed disturbances that may
not possess finite variance. The assumptions we need are the following ones.

Assumption 6.8 UNIFORMLY BOUNDED DENSITIES. ∃fU < +∞ such that,∀n ∈ N,∀λ ∈ R,

sup
{t∈(1,...,n)}

|ft(λ|x1, . . . , xn)| < fU , a.s.

Under the conditions 2.1, 6.1, 6.2 and 6.8, we can defineL(β), the derivative of the limiting
objective function atβ:

L(β) = lim
n→∞

1

n

∑

t

E
[
xtx

′
tft

(
x′

t(β − β0)|x1, . . . , xn

)]
= lim

n→∞
Ln(β). (6.3)

where

Ln(β) =
1

n

∑

t

E
[
xtx

′
tft

(
x′

t(β − β0)|x1, . . . , xn

)]
. (6.4)

The other assumptions are merely used to show asymptotic normality.

Assumption 6.9 M IXING WITH r > 2. {Wt = (yt, x
′
t)}t=1,2,... is α-mixing of size−r/(r − 2)

with r > 2.

Assumption 6.10 DEFINITE POSITIVENESS OFLn. Ln(β0) is positive definite uniformly inn.

Assumption 6.11 DEFINITE POSITIVENESS OFJn. Jn = E
[

1
n

∑n
t,s s(ut)xtx

′
ss(us)

]
is positive

definite uniformly inn and converges to a definite positive symmetric matrixJ .

Then, we have the following result.

Theorem 6.2 ASYMPTOTIC NORMALITY. Under the assumptionds(2.1), 6.1-6.6 and 6.9-6.11,
we have:

S−1/2
n

√
n(β̂n(Ωn) − β0)

d→ N(0, Ip) (6.5)

where
Sn = [Ln(β0)ΩnLn(β0)]

−1Ln(β0)ΩnJnΩnLn(β0)[Ln(β0)ΩnLn(β0)]
−1

and

Ln(β0) =
1

n

∑

t

E
[
xtx

′
tft

(
0|x1, . . . , xn

)]
. (6.6)

Remark that whenΩn = Ĵ−1
n , we have

[Ln(β0)Ĵ
−1
n Ln(β0)]

−1/2√n(β̂n(Ĵ−1
n ) − β0)

d→ N(0, Ip). (6.7)
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This corresponds to the use of optimal instruments and quasi-efficient estimation.̂β(Ĵ−1
n ) has the

same asymptotic covariance matrix as the LAD estimator. Thus, performance differences between
the two estimators correspond to finite-sample features. This result contradicts the generally ac-
cepted idea that sign procedures involve a heavy loss of information. There is no loss induced by
the use of signs instead of absolute values.

Note again that we do not require that the disturbance process variance be finite. We only assume
that the second-order moments ofX are finite and the mixing property of{Wt, t = 1, . . .} holds.
This differs from usual assumptions for LAD asymptotic normality.6 This difference comes from
the fact that absolute values of the disturbance process arereplaced in the objective function by their
signs. Since signs possess finite moments at any order, one sees easily that a CLT can be applied
without any further restriction. Consequently, asymptotic normality, such as consistency, holds
for heavy-tailed disturbances that may not possess finite variance. This is an important theoretical
advantage of sign-based rather than absolute value-based estimators and,a fortiori, rather than
least squares estimators. Estimators for which asymptoticnormality holds on bounded asymptotic
variance assumption (for example OLS) are not accurate in heavy-tail settings because the variance
is not a measure of dispersion adapted to those settings. Estimators, for which the asymptotic
behavior relies on other measures of dispersion, like the diffusivity, help one out of trouble.

The form of the asymptotic covariance matrix simplifies under stronger assumptions. When the
signs are mutually independent conditional onX [mediangale Assumption 2.2], botĥβn((X ′X)−1)

and ˆβ(J−1
n ) are asymptotically normal with variance

Sn = [Ln(β0)]
−1E

[
(1/n)

n∑

t=1

xtx
′
t

]
[Ln(β0)]

−1.

If u is ani.i.d. process and is independent ofX, thenft(0) = f(0), and

Sn =
1

4f(0)2
E(xtx

′
t)
−1. (6.8)

In the general case,ft(0) is a nuisance parameter even if condition 6.8 implies that itcan be
bounded.

All the features known about the LAD estimator asymptotic behavior apply also for theSHAC
estimator; see Boldin et al. (1997). For example, asymptotic relative efficiency of theSHAC (and
LAD) estimator with respect to the OLS estimator is2/π if the errors are normally distributed
N(0, σ2), butSHAC (such as LAD) estimator can have arbitrarily large ARE with respect to OLS
when the disturbance generating process is contaminated byoutliers.

6.3. Asymptotic or projection-based confidence sets?

In section 4, we introduced sign-based estimators as Hodges-Lehmann estimators associated with
sign-based statistics. By linking them with GMM settings, we then derived asymptotic normal-

6See Fitzenberger (1997) for the derivation of the LAD asymptotics in a similar setup and Bassett-Koenker(1978) or
Weiss (1991) for a derivation of the LAD asymptotics under sign independence.
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ity. We stressed that sign-based estimator asymptotic normality holds under weaker assumptions
than the ones needed for the LAD estimator. Therefore, sign-based estimator asymptotic normality
enables one to construct asymptotic tests and confidence intervals. Thus, we have two ways of mak-
ing inference with signs: we can use the Monte Carlo (finite-sample) based method described in
Coudin and Dufour (2009)- see subsection 2.2- and the classical asymptotic method. Let us list here
the main differences between them. Monte Carlo inference relies on the pivotality of the sign-based
statistic. The derived tests are valid (with controlled level) for any sample size if the mediangale
Assumption 2.2 holds. When only the sign moment condition 2.1 holds, the Monte Carlo inference
remains asymptotically valid. Asymptotic test levels are controlled. Besides, in simulations, the
Monte Carlo inference method appears to perform better in small samples than classical asymptotic
methods, even if its use is only asymptotically justified [see Coudin and Dufour (2009)]. Never-
theless, that method has an important drawback: its computational complexity. On the contrary,
classical asymptotic methods which yield tests with controlled asymptotic level under the sign mo-
ment condition 2.1 may be less time consuming. The choice between both is mainly a question
of computational capacity. We point out that classical asymptotic inference greatly relies on the
way the asymptotic covariance matrix, that depends on unknown parameters (densities at zero), is
treated. If the asymptotic covariance matrix is estimated thanks to a simulation-based method (such
as the bootstrap) then the time argument does not hold anymore. Both methods would be of the
same order of computational complexity.

7. Simulation study

In this section, we compare the performance of the sign-based estimators with the OLS and LAD
estimators in terms of asymptotic bias and RMSE.

7.1. Simulation setup

We use estimators derived from the sign-based statisticsDS

(
β, (X ′X)−1

)
andDS(β, Ĵ−1

n ) when
a correction is needed for linear serial dependence. We consider a set of general DGP’s to illustrate
different classical problems one may encounter in practice. We use the following linear regression
model:

yt = x′
tβ0 + ut, (7.1)

wherext = (1, x2,t, x3,t)
′ andβ0 are3 × 1 vectors. We denote the sample sizen. Monte Carlo

studies are based onM generated random samples. Table 1 presents the cases considered.
In a first group of examples (A1-A4), we consider classical independent cases with bounded

heterogeneity. In a second one (B5-B8), we look at processesinvolving large heteroskedasticity
so that some of the estimators we consider may not be asymptotically normal neither consistent
anymore. Finally, the third group (C9-C11) is dedicated to autocorrelated disturbances. We wonder
whether the two-stepSHAC sign-based estimator performs better in small samples thanthe non-
corrected one.

To sum up, cases A1 and A2 presenti.i.d. normal observations without and with conditional
heteroskedasticity. Case A3 involves a sort of weak nonlinear dependence in the error term. Case
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Table 1. Simulated models.

A1: NormalHOM : (x2,t, x3,t, ut)
′

i.i.d∼ N (0, I3), t = 1, . . . , n

A2: NormalHET : (x2,t, x3,t, ũt)
′

i.i.d∼ N (0, I3)
ut = min{3, max[0.21, |x2,t|]} × ũt, t = 1, . . . , n

A3: Dep.-HET , xj,t = ρxxj,t−1 + νj
t , j = 1, 2,

ρx = .5 : ut = min{3, max[0.21, |x2,t|]} × νu
t ,

(ν2

t , ν
3

t , ν
u
t )′

i.i.d∼ N (0, I3), t = 2, . . . , n
ν2

1
andν3

1
chosen to insure stationarity.

A4: Deb. design mat.: x2,t ∼ B(1, 0.3), x3,t
i.i.d.∼ N (0, .012),

ut
i.i.d.∼ N (0, 1), xt, ut independent,t = 1, . . . , n.

B5: Cauchy dist.: (x2,t, x3,t)
′ ∼ N (0, I2),

ut
i.i.d.∼ C,xt, ut, independent,t = 1, . . . , n.

B6: Stoc. Volat.: (x2,t, x3,t)
′

i.i.d.∼ N (0, I2), ut = exp(wt/2)ǫt with

wt = 0.5wt−1 + vt, whereǫt
i.i.d.∼ N (0, 1), vt

i.i.d.∼ χ
2
(3),

xt, ut, independent,t = 1, . . . , n.

B7: Nonstat. (x2,t, x3,t, ǫt)
′

i.i.d.∼ N (0, I3), t = 1, . . . , n,
GARCH(1,1): ut = σtǫt, σ2

t = 0.8u2

t−1
+ 0.8σ2

t−1
.

B8: Exp. Var.: (x2,t, x3,t, ǫt)
′

i.i.d.∼ N (0, I3), ut = exp(.2t)ǫt.

C9: AR(1)-HOM , (x2,t, x3,t, ν
u
t )′ ∼ N (0, I3), t = 2, . . . , n,

ρu = .5 : ut = ρuut−1 + νu
t ,

(x2,1, x3,1)
′ ∼ N (0, I2), νu

1
insures stationarity.

C10: AR(1)-HET , xj,t = ρxxj,t−1 + νj
t , j = 1, 2,

ρu = .5, : ut = min{3, max[0.21, |x2,t|]} × ũt,
ρx = .5 ũt = ρuũt−1 + νu

t ,

(ν2

t , ν
3

t , ν
u
t )′

i.i.d∼ N (0, I3), t = 2, . . . , n
ν2

1
, ν3

1
andνu

1
chosen to insure stationarity.

C11: AR(1)-HOM , (x2,t, x3,t, ν
u
t )′ ∼ N (0, I3), t = 2, . . . , n,

ρu = .9 : ut = ρuut−1 + νu
t ,

(x2,1, x3,1)
′ ∼ N (0, I2), νu

1
insures stationarity.
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A4 presents a very unbalanced scheme in the design matrix (a case when the LAD estimator is
known to perform badly). Cases B5, B6, B7 and B8 are other cases of long tailed errors or arbi-
trary heteroskedasticity and nonlinear dependence. CasesC9 to C11 illustrate different levels of
autocorrelation in the error term with and without heteroskedasticity.

7.2. Bias and RMSE

We give biases and RMSE of each parameter of interest in Table2 and we report a norm of these
three values.n = 50 andS = 1000. These results are unconditional onX.

In classical cases (A1-A3), sign-based estimators have roughly the same behavior as the LAD
estimator, in terms of bias and RMSE. OLS is optimal in case A1. However, there is no important
efficiency loss or bias increase in using signs instead of LAD. Besides, if the LAD is not accurate
in a particular setup (for example with highly unbalanced explanatory scheme, case A4), the sign-
based estimators do not suffer from the same drawback. In case A4, the RMSE of the sign-based
estimator is notably smaller than those of the OLS and the LADestimates.

For setups with strong heteroskedasticity and nonstationary disturbances (B5-B8), we see that
the sign-based estimators yield better results than both LAD and OLS estimators. Not far from the
(optimal) LAD in case of Cauchy disturbances (B5), the signsestimators are the only estimators
that stay reliable with nonstationary variance (B6-B8). Noassumption on the moments of the error
term is needed for sign-based estimators consistency. All that matters is the behavior of their signs.

When the error term is autocorrelated (C9-C11), results aremixed. When a moderate linear
dependence is present in the data, sign-based estimators give good results (C9, C10). But when the
linear dependence is stronger (C11), that is no longer true.TheSHAC sign-based estimator does
not give better results than the non-corrected one in these selected examples.

To conclude, sign-based estimators are robust estimators much less sensitive than the LAD
estimator to various unbalanced schemes in the explanatoryvariables and to heteroskedasticity.
They are particularly adequate when an amount an heteroskedasticity or nonlinear dependence is
suspected in the error term, even if the error term fails to bestationary. Finally, the HAC correction
does not seem to increase the performance of the estimator. Nevertheless, it does for tests. We show
in Coudin and Dufour (2009) that using a HAC-corrected statistic allows for the asymptotic validity
of the Monte Carlo inference method and improves the test performance in small samples.

8. Empirical applications

In this section, we go back to the two illustrations presented in Coudin and Dufour (2007, 2009)
where sign-based tests were derived, with now estimation inmind. The first application is dedicated
to estimate a drift on the Standard and Poor’s Composite Price Index (S&P), 1928-1987. In the
second one, we search a robust estimate of the rate ofβ-convergence between output levels across
U.S. States during the 1880-1988 period using Barro and Sala-i-Martin (1991) data.
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Table 2. Simulated bias and RMSE.

n = 50 OLS LAD SF 2SSHAC
S = 1000 Bias RMSE Bias RMSE Bias RMSE Bias RMSE

A1: β
0

.003 .142 .002 .179 .002 .179 .004 .178
β

1
.003 .149 .006 .184 .004 .182 .004 .182

β
2

−.002 .149 −.007 .186 −.006 .185 −.007 .183
||β||* .004 .254 .009 .316 .007 .315 .009 .313

A2: β
0

−.003 .136 .000 .090 −.000 .089 −.000 .089
β

1
−.0135 .230 −.006 .218 −.010 .218 −.010 .218

β
2

.002 .142 −.001 .095 −.001 .092 −.001 .092
||β|| .014 .303 .007 .254 .010 .253 .010 .253

A3: β
0

.022 .167 .018 .108 .025 .107 .023 .107
β

1
−1.00 .228 .005 .215 .003 .214 .002 .215

β
2

.001 .150 .005 .105 .007 .104 .007 .105
||β|| .022 .320 .019 .263 .026 .261 .024 .262

A4: β
0

−.001 .174 .007 .2102 .010 .2181 .008 .2171
β

1
−.016 .313 −.011 .375 −.021 .396 −.021 .394

β
2

−.100 14.6 .077 18.4 .014 7.41 .049 7.40
||β|| .101 14.6 .078 18.5 .027 7.42 .054 7.41

B5: β
0

16.0 505 .001 .251 .004 .248 .003 .248
β

1
−3.31 119 .015 .264 .020 .265 .020 .265

β
2

−2.191 630 .000 .256 .003 .258 .001 .258
||β|| 26.0 817 .015 .445 .021 .445 .020 .445

B6: β
0

−.908 29.6 −1.02 27.4 .071 2.28 .083 2.28
β

1
2.00 37.6 3.21 68.4 .058 2.38 .069 2.39

β
2

1.64 59.3 2.59 91.8 −.101 2.30 −.089 2.29
||β|| 2.73 76.2 4.25 118 .136 4.02 .139 4.02

B7: β
0

−127 3289 −.010 7.85 −.008 3.16 −.028 3.17
β

1
−81.4 237 .130 11.2 −.086 3.80 −.086 3.823

β
2

−31.0 1484 −.314 12.0 −.021 3.606 −.009 3.630
||β|| 154 4312 .340 18.2 .089 6.12 .091 6.15

B8: β
0

< −1010 > 1010 < −109 > 1010 .312 5.67 .307 5.67
β

1
> 1010 > 1010 > 109 > 1010 .782 5.40 .863 5.46

β
2

< −1010 > 1010 < −109 > 1010 .696 5.52 .696 5.55
||β|| > 10

10 > 10
10 > 10

10 > 10
10

1.09 9.58 1.15 9.63

C9: β
0

.005 .279 .001 .308 .003 .309 .004 .311
β

1
−.002 .163 −.005 .201 −.004 .200 −.005 .199

β
2

.001 .165 −.004 .204 .003 .198 .002 .198
||β|| .006 .363 .007 .420 .006 .418 .006 .419

C10: β
0

−.013 .284 −.010 .315 −.015 .314 −.014 .314
β

1
−.009 .182 −.009 .220 −.011 .218 −.011 .219

β
2

.008 .189 .011 .222 .007 .215 .007 .215
||β|| .018 .387 .018 .444 .020 .439 .019 .439

C11: β
0

.070 1.23 −.026 .308 .058 1.26 .053 1.27
β

1
−.000 .268 .005 .214 −.005 .351 −.008 .354

β
2

.001 .273 −.004 .210 .002 .361 −.001 .361
||β|| .070 1.29 .027 .430 .059 1.36 .054 1.37

* ||.|| stands for the Euclidean norm.
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8.1. Drift estimation with stochastic volatility in the error term

We estimate a constant and a drift on the Standard and Poor’s Composite Price Index (SP), 1928-
1987. That process is known to involve a large amount of heteroskedasticity and have been used by
Gallant, Hsieh and Tauchen (1997) and Dufour and Valéry (2006, 2009) to fit a stochastic volatility
model. Here, we are interested in robustestimation without modeling the volatility in the distur-
bance process. The data set consists in a series of 16,127 daily observations ofSPt, then converted
in price movements,yt = 100[log(SPt)− log(SPt−1)] and adjusted for systematic calendar effects.
We consider a model involving a constant and a drift,

yt = a + bt + ut, t = 1, . . . , 16127, (8.1)

and we allow that{ut : t = 1, . . . , 16127} exhibits stochastic volatility or nonlinear heteroskedas-
ticity of unknown form. White and Breusch-Pagan tests for heteroskedasticity both reject ho-
moskedasticity at1%.7

We compute both the basicSF sign-based estimator and theSHAC version with the two-step
method. They are compared with the LAD and OLS estimates. Then, we redo a similar experiment
on two subperiods: on the year 1929 (291 observations) and the last 90 days of 1929, which roughly
corresponds to the four last months of 1929 (90 observations). Due to the financial crisis, one may
expect data to involve an extreme amount of heteroskedasticity in that period of time. We wonder at
which point that heteroskedasticity can bias the subsampleestimates. The Wall Street crash occurred
between October, 24th (Black Thursday) and October, 29th (Black Tuesday). Hence, the second
subsample corresponds to the period just before the krach (September), the krach period (October)
and the early beginning of the Great Depression (November and December). Heteroskedasticity
tests reject homoskedasticity for both subsamples.8

In Table 3, we report estimates and recall the95% confidence intervals fora and b obtained
by the finite-sample sign-based method (SF andSHAC);9 and by moving block bootstrap (LAD
and OLS). The entire set of sign-based estimators is reported, i.e., all the minimizers of the sign
objective function.

First, we note that the OLS estimates are importantly biasedand are greatly unreliable in the
presence of heteroskedasticity. Hence, they are just reported for comparison sake. Presenting the
entire sets of sign-based estimators enables us to compare them with the LAD estimator. In this
example, LAD and sign-based estimators yield very similar estimates. The value of the LAD esti-
mator is indeed just at the limit of the sets of sign-based estimators. This does not mean that the
LAD estimator is included in the set of sign-based estimators, but, there is a sign-based estimator
giving the same value as the LAD estimate for a certain individual component (the second compo-
nent may differs). One easy way to check this is to compare thetwo objective functions evaluated at
the two estimates. For example, in the 90 observation sample, the sign objective function evaluated
at the basic sign-estimators is4.75×10−3, and at the LAD estimate5.10×10−2; the LAD objective

7See Coudin and Dufour (2009): White: 499 (p-value=.000) ; BP: 2781 (p-value=.000).
81929: White: 24.2,p-values: .000 ; BP: 126,p-values: .000; Sept-Oct-Nov-Dec 1929: White: 11.08,p-values: .004;

BP: 1.76,p-values: .18.
9see Coudin and Dufour (2009)
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Table 3. Constant and drift estimates.

Whole sample Subsamples
Constant parameter (a) (16120obs) 1929(291obs) 1929(90obs)

Set of basic sign-based .062 (.160, .163)∗ (−.091, .142)
estimators (SF) [−.007, .105] ∗ ∗ [−.226, .521] [−1.453, .491]

Set of 2-step sign-based .062 (.160, .163) (−.091, .142)
estimators (SHAC) [−.007, .106] [−.135, .443] [−1.030, .362]

LAD .062 .163 −.091
[.008, .116] [−.130, .456] [−1.223, 1.040]

OLS −.005 .224 −.522
[−.056, .046] [−.140, .588] [−1.730, .685]

Drift parameter ( b) × 10−5 ×10−2 ×10−1

Set of basic sign-based (−.184,−.178) (−.003, .000) (−.097,−.044)
estimators (SF) [−.676, .486] [−.330, .342] [−.240, .305]

Set of 2-step sign-based (−.184,−.178) (−.003, .000) (−.097,−.044)
estimators (SHAC) [−.699, .510] [−.260, .268] [−.204, .224]

LAD −.184 .000 −.044
[−.681, .313] [−.236, .236] [−.316, .229]

OLS .266 −.183 .010
[−.228, .761] [−.523, .156] [−.250, .270]

* Interval of admissible estimators (minimizers of the signobjective function).
** 95% confidence intervals.

function evaluated at the LAD estimate is210.4 and at one of the sign-based estimates210.5. Both
are close but different.

Finally, two-step sign-based estimators and basic sign-based estimators yield the same esti-
mates. Only confidence intervals differ. Both methods are indeed expected to give different results
especially in the presence of linear dependence.

8.2. A robust sign-based estimate of convergence across U.S. states

One field suffering from both a small number of observations and possibly very heterogeneous
data is cross-sectional regional data sets. Least squares methods may be misleading because a few
outlying observations may drastically influence the estimates. Robust methods are greatly needed
in such cases. Sign-based estimators are robust (in a statistical sense) and are naturally associated
with a finite-sample inference. In the following, we examinesign-based estimates of the rate of
β-convergence between output levels across U.S. States between 1880 and 1988 using Barro and
Sala-i-Martin (1991) data.

In the neoclassical growth model, Barro and Sala-i-Martin (1991) estimated the rate ofβ-
convergence between levels of per capita output across the U.S. States for different time periods
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Table 4. Summary of regression diagnostics.

Period Heterosked.* Nonnormality** Influent. obs.** Possible outliers**
Basic eq. Eq Reg. Dum.

1880-1900 yes - yes - yes yes no no
1900-1920 yes yes yes yes yes yes yes (MT) yes
1920-1930 - - - - yes - no no
1930-1940 - - yes - yes yes no no
1940-1950 - - - - yes yes yes (VT) yes (VT)
1950-1960 - - - yes yes yes yes (MT) yes (MT)
1960-1970 - - - - - - no no
1970-1980 - - yes yes yes yes yes (WY) yes (WY)
1980-1988 yes - - yes yes yes yes (WY) yes (WY)

* White and Breusch-Pagan tests for heteroskedasticity areperformed. If at least one test rejects at5%

homoskedasticity, a “yes” is reported in the table, else a “-” is reported, when tests are both nonconclusive.
** Scatter plots, kernel density, leverage analysis, Studendized or standardized residuals> 3, DFbeta and
Cooks distance have been performed and lead to suspicions for nonnormality, outlier or high influential
observation presence.

between 1880 and 1988. They used nonlinear least squares to estimate equations of the form

(1/T ) ln(yi, t/yi, t−T ) = a − [ln(yi, t−T )] × [(1 − e−βT )/T ] + x′
iδ + ǫt, T

i ,

i = 1, . . . , 48, T = 8, 10 or 20, t = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1988.
Theirbasic equationdoes not include any other variables but they also consider aspecification with
regional dummies (Eq. with reg. dum.). The basic equationassumes that the 48 States share a
common per capita level of personal income at steady state while the second specification allows
for regional differences in steady state levels. Their regressions involve 48 observations and are run
for each 20-year or 10-year period between 1880 and 1988. Their results suggest aβ-convergence
at a rate somewhat above2% a year but their estimates are not stable across subperiods,and vary
greatly from -.0149 to .0431 (for thebasic equation). This instability is expected because of the
succession of troubles and growth periods in the last century. However, they may also be due to
particular observations behaving like outliers and influencing the least squares estimates. A survey
of potential data problem is performed and regression diagnostics are summarized in Table 4. It
suggests the presence of highly influential observations inall the periods but one. Outliers are
clearly identified in periods 1900-1920, 1940-1950, 1950-1960, 1970-1980 and 1980-1988.

These two effects are probably combined. We wonder which part of that variability is really due
to business cycles and which part is only due to the nonrobustness of least squares methods. Further,
we would like to have a stable estimate of the rate of convergence at steady state. For this, we use
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Table 5. Regressions for personal income across U.S. States, 1880-1988.

Period Basic equation Equation with regional dummies

βSIGN βNLLS ∗∗∗ βSIGN βNLLS ∗∗∗

1880− 1900 .0012 .0101 .0016 .0224
[−.0068, .0123]∗ [.0058, .0532]∗∗ [−.0123, .0211] [.0146, .0302]

1900− 1920 .0184 .0218 .0163 .0209
[.0092, .0313] [.0155, .0281] [−.0088, .1063] [.0086, .0332]

1920− 1930 −.0147 −.0149 −.0002 −.0122
[−.0301, .0018] [−.0249,−.0049] [−.0463, .0389] [−.0267, .0023]

1930− 1940 .0130 .0141 .0152 .0127
[.0043, .0234] [.0082, .0200] [−.0189, .0582] [.0027, .0227]

1940− 1950 .0364 .0431 .0174 .0373
[.0291, .0602] [.0372, .0490] [.0083, .0620] [.0314, .0432]

1950− 1960 .0195 .0190 .0140 .0202
[.0084, .0352] [.0121, .0259] [−.0044, .0510] [.0100, .0304]

1960− 1970 .0289 .0246 .0230 .0131
[.0099, .0377] [.0170, .0322] [−.0112, .0431] [.0047, .0215]

1970− 1980 .0181 .0198 .0172 .0119
[.0021, .0346] [−.0315, .0195] [−.0131, .0739] [−.0273, .0173]

1980− 1988 −.0081 −.0060 −.0059 −.0050
[−.0552, .0503] (.0130) [−.0472, .1344] (.0114)

* Projection-based95% CI.
** Asymptotic 95% CI.
*** Columns 2 and 4 are taken from Barro and Sala-i-Martin (1991).

robust sign-based estimation withDS

(
β, (X ′X)−1

)
. We consider the following linear equation:

(1/T ) ln(yi, t/yi, t−T ) = a + γ[ln(yi, t−T )] + x′
iδ + ǫt, T

i (8.2)

wherexi’s contain regional dummies when included, and we compute Hodges-Lehmann estimate
for β = −(1/T ) ln(γT + 1) for both specifications. We also provide95%-level projection-based
CI, asymptotic CI and projection-basedp-value functions for the parameter of interest. Results are
presented in Table 5 where Barro and Sala-i-Martin (1991) NLLS results are reported.

Sign estimates are more stable than least squares ones. Theyvary between[−.0147, .0364]
whereas least squares estimates vary between[−.0149, .0431]. This suggests that at least12% of
the least squares estimates variability between sub-periods are only due to the nonrobustness of least
squares methods. In all cases but two, sign-based estimatesare lower (in absolute values) than the
NLLS ones. Consequently, we incline to a lower value of the stable rate of convergence.

In graphics 6(a)-8(f) [see Appendix B], projection-basedp-value functions and optimal concen-
trated sign-statistics are presented for eachbasic equationover the period 1880-1988. The optimal
concentrated sign-based statistic reports the minimal value ofDS for a givenβ (letting a varying).
The projection-basedp-value function is the maximal simulatedp-value for a givenβ over admissi-
ble values ofa. Those functions enable us to perform tests onβ. 95% projection based confidence
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intervals forβ presented in Table 5 are obtained by cutting thep-value function with thep = .05
line. The sign estimate reaches the highestp-value. Remark that contrary to asymptotic methods,
the estimator is not at the middle point of any confidence interval. Besides, thep-value function
gives some hint on the degree of precision. Theβ parameter seems precisely estimated in the period
30-40 [see graphic 7(b)], whereas in the period 80-88, the same parameter is less precisely estimated
and thep-value function leads to a wider confidence intervals [see graphic 8(f)].

9. Conclusion

In this paper, we have introduced inference tools that can beassociated with the Monte Carlo based
system presented in Coudin and Dufour (2009): thep-value function (and its individual projected
versions) which gives a visual summary of all the inference available on a particular parameter,
and Hodges-Lehmann-type sign-based estimators. Thep-value function associates to each value of
the parameter vector a confidence degree. It extends the confidence distribution concept to mul-
tidimensional parameters and relies on a reinterpretationof the Fisher fiducial distributions. The
parameter values the less rejected by tests (given the sample realization and the sample size) con-
stitute Hodges-Lehmann sign-based estimators. Those estimators are associated with the highest
p-value. Hence, they are derived without referring to asymptotic conditions through the analogy
principle. However, they turn out to be equivalent (in probability) to usual GMM estimators based
on signs. We then present general properties of sign-based estimators (invariance, median unbi-
asedness) and the conditions under which consistency and asymptotic normality hold. In particular,
we show that sign-based estimators do require less assumptions on moment existence of the distur-
bances than usual LAD asymptotic theory. Simulation studies indicate that the proposed estimators
are accurate in classical setups and more reliable than usual methods (LS, LAD) when arbitrary
heterogeneity or nonlinear dependence is present in the error term even in cases that may cause
LAD or OLS consistency failure. Despite the programming complexity of sign-based methods, we
recommend combining sign-based estimators to the Monte Carlo sign-based method of inference
when an amount of heteroskedasticity is suspected in the data and when the number of available
observations is small. We present two illustrative applications of such cases. In the first one, we
estimate a drift parameter on the Standard and Poor’s Composite Price Index, using the 1928-1987
period and various shorter subperiods. In the second one, weprovide robust estimates for theβ-
convergence between the levels of per capita personal income across U.S. States occurred between
1880 and 1988.
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Appendix

A. Proofs

Proof of Proposition 4.1. We show that the setsM1 andM2 are equal with probability one. First,
we show that if̂β ∈ M2 then it belongs toM1. Second, we show that if̂β does not belong toM2,
neither it belongs toM1.
If β̂ ∈ M2 then,

DS(β̂) ≤ DS(β), ∀β ∈ R
p, (A.1)

hence
Pβ[DS(β̂) ≤ DS(β)] = 1, ∀β ∈ R

p (A.2)

and β̂ maximizes thep-value. Conversely, if̂β does not belong toM1, there is a non negligible
Borel set, sayA, such thatDS(β) < DS(β̂) on A for someβ. Then, asF̄ (x), the distribution
function ofDS is an increasing function andA is non negligible, and sincēF is independent ofβ
(Assumption 4.1),

F̄
(
DS(β)

)
< F̄

(
DS(β̂)

)
. (A.3)

Finally, equation A.3 can be written in terms ofp-values

p(β) > p(β̂), (A.4)

which implies that̂β does not belong toM2.

Proof of Proposition 5.2. Considerβ̂(y,X, u) the solution of problem (4.4) which is assumed to
be unique, letβ0 be the true value of the parameterβ and suppose thatu ∼ −u. Equation (5.1)
implies that

β̂(u,X, u) = −β̂(−u,X, u)

where both problems are assumed to have a single solution. Hence, conditional onX, we have

u ∼ −u ⇒ β̂(u,X, u) ∼ −β̂(−u,X, u) ⇒ Med
(
β̂(u,X, u)

)
= 0. (A.5)

Moreover, equation (5.2) implies that

β̂(y,X, u) = β̂(y − Xβ0,X, u) + β0

= β̂(u,X, u) + β0. (A.6)

Finally, (A.5) and (A.6) entailMed(β̂(y,X, u) − β0) = 0.

Proof of Theorem 6.1. We consider the stochastic processW = {Wt = (yt, x′
t) : Ω →

R
p+1}t=1,2,... defined on the probability space(Ω,F , P ). We denote

qt(Wt, β) =
(
qt1(Wt, β), . . . , qtp(Wt, β)

)′
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=
(
s(yt − x′

tβ)xt1, . . . , s(yt − x′
tβ)xtp

)′
, t = 1, . . . , n.

The proof of consistency follows four classical steps. First, 1
n

∑
t qt(Wt, β)−E[qt(Wt, β)] is shown

to converge in probability to zero for allβ ∈ Θ (pointwise convergence). Second, that convergence
is extended to aweak uniform convergence. Third, we adapt to our setup theconsistency theo-
rem of extremum estimators of Newey and McFadden (1994). Fourth, consistency is entailed by
theoptimum uniquenessthat results from the identification conditions.
Pointwise convergence. The mixing property 6.1 onW is exported to{qtk(Wt, β), k =
1, . . . , p}t=1,2,.... Hence,∀β ∈ Θ, ∀k = 1, . . . , p, {qtk(Wt, β)} is an α−mixing process of
sizer/(1 − r). Moreover, condition 6.2 entailsE|qtk(Wt, β)|r+δ < ∞ for someδ > 0, for all
t ∈ N, k = 1, . . . , p. Hence, we can apply Corollary 3.48 of White (2001) to{qtk(Wt, β)}t=1,2,....
It follows ∀β ∈ Θ,

1

n

n∑

t=1

qtk(Wt, β) − E[qtk(Wt, β)]
p→ 0 k = 1, . . . , p,

Uniform Convergence. We check conditions A1, A6, B1, B2 of Andrews (1987)’s generic weak
law of large numbers (GWLLN). A1 and B1 are our conditions 6.3and 6.1. Then, Andrews defines

qH
ik(Wi, β, ρ) = sup

β̂∈B(β,ρ)

qik(Wi, β̂),

qLik(Wi, β, ρ) = inf
β̂∈B(β,ρ)

qik(Wi, β̂),

whereB(β, ρ) is the open ball aroundβ of radiusρ. His condition B2 requires thatqH
tk(Wt, β, ρ),

qLtk(Wt, β, ρ) and qtk(Wt) are random variables;qH
tk(., β, ρ), qLtk(., β, ρ) are measurable func-

tions from(Ω,P,F) to (R,B), ∀t, β ∈ Θ, ρ, whereB is the Borelσ-algebra onR and finally,
thatsup

t
Eqtk(Wt)

ξ < ∞ with ξ > r. Those points are derived from the mixing condition 6.1 and

condition 6.2 which insures measurability and provides bounded arguments.
The last condition (A6) to check requires the following: Letµ be aσ-finite measure that domi-
nates each one of the marginal distributions ofWt, t = 1, 2 . . .. Let pt(w) be the density ofWt

w.r.t. µ, qtk(Wt, β)pt(Wt) is continuous inβ at β = β∗ uniformly in t a.e. w.r.t. µ, for each
β∗ ∈ Θ, qtk(Wt, β) is measurable w.r.t. the Borel measure for eacht and eachβ ∈ Θ, and∫

supt≥0, β∈Θ |qtk(W, β)|pt(w)dµ(w) < ∞. As ut is continuously distributed uniformly int [As-
sumption 6.4 (2)], we havePt[ut = xtβ] = 0, ∀β, uniformly in t. Then,qtk is continuous inβ
everywhere except on aPt-negligible set. Finally, sinceqtk isL1-bounded and uniformly integrable,
condition A6 holds.
The generic law of large numbers (GWLLN) implies:

(a)
1

n

n∑

i=0

E[qt(Wt, β)] is continuous onΘ uniformly overn ≥ 1,
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(b) sup
β∈Θ

∣∣∣∣∣
1

n

n∑

t=0

qt(Wt, β) − Eqt(Wt, β)

∣∣∣∣∣→ 0

asn → ∞ in probability underP.

TheConsistency Theoremconsists in an extension of Theorem 2.1 of Newey and McFadden(1994)
on extremum estimators. The steps of the proof are the same but the limit problem slightly differs.
For simplicity, the true value is taken to be 0. First, the generic law of large numbers entails that

lim
n→∞

1

n

∑

t

E[s(ut − x′
tβ)xtk] is continuous onΘ, k = 1, . . . , p. (A.7)

Let us define

Qk
n(β) =

1

n

∣∣∣∣∣
n∑

t=1

xkts(ut − x′
tβ)

∣∣∣∣∣ , k = 1, . . . , p,

QEk
n (β) =

1

n

∣∣∣∣∣
n∑

t=1

E[xkts(ut − x′
tβ)]

∣∣∣∣∣ , k = 1, . . . , p.

We consider{βn}n≥1 a sequence of minimizers of the objective function of the non-weighted sign-
based estimator

1

n2

p∑

k=1

(∑

t

xkts(ut − x′
tβ)

)2

=
∑

k

[Qk
n(β)]2.

Then for allǫ > 0, δ > 0 andn ≥ N0, we have:

P

[∑

k

[Qk
n(βn)]2 <

∑

k

[Qk
n(0)]2 + ǫ/3

]
≥ 1 − δ. (A.8)

Uniform weak convergence ofQk
n to QEk

n atβn implies:

[QEk
n (βn)]2 < [Qk

n(βn)]2 + ǫ/3p, k = 1, . . . , p, with probability approaching one asn → ∞,
(A.9)

hence,
∑

k

[QEk
n (βn)]2 <

∑

k

[Qk
n(βn)]2 + ǫ/3, with probability approaching one asn → ∞. (A.10)

With the same argument, atβ = 0

∑

k

[Qk
n(0)]2 <

∑

k

[QEk
n (0)]2 + ǫ/3, with probability approaching one asn → ∞. (A.11)
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Using (A.10), (A.8) and (A.11) in turn, this entails

∑

k

[QEk
n (βn)]2 <

∑

k

[QEk
n (0)]2 + ǫ, with probability approaching one asn → ∞. (A.12)

This holds for anyǫ, with probability approaching one. LetN be any open subset ofΘ containing
0. AsΘ ∩ N

c is compact andlimn
∑

k[Q
∗k
n (β)]2 is continuous (A.7),

∃β∗ ∈ Θ ∩ N
c such that sup

β∈Θ∩Nc

lim
n

∑

k

[QEk
n (β)]2 = lim

n

∑

k

[QEk
n (β∗)]2.

Provided that0 is the unique minimizer, we have:

lim
n

∑

k

[QEk
n (β∗)]2 > lim

n

∑

k

[QEk
n (0)]2, with probability one.

Hence, setting

ǫ =
1

2

{
lim
n

∑

k

[QEk
n (β∗)]2

}
,

it follows that, with probability close to one,

lim
n

∑

k

[QEk
n (βn)]2 <

1

2

[
lim
n

∑

k

[QEk
n (β∗)]2 + lim

n

∑

k

[QEk
n (0)]2

]
< sup

β∈Θ∩Nc

lim
n

∑

k

[QEk
n (β)]2.

Hence,βn ∈ N. As this holds for any open subsetN of Θ we conclude on the convergence ofβn

to 0.

For identification, the uniqueness of the minimizer of the sign-objective function is insured by the
set of identification conditions 2.1, 6.5, 6.4, 6.6. These conditions and consequently the proof, are
close to those of Weiss (1991) and Fitzenberger (1997) for the LAD and quantile estimators. We
wish to show that the limit problem does not admit another solution. WhenΩn(β) defines a norm
for eachβ (condition 6.6), this assertion is equivalent to

lim
n→∞

E

[
1

n

∑

t

s(ut − x′
tδ)xi

]
= 0 ⇒ δ = 0, δ ∈ R

p, (A.13)

and

lim
n→∞

∣∣∣∣∣E
[

1

n

∑

t

s(ut − x′
tδ)x

′
tδ

]∣∣∣∣∣ = 0 ⇒ δ = 0, δ ∈ R
p. (A.14)
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Let A(δ) = E[ 1
n

∑
t s(ut − x′

tδ)xt|x1, . . . , xn]. Then,

E[A(δ)] = E

[
1

n

∑

t

s(ut − x′
tδ)xt

]
= E

{
E

[
1

n

∑

t

s(ut − x′
tδ)xt|x1, . . . , xn

]}
.

Note that

E[s(ut − x′
tδ)|x1, . . . , xn] = 2

[
1

2
−
∫ x′

tδ

−∞
ft(u|x1, . . . , xn)du

]
= −2

∫ x′
tδ

0
ft(u|x1, . . . , xn)du]

HenceA(δ) can be developed forτ > 0 as

A(δ) =
2

n

∑
x′

tδ

{
I{|x′

tδ|>τ}

[
I{x′

tδ>0}

∫ x′
tδ

0
−ft(u|x1, . . . , xn)du

+I{x′
tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

]

+I{|x′
tδ|≤τ}

[
I{x′

tδ>0}

∫ x′
tδ

0
−ft(u|x1, . . . , xn)du

+I{x′
tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

]}
.

Then,

E[A(δ)] = E

{
2

n

∑
x′

tδ

[
I{|x′

tδ|>τ}

(
I{x′

tδ>0}

∫ x′
tδ

0
−ft(u|x1, . . . , xn)du

+I{x′
tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

)

+I{|x′
tδ|≤τ}(I{x′

tδ>0}

∫ x′
tδ

0
−ft(u|x1, . . . , xn)du

+ I{x′
tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du)

]}
.

Remark that each term in this sum is negative. Hence,s(E[A(δ)]) ≤ 0 and|E[A(δ)]| = −E[A(δ)],
and

|E(A)| = E

[
2

n

∑
x′

tδI{|x′
tδ|>τ}

(
I{x′

iδ>0}

∫ x′
tδ

0
ft(u|x1, . . . , xn)du
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−I{x′
tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

)]

+E

[
2

n

∑
x′

tδI{|x′
tδ|≤τ}

(
I{x′

tδ>0}

∫ x′
tδ

0
ft(u|x1, . . . , xn)du

−I{x′
tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

)]

≥ E

[
2

n

∑
I{|x′

tδ|>τ}

(
x′

tδI{x′
tδ>0}

∫ x′
tδ

0
ft(u|x1, . . . , xn)du

−x′
tδI{x′

tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

)]
(A.15)

≥ E

{
2

n

∑
I{|x′

tδ|>τ}

[
x′

tδI{x′
tδ>0}

∫ x′
tδ

0
ft(u|x1, . . . , xn)du

− x′
tδI{x′

tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

]
[ft(0|x1, . . . , xn) > fL]p1

}
(A.16)

≥ p1E

{
2

n

∑
I{|x′

tδ|>τ}τfLd|ft(0|x1, . . . , xn) > fL

}
, (A.17)

≥ τp1fLd
2

n

∑
P [|x′

tδ| > τ |ft(0|x1, . . . , xn) > fL)]. (A.18)

To obtain inequation (A.15), just remark that each term is positive. For the inequation (A.16) we
use condition 6.4. For inequation (A.17) we minorate|x′

iδ| by τ and each integrals byfLd1 where
d1 = min(τ , d/2). Condition 6.5 enables us to conclude, by taking the limit,

lim
n→∞

|E[A(δ)]| ≥ 2τp1fLd × lim inf
n→∞

P [|x′
iδ| > τ |fi(0|x1, . . . , xn) > fL] > 0, ∀δ > 0,(A.19)

hence, we conclude on the uniqueness of the minimum, which was the last step to insure consistency
of the sign-based estimators.

Proof of Theorem 6.2. We prove Theorem6.2 on asymptotic normality. We consider the
sign-based estimator̂β(Ωn) whereΩn stands for anyp × p positive definite matrix. We apply
Theorem 7.2 of Newey and McFadden (1994), which allows to deal with noncontinuous and
nondifferentiable objective functions for finiten. Thus, we stand out from usual proofs of
asymptotic normality for the LAD or the quantile estimators, for which the objective function is at
least continuous. In our case, only the limit objective function is continuous (see the consistency
proof). The proof is separated in two parts. First, we show that L(β) as defined in equation (6.3)
is the derivative oflimn→∞

1
n

∑
t E
[
s
(
ut − x′

t(β − β0)
)
xt

]
. Then, we check the conditions for
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applying Theorem 7.2 of Newey-McFadden.

The consistency proof (generic law of large numbers) implies that

1

n

n∑

t=0

E
[
s
(
ut − x′

t(β − β0)
)
xt

]
(A.20)

is continuous onΘ uniformly overn. Moreover condition 6.2 specifies thatX is L2+δ bounded.
As the ft(λ|x1, . . . , xn) are bounded byfU uniformly overn andλ (condition 6.8), dominated
convergence allows us to write that

∂

∂β
E
[
xts
(
ut − x′

t(β − β0)
)]

= E
[
xtx

′
tft

(
x′

t(β − β0)|x1, . . . , xn

)]
. (A.21)

And, these conditions imply that

Ln(β) =
1

n

n∑

t=1

E
[
xtx

′
tft

(
x′

t(β − β0)|x1, . . . , xn

)]
(A.22)

converges uniformly inβ to L(β). Uniform convergence entails thatlimn
1
n

∑n
t=0 E

[
s
(
ut−x′

t(β−
β0)
)
xt

]
is differentiable with derivativeL(β).

We now apply Theorem 7.2 of Newey and McFadden (1994) which presents asymptotic normality
of a minimum distance consistent estimator with nonsmooth objective function and weight matrix
Ωn

p→ Ω symmetric positive definite. Thus, under conditions for consistency (2.1, 6.1-6.6), we
have to check that the following conditions hold:

(i) zero is attained at the limit byβ0;

(ii) the limiting objective function is differentiable atβ0 with derivative L(β0) such that
L(β0)ΩL(β0)

′ is nonsingular;

(iii) β0 is an interior point ofΘ;

(iv)
√

nQn(β0) → N (0, J) ;

(v) for anyδn → 0, sup||β−β0||
√

n||Qn(β) − Qn(β0) − EQ(β)||/(1 +
√

n||β − β0||)
p→ 0 .

Condition (i) is fulfilled by the moment condition 2.1. Condition (ii) is fulfilled by the first part of
our proof and condition 6.10. Then, Condition (iii) is implied by 6.3. Using the mixing specification
6.9 of {ut,Xt}t=1,2,... and conditions 2.1, 6.2, 6.7 and 6.11, we apply a White-Domowitz central
limit theorem [see White (2001), Theorem 5.20]. This fulfills condition (iv) of Theorem 7.2 in
Newey and McFadden (1994):

√
nJ−1/2

n Qn(β0) → N(0, Ip) (A.23)
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whereJn = var
[

1√
n

∑n
1 s(ui)xi

]
. Finally, condition (v) can be viewed as a stochastic equicon-

tinuity condition and is easily derived from the uniform convergence [see McFadden remarks on
condition (v)]. Hence,̂β(Ωn) is asymptotically normal

√
nS−1/2

n

(
β̂(Ωn) − β0

)
→ N (0, Ip).

The asymptotic covariance matrixS is given by the limit of

Sn = [Ln(β0)Ωn(β0)Ln(β0)]
−1Ln(β0)Ωn(β0)JnΩn(β0)Ln(β0)[Ln(β0)Ωn(β0)Ln(β0)]

−1.

When choosingΩn = Ĵ−1
n a consistent estimator ofJ−1

n , Sn can be simplified:

√
nS−1/2

n

(
β̂(Ĵ−1

n ) − β0

)
→ N (0, Ip)

with
Sn = [Ln(β0)Ĵ

−1
n Ln(β0)]

−1.

When the mediangale Assumption (2.2) holds, we find usual results on sign-based estimators.β̂(Ip)

andβ̂((X ′X)−1) are asymptotically normal with asymptotic covariance matrix

lim
n→∞

Sn = lim
n→∞

n2

4

[∑

t

E
(
xtx

′
tft(0|X)

)
]−1

E(xtx
′
t)

[∑

i

E
(
xtx

′
tft(0|X)

)
]−1

.

B. Detailed empirical results: concentrated statistic andprojected p-
value graphics

This appendix contains graphics of concentrated sign-based statistics and projectedp-values for the
β parameter in the Barro and Sala-i-Martin application.
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Figure 5. Concentrated statistics and projectedp-values (1880-1930)
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(a) Basic equation: 1880-1900: concentrated DS
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(b) Basic equation: 1880-1900: projectedp-value
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(c) Basic equation: 1900-20: concentrated DS
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(d) Basic equation: 1900-20: projectedp-value
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(e) Basic equation: 1920-30: concentrated DS
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(f) Basic equation: 1920-30: projectedp-value
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Figure 6. Concentrated statistics and projectedp-values (1930-1960)
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(a) Basic equation: 1930-40: concentrated DS
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(b) Basic equation: 1930-40: projectedp-value
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(c) Basic equation: 1940-50: concentrated DS
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(d) Basic equation: 1940-50: projectedp-value
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(e) Basic equation: 1950-60: concentrated DS
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(f) Basic equation: 1950-60: projectedp-value
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Figure 7. Concentrated statistics and projectedp-values (1960-1988)
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(a) Basic equation: 1960-70: concentrated DS
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(b) Basic equation: 1960-70: projectedp-value
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(c) Basic equation: 1970-80: concentrated DS
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(d) Basic equation: 1970-80: projectedp-value
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(e) Basic equation: 1980-88: concentrated DS
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(f) Basic equation: 1980-88: projectedp-value
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