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ABSTRACT

We study the problem of estimating the parameters of a lineadian regression without any as-
sumption on the shape of the error distribution — includingondition on the existence of moments
— allowing for heterogeneity (or heteroskedasticity) okmown form, noncontinuous distributions,
and very general serial dependence (linear and nonlin€hi3.is done through eeverse inference
approach based on a distribution-free testing theory [Coudin andoDu(2009, The Economet-
rics Journa)], from which confidence sets and point estimators are sulesdly generated. The
estimation problem is tackled in two complementary wdyisst, we show howconfidence distri-
butionsfor model parameters can be applied in such a context. Ssttibdtions — which can be
interpreted as a form diducial inference- provide a frequency-based method for associating prob-
abilities with subsets of the parameter space (like pastelistributions do in a Bayesian setup)
without the introduction of prior distributions. We consicheneralized confidence distributions
applicable to multidimensional parameters, and we sugpestise of a projection technique for
confidence inference on individual model paramet&econdwe propose point estimators, which
have a natural association with confidence distributionises€é estimators are based on maximiz-
ing testp-values and inherit robustness properties from the gdngrdistribution-free tests. Both
finite-sample and large-sample properties of the propost@tha&tors are established under weak
regularity conditions. We show they are median unbiaseddusymmetry and estimator unicity)
and possess equivariance properties. Consistency angeiamormality are established without
any moment existence assumption on the errors, allowingdacontinuous distributions, hetero-
geneity and serial dependence of unknown form. These donsliare considerably weaker than
those used to show corresponding results for LAD estimatora Monte Carlo study of bias and
RMSE, we show sign-based estimators perform better than-typb estimators in heteroskedastic
settings. We present two empirical applications, whiclolive financial and macroeconomic data,
both affected by heavy tails (non-normality) and heterdskécity: a trend model for the S&P
index, and an equation used to stugkgonvergence of output levels across U.S. States.

Key words: sign-based methods; median regression; test inversiodgébk-Lehmann estimators;
confidence distributionsp-value function; least absolute deviation estimators;ntjlearegres-
sions; sign test; simultaneous inference; Monte Carlstgaiojection methods; non-normality;
heteroskedasticity; serial dependence; GARCH,; stoahastatility.
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RESUME

Cet article propose des outils d’estimation et d’inféredans le cadre d'une régression linéaire
sur la médiane, valides a distance finie sans recourir a desthgses paramétriques sur la dis-
tribution des erreurs. Nous introduisons la fonction pieadjui associe un degré de confiance a
chaque valeur testée du paramétre étant donnée la réalisitil'échantillon. Nous calculons des
fonctions p-value simulées a partir de tests de Monte Carlalsanés, puis des versions projetées
pour chaque composante individuelle du parameétre. Nowsrstiiensuite le principe d’inversion
de test de Hodges et Lehmann [Hodges et Lehmann (1963)] pbgwas d'utiliser comme esti-
mateur, la valeur du parameétre associée au plus haut degmnélance (a la plus forte p-value).
L'estimateur de signe hérite des propriétés de robustessstdtistiques dont il est issu et peut étre
associé la procédure d’inférence a distance finie décrite Gaudin and Dufour (2009). Il est aussi
sans biais pour la médiane quand les erreurs sont symétrigueartage les propriétés d'invariance
de l'estimateur des moindres valeurs absolues (« LeastldiesDeviations, LAD »). Il est enfin
convergent et asymptotiqguement normal sous des condpiosdaibles que I'estimateur LAD. En
échantillon fini, les simulations suggérent qu'il est plesfprmant en termes de biais et d’erreur
guadratique moyenne pour des processus trés hétérogénes.

Mots clés: méthodes de signes ; régression sur la médiane ; invergidest; estimateurs de
Hodges-Lehmann ; distribution de confiance ; fonctigmalues ; esimateur LAD ; régressions
guantiles ; tests de signe ; inférence simultanée ; testsatgeMCarlo ; méthodes de projection ;
non normalité ; hétéroscédasticité ; dependance séri€leRCH ; volatilité stochastique.
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1. Introduction

A basic problem in statistics and econometrics consistsuidying the relationship between a de-
pendent variable and a vector of explanatory variablesudak distributional assumptions. For
that purpose, the Laplace-Boscovich median regressiorda® an attractive approach because it
can yield estimators and tests, which are considerably muinest to non-normality and outliers
than least squares methods; see Dodge (1997). The leastitabdeviation (LAD) estimator is
the reference estimation method in this context. Quarggassions [Koenker and Bassett (1978),
Koenker (2005)] can be viewed as extensions of median reigres An important reason why such
methods yield more robust inference comes from the facthppobtheses about moments are not
generally testable in nonparametric setups, while hypath@bout quantiles remain testable under
similar conditions [see Bahadur and Savage (1956), Duf2003), Dufour, Jouneau and Torrés
(2008)].

The distributional theory of LAD estimators and their exdgiems usually postulates moment
conditions on model errors, such as the existence of monugnts a given order, as well as other
regularity conditions, such as continuity, independencientical distributions; see for instance
Knight (1998), El Bantli and Hallin (1999), and Koenker (3)0 Further, this theory and the as-
sociated tests and confidence sets are typically based ompastyc approximations. The same
remark applies to work on LAD-type estimation in models imimy heteroskedasticity and au-
tocorrelation [Zhao (2001), Weiss (1990)], endogeneitynpiiya (1982), Powell (1983), Hong
and Tamer (2003)], censored models [Powell (1984, 198@&)Jremlinear functional forms [Weiss
(1991)]. By contrast, provably valid tests can be derivesioh models, under appreciably weaker
conditions, which do not require the existence of momentsadiow for arbitrary heterogeneity (or
heteroskedasticity); see Coudin and Dufour (2009).

In this paper, we exploit this feature of testing theory ie ttontext of median regression to
derive more robust estimation methods. Specifically, wdystbe problem of estimating the para-
meters of a linear median regression without any assumpticthe shape of the error distribution
—including no condition on the existence of moments at adgtor allowing for heterogeneity (or
heteroskedasticity) of unknown form, noncontinuous tiations, and very general serial depen-
dence (linear and nonlinear). This is done througbwverse inference approactvhich starts from
a distribution-free testing theory [Coudin and Dufour (250 which is subsequently exploited to
derive confidence sets and point estimators. Using thepgegp®sed in Coudin and Dufour (2009),
the estimation problem is tackled in two complementary ways

First, we show howconfidence distributionr model parameters [Schweder and Hjort (2002)]
can be applied in such a context. Such distributions — whachbe interpreted as a form fiducial
inference[Fisher (1930), Buehler (1983), Efron (1998)] — provide egirency-based method for
associating probabilities with subsets of the parametacesflike posterior distributions do in a
Bayesian setup) without the introduction of a prior digttibn. In the one-dimensional model, the
confidence distribution is defined as a distribution whosantjles span all the possible confidence
intervals [Schweder and Hjort (2002)]. In this paper, wesidergeneralized confidence distribu-
tions applicable to multidimensional parameters, and we suggestse of a projection technique
for confidence inference on individual model parameterse [Blter are exact — in the sense that



the parameters considered are covered with known proiesb{idr larger) — under the mediangale
assumption considered in Coudin and Dufour (2009). Furtherore general linear dependence is
allowed —, the proposed method remains valid asymptogicall

Second we propose point estimators, which bear a natural assmtiatith the above confi-
dence distributions. These Hodges-Lehmann estimatotsasgex] on maximizing tegtvalues and
inherit several robustness properties from the distriinufree tests used to generate them [Hodges
and Lehmann (1963)]. In particular, both finite-sample agd-sample properties are established
under very weak regularity conditions. We show they are arednbiased (under symmetry and es-
timator unicity) and possess equivariance properties ieipect to linear transformations of model
variables. Consistency and asymptotic normality are &shkedgl without any moment existence
assumption on the errors, allowing noncontinuous didtiobg, heterogeneity and general serial
dependence of unknown form. These conditions are consilyenseaker than those usually used to
obtain corresponding results for LAD estimators.

The conjunction of sign-based tests, projection-basedidence regions, projection-based
values and sign-based estimators thus constitute a whstersyof inference valid for any given
sample size under very weak distributional assumptionsaagthptotically valid if linear depen-
dence for linear dependent errors.

Fisher’s fiducial distributions and other fiducial inferenarguments [Fisher (1930), Buehler
(1983), Efron (1998), Hannig (2006)] are not commonly useddonometrics because they require
the availability of pivotal test statistics with known diutions. This condition is not fulfilled
in general, especially in semiparametric or non-parameteitings. However, in the context of
median regression, sign-based methods provide a way tdraonhsuch pivots and fiducial infer-
ence tools can be developed. For any given sample size,ghérainsform enables one to con-
struct test statistics with known nuisance-parameter-fistribution without additional parametric
restrictions. This enables us to construct fiducial infeestools adapted to multidimensional pa-
rameters. We exploit realizegtvalue functions, which are constructed by testing hypekeof
the form Hy(3,) : 5 = B, whereg is the vector of the regression coefficients. Specifically, w
combine sign-based tests for such joint hypotheses [as @giv€oudin and Dufour (2009)] with
projection techniques. For each component, a projeetesiue function provides a representation
of the evidence for each possible value of that component.

Using the above-values (as a function gi;), we then derive estimators and study their prop-
erties. Hodges and Lehmann (1963) proposed a generalgianoidirectly derive estimators from
test procedures. They suggest to invert a testfg(s,) : 5 = ,, and to choose the value gf,
which is “least rejected” by the test. First applied to thdddkon’s signhed rank-statistic for esti-
mating a shift or a location, this principle was adapted gression models by deriving so-called
R-estimators from rank or signed-rank statistics [Jureak871), Jaeckel (1972), Koul (1971)].
In a multidimensional context, this leads one to select tilaerof 3, with the highesidegree of
confidence, i.ewith the highesp-value.

Sign-based estimators are generated by sign-based tedthey inherit several attractive prop-
erties of the latterd.g, robustness to non-normality and heterogeneity). We w#l that they al-
ternatively can be computed by minimizing quadratic forrhthe constrained signs. So they have
a classical GMM form [Hansen (1982), and Honore and Hu (26045MM statistics involving



signs]. We show that sign-based estimators are consistenasymptotically normal under regu-
larity conditions weaker than the ones required by the LADvestor [Bassett and Koenker (1978),
Bloomfield and Steiger (1983), Powell (1984), Phillips (18%ollard (1991), Weiss (1991), Fitzen-
berger (1997), Knight (1998), El Bantli and Hallin (1999)ahe references therein]. In particular,
asymptotic normality and consistency hold for heavy-thdésturbances that may not possess finite
variance. This interesting property is entailed by the signsformation. Signs of residuals always
possess finite moments, so no further restriction on thartighce moments is required to complete
the proofs. Except for Knight (1989) and Phillips (1991) ondonsidered the case of autoregressive
models, the distribution of LAD estimators in regressiortgeve the error variances may not exist
has received little attention. In general, LAD estimatangl #he sign-based estimators proposed
here follow from quite different optimization rules and yhean be very different.

The class of sign-based estimators we derive includes sothecases studied in the literature:
Boldin, Simonova and Tyurin (1997) derivaihn-estimatorgrom locally most powerful test sta-
tistics fori.i.d. errors and fixed regressors. Similarly, the proceduresgsegh by Hong and Tamer
(2003) and Honore and Hu (2004) rely on thel. assumption.

However, a major advantage of signs over ranks consists afindetransparently with het-
eroskedastic (or heterogeneous) disturbances. In thisrpage do not assumid.d. disturbances.
We derive various sign-based statistics and associataebsiged estimators depending on the setup.
Many heteroskedastic and possibly dependent schemes aeeedoand, when needed, an het-
eroskedasticity and autocorrelation correction is inetligh the estimator criterion function.

The derivation of sign-based estimators as Hodges-Lehrastimators makes these a natural
complement of the finite-sample tests used to generate Beadjn and Dufour (2009)]. The latter,
based on the exact distribution of the corresponding saged test statistics does not depend on
any nuisance parameter and does control test levels in faitgles under heteroskedasticity and
nonlinear dependence of unknown form. It combines MontdoCasts [Dwass (1957), Barnard
(1963) and Dufour (2006)], test inversion, and projectiechniques [Dufour (1990, 1997), Dufour
and Kiviet (1998), Abdelkhalek and Dufour (1998), Dufoudalasiak (2001), Dufour and Taamouti
(2005)]1 There is no need to estimate the error density at zero in@sinivith tests that rely on
kernel estimates of the LAD asymptotic covariance matisurthermore, when the test criteria are
modified to cover linear dependence, the resulting inferemasymptotically valid.

The performance of the proposed estimators is also studiadMonte Carlo study that allows
for various non-Gaussian and heteroskedastic settinggind/éhat sign-based estimators are com-
petitive (in terms of bias and RMSE) when errorsiard., while they are substantially more reliable
than usual methods (LS, LAD) when arbitrary heterogeneityervial dependence is present in the
error term.

For an alternative finite-sample inference exploiting ajleversion of the same sign pivotality result, which r®ld
if the observations ar& -conditionally independent, see Chernozhukov, Hanserdansgson (2008).

2In the toi.i.d. error case, Honore and Hu (2004) observed in simulationkénael-based estimates of the asymptotic
standard error of the median-based estimator tend to bentadl, sso the associated tests tend to overreject the null
hypothesis. Other estimates of the LAD asymptotic covasamatrix can be obtained by bootstrap procedures [design
matrix bootstrap in Buchinsky (1995, 1998), block bootsiraFitzenberger (1997), Bayesian bootstrap in Hahn (1997)
and resampling methods [Parzen, Wei and Ying (1994)]. Batjtistification of these also rely on usual asymptotic
regularity conditions.



Finally we present two empirical applications, which inwfinancial and macroeconomic data.
In the first one, we study a trend model for the Standard and$°Gomposite Price Index, over the
period 1928-1987 as well as the 1929 crash period (whichasacierized by huge price volatilities).
In the second application, we consider an equation useditty st-convergence of output levels
across U.S. States, with a small size. In both cases, theadataffected by heavy tails (non-
normality) and heteroskedasticity.

The paper is organized as follows. Section 2 presents thelnibe sign-based statistics and
the Monte Carlo tests. Section 3 is dedicated to confiderstalditions ancgp-value functions. In
section 4, we introduce the sign-based estimators, whigloltained by maximizing thg-value
function. The finite-sample properties of the sign-baséiuinasors are studied in section 5, while
their asymptotic properties are considered in section 6seletion 7, we present the results of
our simulation study of bias and RMSE. The empirical appilices are reported in section 8. We
conclude in section 9. Appendix A contains the proofs.

2. Framework

We will now summarize the distributional assumptions welstwesider and define the test statistics
on which the estimation methods we propose are based.

2.1. Model

We consider a stochastic process;, z}) : 2 — RPt! : ¢ = 1,2,...} defined on a probability
space((2, F, P), such thaty, andx; satisfy a linear model of the form

w=zf+u, t=1,...,n, (2.2)

wherey, is a dependent variable; = (x4, ... ,xy,)" is ap-vector of explanatory variables, ang
is an error process. Thg’s may be random or fixed. In the sequgl= (y1,... ,y,) € R™ will
denote the dependent variable vector= (z1,... ,x,) € R"*P then x p matrix of explanatory
variables, andi = (uy, ... ,u,) € R™ the disturbance vector. Moreové,( - |z1, ... ,x,) repre-
sents the distribution function ef; conditional onX. This framework is also used in Coudin and
Dufour (2009).

The traditional form of a median regression assumes thertastces:, ... ,u, arei.i.d. with
median zero

Med(u¢|z1,...,2,) =0, t=1,...,n. (2.2)

Here, we relax the assumption that thearei.i.d. and we consider moment conditions based on
residual signs where the sign operator R — {-1,0,1} is defined ass(a) = 1)y, 1oc)(a) —
1(_oo,0)(a), With 14(a) = 1if a € Aandla(a) = 0if a ¢ A. For convenience, ifi € R", we
will note s(u), then-vector of the signs of the components. We make the folloveissumptions.
First, we assume tha{u,) is uncorrelated with;.

Assumption 2.1 SIGN MOMENT CONDITION. Els(u;)x:] =0, fort=1,... n.



Assumption 2.1 is fulfilled when the disturbances iird. and independent ok. Let us now
consideradapted sequenceS(v, F) = {v;, F; : t = 1,2, ...} wherev, is any measurable
function of W, = (y;, z;)’, F:is ac-field in 2, F; C F fors < t, o(Wy,... ,W3) C F
ando(Wy,... ,W,;) is theo-algebra spanned by, ... , ;. Assumption 2.1 is also fulfilled if
the signs satisfy a martingale difference with respect eodhrrentz; and the past information,
Fi = O'(Wl, cey WtuxtJrl):

E[s(ut)|.7:t_1] = 0, Vit Z 1. (23)

It covers many weakly dependent processes including uswedrl dependent processes, such as
AR(1) disturbances with normal innovations and mean zero [seerberger (1997)]. Assump-
tion 2.1 also holds when satisfies the conditional mediangale condition defined indto and
Dufour (2009),i.e. when{s(u;) : t = 1,2, ...} is a martingale difference with respect to
.7:;5 :U(Wl,..., Wt, X)

Assumption 2.2 WEAK CONDITIONAL MEDIANGALE. LetF = o(uq,...,us, X), fort > 1.
u in the adapted sequenc u, F) is a strict mediangale conditional o with respect to{ F; :
t=1,2,... }iff Plu; <0|X]=Plu; > 0|X]and

Pluy < Olug, ..., ug—1, X| = Plug > Oluq, ..., up—1, X], fort > 1. (2.4)

This setup allows for discrete distributions with mass abzeéWhen the distributions od;
possess a mass at zero, the sign operator is redefingat) = s(a) + [1 — s(a)?|s(V —
0.5), where V ~ 1(0,1) and is independent @f. With no mass at zero and no matti, this
mediangale concept coincides with the one defined in LintmhV@hang (2007) together with other
quantilegales.

2.2. Sign-based statistics and Monte Carlo tests

For testingHy(5,) : B = By Vs. H1(By) : B # By in model (2.1), we consider general quadratic
forms involving the vectok(y — X 3,) of the constrained signs:

DS(ﬁO» Qn) = S(y - XﬁO)/XQn(S(y - XﬁO)v X)X/S(y - Xﬁo) (25)

wheref2,,(s(y — X,), X) is ap x p positive definite weight matrix that may depend on the con-
strained signs. If the disturbances satisfy the medianfséeimption 2.2, sign-based statistics of
the form constitute pivotal functions und&y (3, ); see Coudin and Dufour (2009). The distribution
of the statistic conditional on the realization &fis perfectly specified and can be simulated.
Monte Carlo tests with controlled levels are constructedhia following way. For testing

Hy(By) vs. Hi(B,) with level o € [0,1], we denoteDg)) = Dg(f,) the observed statistic,

(D(Sl),...,D(SN))’ an N-vector of independent replicates drawn from the sameilligion as

3Linton and Whang (2007) define thai, is a mediangale ifE(wé(ut)U-}_l) = 0, Vt, where 7,1 =
o(ut—1,ut—2,...) and 1/1%(17) = % — 1(—s,0)(z). The specification of the sign function which does not maKe di
ference between a positive and a null number is clearly adaptcontinuous distributions.



Ds(Bg) and (WO, ... . W)Y a (N + 1)-vector ofi.i.d. uniform variables. A Monte Carlo
test for Hy(3,) consists in rejecting the null hypothesis whenever the gogbip-value

s () = % (2.6)
is smaller thamy, whereGy (z) = 1+ S | sy (z2—TO) 4L SN §(TO —z)s, (WO W),
with s (z) = 1j0, «)(2), d(z) = 1{03. The empiricap-value is based on a randomized tie-breaking
procedure which allows one to control the level when thasties are discrete. When the number
of replicatesNN is such thaix(N + 1) is an integer, the level of the Monte Carlo test is equal to
« for any sample size [see Dufour (2006)]. Next, simultaneous confidence regfonthe entire
parametep are obtained by inverting those simultaneous tests. Thaltsineous confidence region

Ci—a(B) = {B*|PRS (5*) = a},

which contains all the valueg* with empirical p-value ;3]’?,5 (6*) [associated with the test of

Hy(p*) : B = %] higher thann has by construction levél— o for any sample size. It is then pos-

sible to derive general (and possibly nonlinear) tests amfidence sets by projection techniques.
For example, conservative individual confidence interaas obtained in such a way. Finally, if

Dg is an asymptotically pivotal function all previous resutisld asymptotically. For a detailed

presentation, see Coudin and Dufour (2009).

3. Confidence distributions

In the one-parameter model, statisticians have definedahidence distribution notion that sum-
marizes a family of confidence intervals; see Schweder aad £002). By definition, the quantiles
of a confidence distribution span all the possible confidentvals of a real3. The confidence
distribution is a reinterpretation of the Fisher fiduciatdbutions and provides, in a sense, an ana-
logue of Bayesian posterior probabilities in a frequerdgestup [see also Fisher (1930), Neyman
(1941) and Efron (1998)]. This statistical notion is not coanly used in the econometric litera-
ture, for two reasons. First, it is only defined in the oneapagter case. Second, it requires that the
test statistic be a pivot with known exact distribution. @elwe extend that notion (or an equiv-
alent) to multidimensional parameters. The sign transé&ion enables one to construct statistics
which are pivots with known distribution without imposingnametric restrictions on the sample.
Consequently, our setup does not suffer from the secondctést. In that section, we briefly recall
the initial statistical concept and apply it to an examplemivariate regression. Then, we address
the extension to multidimensional regressions.

3.1. Confidence distributions in univariate regressions

Schweder and Hjort (2002) defined the confidence distributto the real parametef such a
distribution depending on the observatidgsz), whose cumulative distribution function evaluated
at the true value of has a uniform distribution whatever the true valugsofin a formalized way,



this can be expressed as follows:

Definition 3.1 CONFIDENCE DISTRIBUTION Any distribution with cumulativé’D(/3) and quan-
tile functionC D~1(3), such that

Ps[B < CD Nasy;2)] = P3[CD(Byy32) < o] = a (3.1)

forall o € (0, 1) and for all probability distributions in the statistical rdel, is called a confidence
distribution of 5.

(—oo, CD~1(a)] is a one-sided stochastic confidence interval with covepagbability o,*
and the realized confidenc€eD (5; y; z) is thep-value of the one-sided hypothedig; (5,) : 5 <
Bo versusHy (5y) : B > B, when the observed data aye x. The realizeh-value when testing
Ho(By) : B = By versusHy(8y) : B # By is2min{CD(8,),1 — CD(S,)}. Those relations are
stated in Lemma 2 of Schweder and Hjort (2002} confidence of the statemert ¥ 3,” is the
degree of confidenc€'D(83,) for the confidence intervg] — co, CD~*(CD(8,))], and is equal
to thep-value of a test ofH;(5,) : 5 < By vs. Hf(By) : B > By Hence, tests and confidence
intervals ong are contained in the confidence distribution. Schweder god K2002) also note
that, since the cumulative functi@gnD(/3) is an invertible function off and is uniformly distributed,
CD(p) constitutes a pivot conditional an Reciprocally, whenever a pivot increases witl(for
example a continuous statisfig 3) with cumulative distribution functior# that is independent of
8 and free of any nuisance parameter),7’(3)) is uniformly distributed and satisfies conditions
for providing a confidence distribution. L&t 3) be such a continuous real statistic increasing with
3 with a free of nuisance parameter distribution. A testipf: 3 < j3, is rejected wher™°*(3,)
is large, withp-value P, [T(8,) > T°(83,)]. Then,

Pg, [T(By) > TObs(ﬁo)] =1-1Fp, (TObs(ﬁo)) = CD(By) (3.2)

whereFy_ (.) is the sampling distribution df'(3,) under = ,. Consequently, simulated sam-
pling distributions and simulated realizpd/alues as presented previously yield a way to construct
simulated confidence distributions.

The sampling distribution and the confidence distributiom fandamentally different theoreti-
cal notions. The sampling distribution is the probabilitgtdbution of 7'(3) obtained by repeated
samplings whereas the confidence distribution is an ex-pljgict that contains the confidence
statements one can have on the valug giveny, 2, T°%(53).

Randomized confidence distributions for discrete stafistA last remark relates to discrete sta-
tistics. Confidence distributions based on discrete fttisannot lead to a continuous uniform
distribution. Approximations must be used. Schweder aratH002) proposed half correction.

*For continuous distributions, just note th&[8 < CD '(a)] = Ps{CD(3) < CD(CD '(a))} =
Ps{CD(B) < o]t =«



For discrete statistics, they used

CD(B5) = PaylT(Bo) > T (B0)] + 3 PaylT(B) = T (50)], (33)

We rather use randomization as in section 2. The discretistgtal’(3) is associated with an
auxiliary oneUr, which is independently, uniformly and continuously disited over{0, 1]. Lexi-
cographical order is used to order ties.

CD(By) = Pg,[T(By) > TObS(ﬁo)] + P[UT(ﬁO) > UTobs(,GO)]Pﬁo [T(8y) = TObs(ﬁo)]- (3.4)

Simulated confidence distributions and illustratidret us consider a simple example to illustrate
those notions. In the modg} = fz; + u;, i = 1,...,n, (u;, x;) u N(0, I5), the Student sign-
based statistic

Z S(Qi - l’zﬂ)l’i

OIEARE
is a pivotal function and decreases wijth The simulated confidence distribution @fgiven the
realizationy, x is

SST(P) =

CD(By) = 1= Fs, (SST(Bo)), (35)

with F@O a Monte Carlo estimate of the sampling distributiorS&fT" underH,(53,) : 8 = 3,-. Fig-
ure 1 presents a simulated confidence distribution cunvel&tinction fors, given 200 realizations
of (u;,z;) based onSST. The Monte Carlo estimate d?’ﬁo is obtained from 9999 replicates of
SST underHy(3,).TestingH : 5 < .1 at 10% can be done by readingD(.1) here .92. The test
acceptsH ;. Further,(—oo,.23] constitutes a one-sided confidence intervalfavith level .95.
Realizedp-value functions for discrete statisticAnother interesting object is the realizgdralue
function when testing point hypotheség (5,). The latter is a simple transformation of th&D
cumulative function. The simulated realizee/alue is given by

Pssr(By) = 2min{CDss7(By), 1 — CDssr(8,)}- (3.6)

Consider now the statistiS§F = SST?. SF is a pivotal function but not a monotone function
of 3 contrary toSST. An entire confidence distribution cannot be recovered fiofm because
of this lack of monotonicity. However, thg-value function can be constructed using equation
(2.6). Figures 2 (a) and (b) compapevalue functions based ofiST and SF. Inverting thep-
value function allows one to recover half of the confidenarittiution and consequently half of the
inference resultg,e. the two-sided confidence intervals. For example, in Figufa)2—.17, .24]
constitutes a confidence interval with le@8% for both statistics. The-value function provides
then an interesting summary on the available inferenceedally, it gives the confidence degree
one can have in the statemeht= (,. Finally, thep-value function has an important advantage
over the confidence distribution: it is straightforwardktendable to multidimensional parameters.
The spread of the-value function is also related to tmeodel specificatiomnd theparameter
identification When thep-value function is flat, one may expect the parameter to by lidehtified
either because there exists a set of observationally dquivaarameters, then, tipevalues are high
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Figure 1. Simulated confidence distribution cumulativection based on SST.

for a wide set of values; either because there does not existadue satisfying the model and then
thep-values are small everywhere. To illustrate that pointugetonsider another example (example
2) where the first; observations satisfy; = 5,x; + u;, @ = 1,...,n1, (u;, ;) i N(0, I5) and
theny followings, y; = Byx; + wi, i =ny + 1,...,n1 + na, (u;, ;) ’f’vd/\/'(o,lg), with 5, = —.5
andg, = .5. The modely; = SBx; + u;, i = 1,...,n1 + ne, is misspecified. In Figure 2 (b), we
notice the spread of thevalue function based ofiF is large: the set of observationally equivalent
[ is not reduced to a point.

3.2. Simultaneous and projection-baseg-value functions in multivariate regression

If p > 2, the confidence distribution notion is not defined anymoreweler, simulated real-
ized p-values for testingHy(3,) can easily be constructed from tls&" statistic and more gen-
erally from any sign-based statistic which satisfies egua{2.5). Simulatedy-values lead to
a mapping for which we have a 3-dimensional representatiorp f= 2. Consider the model:
Yi = 61.1‘12' + 621‘22‘ + Ui, 1= 1, oo, n, (ui,l‘h‘,l‘gi) zfz\si N(O,Ig), ﬁ = (ﬁl,ﬁQ) = (0,0)/, Yy =
(Y1, yn) s u = (u1,...,up)'y 21 = (11, .., Z10)', T2 = (221, .., T2,) ANAX = (21, 29).
Let Dg(3,(X'X)™) = s'(y — XB)X(X'X) ' X's(y — X ). In Figure 3, we compute the sim-
ulatedp-value functionﬁﬁs(ﬁo) for testing Hy(3,) on a grid of values ofj,, using N replicates
of the sign vectorﬁﬁs (B,) allows one to construct simultaneous confidence set§ fer(3*, 5?)
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(a) Example 1: well identified case (b) Example 2: misspecified case
Figure 2. Simulateg-value functions based on SST and SF

with any level. By construction, the confidence reg©@n . (3) defined as

Ci—a(B) = {85V (By) > al, (3.7)

has levell — « [see Dufour (2006)]. Hence, by constructid@r,_,, () corresponds to the intersec-
tion of the horizontal plan at ordinatewith the envelope oﬁﬁs (Bo)-

For higher dimensionsp(> 2), a complete graphical representation is not availablenang.
However, one can consider projection-based realizedlue functions for each individual compo-
nent of the parameter of interest in a similar way than pt@aebased confidence intervals. For
this, we apply the general strategy of projection on the detagimultaneoug-value function. The
projected-based realizgdvalue function for the componept is given by:

Proj.py (85) = max pRe[(85, ). (3.8)
BZeR
Figure 4 presents projection-based confidence intervateédndividual parameters of the previous
2-dimensional exampld—.22,.21] is a95% (conservative) confidence interval f6t. [—.38,.02]

is a95% (conservative) confidence interval f6f. Testing3' = 0 is accepted a% with p-value
1.0. Testing3? = 0 is accepted &% with p-value.06.

Controlled inference using simulated confidence distidmg and realizedp-values. Simulated
confidence distribution and realizgdvalues are Monte Carlo-based tools. Hence derived tests

10
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Figure 4. Projection-basegvalues.
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control the nominal size only far’'s such thain(IV + 1) € N; see Dufour (2006):
PN (By) < a]l =a Vasuchtha(N + 1) € N.

If «(N + 1) ¢ N, only bounds on the significance level are known, but theyarg close tox
whenN is sufficiently large:
Ia(N+1)-1)

N+1

< P[pN*(By) < a] <@ Vasuchthan(N +1) ¢ N.

Contrary to tests, simulated confidence distributions aalizedp-values are not evaluated at a
given significance levek but rather on a range of significance levéls, ..., «4). Hence, one
must choose carefullyv the number of replicates in order to control the significalesel for all
the a;’s, i.e. chooseN sufficiently large to havéN + 1)a; € N, Va; € (aq,...,a4). Inthe
previous illustrationsN = 9999 which insures that the significance levels are controlle@@@1.

4. Sign-based estimators

Sign-based estimators complete the above system of iierémtuition suggests to consider values
with the highest confidence degrée;, with the highesp-values. Estimators obtained by that sort
of test inversion constitute multidimensional extensiohthe Hodges-Lehmann principle.

12



4.1. Sign-based estimators as maximizers of;avalue function

Hodges and Lehmann (1963) presented a general principkiteedestimators by test inversion; see
also Johnson, Kotz and Read (1983). SupposeR andT (1, W) is a statistic for testing = 1,
againsty > p, based on the observatiom8. Suppose further thaf'(u, W) is nondecreasing in
the scalan:.. Given a known central value @ (ug, W), saym(u,) [for example By T (g, W),
the test rejects = 1, whenever the observed is larger than, sayn(u,). If that is the case, one
is inclined to prefer higher values pf The reverse holds when testing the oppositex (f.,) does
not depend on, [m(ig) = mo], an intuitive estimator of. (if it exists) is given byu* such that
T(w*, W) equalsmg (or is very close tang). p* may be seen as the value pfwhich is most
supported by the observations.

This principle can be directly extended to multidimensigparameter setups throughvalue
functions. Let3 € RP. Consider testingdo(5,) : 8 = 0B, versusH(5,) : f = (3, with the
positive statisticI’. A test based off’ rejectsH(3,) whenT'(53,) is larger than a certain critical
value that depends on the test level. The estimatgt isf chosen as the value gfleast rejected
when the levek of the test increases. This corresponds to the highwesiue. If the associated
p-value forHy(3,) is p(8y) = G(Ds(8y)|8y). whereG(z|8,) is the survival function oD (),
i.e.G(z|By) = P[Ds(By) > x], the set

M1 = arg max p(f3) 4.2)
BERP

constitutes a set of Hodges-Lehmann-type estimators. yidé-estimators maximize thevalue
function. There may not be a unique maximizer. In that casg n@aximizer is consistent with the
data.

4.2. Sign-based estimators as solutions of a nonlinear geaézed least-squares
problem

When the distribution of'(3,) and the correspondingvalue function do not depend on the tested
value (3,, maximizing thep-value is equivalent to minimizing the statistit(3,). This point is
stated in the following proposition. Let us dendtéx|3,) the distribution ofT'(3,) wheng = 3,
and assume this distribution is invariantdqAssumption 4.1).

Assumption 4.1 INVARIANCE OF THE DISTRIBUTION FUNCTION
F(z|8y) = F(z) Vx € R", V3, € RP.

Let us define

M, = argmax p((). 4.2)
BERP

My = arg min T'(3). (4.3)
BERP

Then, the following proposition holds.

13



Proposition 4.1 If Assumption 4.1 holds, theW 1 = M2 with probability one.

Maximizing p(3) is equivalent (in probability) to minimizing'(3) if Assumption 4.1 holds.
Under the mediangale Assumption 2.2, any sign-basedtg&tafls; does satisfy Assumption 4.1.
Consequently,

B,(£2,) € argmin s'(Y — XB)X 2, (s(Y — XB), X)X's(Y — X3) = Ma(Y, X, D) (4.4)

BERP

equals (with probability one) a Hodges-Lehmann estimaased onDg((2,,, 3). SinceDg(§2,,, 3)

is hon-negative, problem (4.4) always possesses at leassaation. As signs can only take 3
values, for fixedn, the quadratic function can take a finite number of valueschvientails the
existence of the minimum. If the solution is not unique, ongymnadd a choice criterion. For
example, one can choose the smallest solution in terms ofra opuse a randomization. Under
conditions of point identification, any solution of (4.4)dsonsistent estimator.

In models with sets of observationally equivalent values,any inference approach relying on
the consistency of a point estimator (which assumes poatttiication), gives misleading results
whereas a whole estimator set remains informative. Theoapgprof Chernozhukov, Hong and
Tamer (2007) can be applied here. Let us remind that the Moalt sign-based inference method
[Coudin and Dufour (2009)] does not rely on identificatiomditions and leads to valid results in
any case.

The sign-based estimators studied by Boldin et al. (199 yalutions of

A

Bully) € argmin /(Y — X3)XX's(Y — X3) = argmin SB(5), (4.5)

and

B,(X'X)™") e argmin s'(Y — XB)X(X'X)"'X's(Y — X3) = argmin SF(8).  (4.6)
pe RP BER

For heteroskedastic independent disturbances, we irteodeighted versions of sign-based esti-
mators that can be more efficient than the basic ones defin@ddbinor (4.6). Weighted sign-based
estimators are sign-based analogues to weighted LAD dstirfsee Zhao (2001)]. The weighted
LAD estimator is given by

erRr =

The weighted sign-based estimators are solutions of
~D

ﬁnX € argmin §'(Y — X8)X(X'X) 1 X'D's(Y — XJ3) (4.8)
BERP
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whereX = diag(dy,...,d,)X and(d;), i = 1,..., n € Rt*. Weighted sign-based estimators
that involve optimal estimating functions in the sense ofi@uabe (2001) are solutions of
~DX*

3.7 € argmin §'(Y — XB8)X* (X" X*)7'X*D's(Y — X3) (4.9)
BERP

whereX = diag(f1(0/X), ..., fo(0|X))X and f;(0|X),t = 1,...,n, are the conditional distur-
bance densities evaluated at zero. The inherent problemcbf& class of estimators is to provide
good approximations of;(0|X)’s. Densities of normal distributions can be used.

4.3. Sign-based estimators as GMM estimators

Sign-based estimators have been interpreted in the literais GMM estimators exploiting the or-
thogonality condition between the signs and the explayatariables [see Honore and Hu (2004)].
In our opinion, a strictly GMM interpretation hides the limkth the testing theory. That is the rea-
son why we first introduced sign-based estimators as Hodglestann estimators. The quadratic
form (4.4) refers to quite unusual moment conditions. Tlga sfansformation evacuates the un-
known parameters that affect the error distribution. lidates nonparametric finite-sample-based
inference when mediangale Assumption holds. However,timge where only the sign-moment
condition 2.1 is satisfied, the GMM interpretation of sigasbd estimators still applies and entails
useful extensions.

For autocorrelated disturbances, an estimator based orCasityh-based statistiDg(3, J; 1)
can be used:

Bt € arg min /(Y = XB)X[n(s(Y = X8), X' X's(Y - X), (4.10)

wherejn(s(Y — X[3), X) accounts for the dependence among the signs and the explamati-
ables. g appears twice, first in the constrained signs, second in #ighivmatrix. In practice,
optimizing (4.10) requires one to invert a new matfjxfor each value off whereas problem (4.6)
only requires one inversion df’X. In practice, this numerical problem may quickly become €um
bersome similarly to continuously updating GMM. We advectt use a two-step method: first,
solve (4.6) and obtaif¥,, (X' X)~"); compute then/; ! (s(Y — X3, ((X'X)~")), X) and finally
solve,

B e arg min /(¥ — XB)X[Ju(s(¥ — XB,). X)|”' X's(¥ ~ X3). (4.11)
S
The 2-step estimator is not a Hodges-Lehmann estimator amgyrilowever, it is still consistent and

share some interesting finite-sample properties with idaksign-based estimators. The properties
of sign-based estimators are studied in the next section.
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5. Finite-sample properties of sign-based estimators

In this section, finite sample properties of sign-basedredtrs are studied. Sign-based estimators
share invariance properties with the LAD estimator and aeglian-unbiased if the disturbance
distribution is symmetric and some additional assumptiemghe form of the solution set. The
topology of the argmin set of the optimization problem 4.4sloot possess a simple structure. In
some cases it is reduced to a single point like the empiriealiam of2p + 1 observations. In other
cases, it is a set. More generally, the argmin set is a uniacomfex sets but it is na priori either
convex nor connected. To see that it is a union of convex gstsgmark that the reciprocal image
of n fixed signs is convex.

5.1. Invariance

Sign-based estimators share some attractive equivarmaoperties with LAD and quantile estima-
tors [see Koenker and Bassett (1978)]. It is straightfodmar see that the following proposition
holds.

Proposition 5.1 INVARIANCE. If 3(Y, X) € My(Y, X, D), i.e.is a solution of 4.4), then

AB(Y,X) € My(\Y,X,DJ"), VYAeR (5.1)
BY,X)+y € MY +X~,X,D2"), VyeRP (5.2)
ATIB(Y,X) € My(Y,XA,D¥), forany nonsingulark x k matrix A. (5.3)
To prove this property, it is sufficient to write down the difént optimization problems. Equa-
tion (5.1) states a form of scale invariance:yifs rescaled by a certain facta?, rescaled by the
same one is solution of the transformed problem. Equatid®) gsates a form of location invariance,

while (5.3) states a reparameterization invariance wisheet to the design matrix: the transforma-
tion on 3 is given by the inverse of the reparameterization scheme.

5.2. Median unbiasedness

Moreover, if the disturbance distribution is assumed toymarsetric and the optimization problems
to have a unique solution then sign-estimators are mediaiased.

Proposition 5.2 MEDIAN UNBIASEDNESS  If u ~ —u and the sign-based estimatoris the
unique solution of minimization problem.§), theng is median unbiased, that is,

Med(B —B) =0

wheref, is the true value.
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6. Asymptotic properties

We demonstrate consistency when the parameter is identifiddr weaker assumptions than the
LAD estimator, which validates the use of sign-based estirsaeven in settings when the LAD
estimator fails to converge. Finally, sign-based estimsa&ne asymptotically normal. For results on
the LAD estimator asymptotic theory, the reader is refeerngst others to Bassett and Koenker
(1978), Knight (1989), Phillips (1991), Pollard (1991), M#&(1991), Fitzenberger (1997), Knight
(1998), El Bantli and Hallin (1999), or Koenker (2005).

6.1. Identification and consistency

We show that the sign-based estimators (4.4) and (4.11)cergistent under the following set of
assumptions:

Assumption 6.1 MIXING. {W; = (y;, x}) }i=1.2.... IS a-mixing of size-r/(r — 1) withr > 1.

Assumption 6.2 BOUNDEDNESS  z; = (xy4,...,%p) and Bloy™ < A < 00, h =
1,...,p,t=1,...,n, Vn e N.

Assumption 6.3 COMPACTNESS /[ € Int(©), where© is a compact subset &.
Assumption 6.4 REGULARITY OF THE DENSITY.
1. There are positive constanfg andp; such that, for alln € N,
P[fi(0|X) > fr] > p1, Vt=1,...,n, as.
2. fi(.]X) is continuous, for alh € N for all ¢, a.s.

Assumption 6.5 POINT IDENTIFICATION CONDITION. V¢§ > 0,37 > 0 such that
. /
hnrr_l)1£f - zt:P[|:ct5| > 7|t (021, ..., 2) > fr] > 0.

Assumption 6.6 UNIFORMLY POSITIVE DEFINITE WEIGHT MATRIX. 2,,((3) is symmetric defi-
nite positive for allg in ©.

Assumption 6.7 LOCALLY POSITIVE DEFINITE WEIGHT MATRIX. {2,(/) is symmetric definite
positive for all3 in a neighborhood of,.

Then, we can state the consistency theorem. The assumptensterpreted just after.
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Theorem 6.1 CONSISTENCY. Under model(2.1) with the assumptions 2.1 and 6.1-6.6, any
sign-based estimator of the type,

N

B,(£2,) € argmin §'(Y — X)X (2, (s(y — XB), X) X's(Y — X0) (6.1)
BERP
or 9
B, (£2,) € argmin §'(Y — XB)X 2, (s(y — X3), X) X's(Y — XB), (6.2)
BERP

where3 stands for any (first step) consistent estimatoBpis consistent,@is defined in equation
(6.2) is still consistent if Assumption 6.6 is replaced by Assionf.7.

Let us interpret precisely Assumptions 6.1-6.7 and comibam to the ones required for LAD
and quantile estimator consistency [see Fitzenberger7{188d Weiss (1991) for general setups].
Assumptions on mixing (6.1), compactness (6.3) and poenttification (6.4, 6.5, 6.6) are classical.
The mixing setup 6.1 is needed to apply a generic weak lawgé laumbers [see Andrews (1987)
and White (2001)]. It was used by Fitzenberger (1997) to shA® and quantile estimator con-
sistency with stationary linearly dependent processesovérs, among other processes, stationary
ARMA disturbances with continuously distributed innoeais. Point identification is provided by
Assumptions 6.5 and 6.4. Assumption 6.5 is similar to CaowlitD in Weiss (1991). Assumption
6.4 is usual in the LAD estimator asymptotitét is analogous to Fitzenberger (1997)’s conditions
(ii.b and c) and Weiss (1991)’s CD condition. It implies ttizdre is enough variation around zero to
identify the median. It restricts the setup for some “boutideeteroskedasticity in the disturbance
process but not in the usual (variance-based) way. Sodddiffeisivity, #(0) can indeed be seen as
an alternative measure of dispersion adapted to mediaaggthestimators. It measures the verti-
cal spread of a density rather than its horizontal spreadsaimdolved in Cramér-Rao-type lower
bound for median-unbiased estimators [see Sung, Stangerima David (1990) and So (1994)].
Besides, in Assumptions 6.6 and 6.7, the weight madjxs supposed to be invertible for estima-
tors obtained in one step whereas only a local invertibibtypeeded for two-step sign-estimators.
One difference with the LAD asymptotic properties reliesf@sumption 6.2. For sign consistency,
only the second-order momentsagfhave to be finite, which differs from Fitzenberger (1997) who
supposed the existence of at least third-order moments. alode all, we do not assume the ex-
istence of second-order moments on the disturbangesrhe disturbances indeed appear in the
objective function only through their sign transforms whpossess finite moments up to any order.
Consequently, no additional restriction should be impazethe disturbance process (in addition
to regularity conditions on the density). Those points wiitail a more general CLT than the one
stated for the LAD/quantile estimators in Fitzenbergerd{)%and Weiss (1991). The only works
we are aware of that study LAD estimators properties in casefiaite variance errors are those
of Knight (1989) and Phillips (1991) who derive LAD asymjtgproperties for an autoregressive
model with infinite variance errors, which are in the domdiattraction of a stable law.

®Assumption 6.4 can be slightly relaxed covering error tewite mass point if the objective function involves ran-
domized signs instead of usual signs.

18



6.2. Asymptotic normality

Sign-based estimators are asymptotically normal. This latdds under weaker assumptions than
the ones needed for LAD estimator asymptotic normality asgmted in Weiss (1991) and Fitzen-
berger (1997). Sign-based estimators are specially adiéptdreavy-tailed disturbances that may
not possess finite variance. The assumptions we need araltwifg ones.

Assumption 6.8 UNIFORMLY BOUNDED DENSITIES dfy < 4oo such that vn € N,V € R,

sup | fi(A|z1,...,2n)| < fu, as.

Under the conditions 2.1, 6.1, 6.2 and 6.8, we can déefiff@), the derivative of the limiting
objective function ap:

L() = Jim S Elnal (w5~ Byl )] = I Lo(5).  (63)
t
where )
L,(B) = - Z E[:Ct:c;ft(xg(ﬁ — Bo)lx1, - - ,xn)] (6.4)

t
The other assumptions are merely used to show asymptoticatity.

Assumption 6.9 MIXING WITH 7 > 2. {W; = (y;, x}) }i=1,2,... IS a-mixing of size-r/(r — 2)
with r > 2.

Assumption 6.10 DEFINITE POSITIVENESS OFL,,. L,(0,) is positive definite uniformly in.

Assumption 6.11 DEFINITE POSITIVENESS OF/,. J, = B[ Dots s(ug)mealys(us)) is positive
definite uniformly inn and converges to a definite positive symmetric mafrix

Then, we have the following result.
Theorem 6.2 ASYMPTOTIC NORMALITY. Under the assumptiond®.1), 6.1-6.6 and 6.9-6.11,

we have: R .
S Pn(B(20) — By) > N(0, 1) (6.5)

where
Sn = [Ln(60)“QnLn(60)]71Ln(ﬁ0)QanQnLn(ﬁO) [Ln(ﬁO)QnLn(ﬁO)]il

and

L, (By) = %ZE[xthft(O\xl,...,xn)}. (6.6)

t

Remark that wheif2, = J!, we have

[Ln(Bo) i La(B)] ™ 2V/n(B,(J7Y) = Bo) % N(0, ). (6.7)
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This corresponds to the use of optimal instruments and affisient estimation,3(J; ) has the
same asymptotic covariance matrix as the LAD estimator.sTharformance differences between
the two estimators correspond to finite-sample featuress fHsult contradicts the generally ac-
cepted idea that sign procedures involve a heavy loss ofnir#tion. There is no loss induced by
the use of signs instead of absolute values.

Note again that we do not require that the disturbance pso@esance be finite. We only assume
that the second-order momentsXfare finite and the mixing property ¢i¥;, ¢t = 1,...} holds.
This differs from usual assumptions for LAD asymptotic natity.® This difference comes from
the fact that absolute values of the disturbance processplaeed in the objective function by their
signs. Since signs possess finite moments at any order, eseeasily that a CLT can be applied
without any further restriction. Consequently, asymtotormality, such as consistency, holds
for heavy-tailed disturbances that may not possess finitan@e. This is an important theoretical
advantage of sign-based rather than absolute value-basietators anda fortiori, rather than
least squares estimators. Estimators for which asymptetimality holds on bounded asymptotic
variance assumption (for example OLS) are not accurateamhil settings because the variance
is not a measure of dispersion adapted to those settingsmdEsts, for which the asymptotic
behavior relies on other measures of dispersion, like tffesilrity, help one out of trouble.

The form of the asymptotic covariance matrix simplifies urgteonger assumptions. When the
signs are mutually independent conditionalXifimediangale Assumption 2.2], bom((X’X)—l)

andg(J, ') are asymptotically normal with variance

Sn = [Ln(Bo)] ' E

(1/n) Zwé] [Ln(Bo)) ™"
t=1
If » is ani.i.d. process and is independent®f then f;(0) = f(0), and
— F(xz}) "t (6.8)

In the general casef;(0) is a nuisance parameter even if condition 6.8 implies theiit be
bounded.

All the features known about the LAD estimator asymptotibdor apply also for th& H AC
estimator; see Boldin et al. (1997). For example, asymptetative efficiency of th&s H AC' (and
LAD) estimator with respect to the OLS estimator2igr if the errors are normally distributed
N(0,02), but SH AC (such as LAD) estimator can have arbitrarily large ARE withpect to OLS
when the disturbance generating process is contaminatedtligrs.

6.3. Asymptotic or projection-based confidence sets?

In section 4, we introduced sign-based estimators as Hddgf@smann estimators associated with
sign-based statistics. By linking them with GMM settingse then derived asymptotic normal-

®See Fitzenberger (1997) for the derivation of the LAD asytigs in a similar setup and Bassett-Koenker(1978) or
Weiss (1991) for a derivation of the LAD asymptotics undgnsndependence.
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ity. We stressed that sign-based estimator asymptotic aldynholds under weaker assumptions
than the ones needed for the LAD estimator. Therefore, Isgged estimator asymptotic normality
enables one to construct asymptotic tests and confideraeaig. Thus, we have two ways of mak-
ing inference with signs: we can use the Monte Carlo (finsieysle) based method described in
Coudin and Dufour (2009)- see subsection 2.2- and the cilssymptotic method. Let us list here
the main differences between them. Monte Carlo inferenigesren the pivotality of the sign-based
statistic. The derived tests are valid (with controlledelg\or any sample size if the mediangale
Assumption 2.2 holds. When only the sign moment conditidnhdlds, the Monte Carlo inference
remains asymptotically valid. Asymptotic test levels aoateolled. Besides, in simulations, the
Monte Carlo inference method appears to perform better allsamples than classical asymptotic
methods, even if its use is only asymptotically justifiede[€goudin and Dufour (2009)]. Never-
theless, that method has an important drawback: its coripuodh complexity. On the contrary,
classical asymptotic methods which yield tests with cdlgdoasymptotic level under the sign mo-
ment condition 2.1 may be less time consuming. The choiced®st both is mainly a question
of computational capacity. We point out that classical gstytic inference greatly relies on the
way the asymptotic covariance matrix, that depends on wmkrgarameters (densities at zero), is
treated. If the asymptotic covariance matrix is estimaltehks to a simulation-based method (such
as the bootstrap) then the time argument does not hold aeyniwth methods would be of the
same order of computational complexity.

7. Simulation study

In this section, we compare the performance of the signebasBmators with the OLS and LAD
estimators in terms of asymptotic bias and RMSE.

7.1. Simulation setup

We use estimators derived from the sign-based statiftig§?, (X' X)~!) and Ds(3, J, ') when

a correction is needed for linear serial dependence. Wedams set of general DGP’s to illustrate
different classical problems one may encounter in practige use the following linear regression
model:

yr = oy 00 + us, (7.1)

wherex; = (1,z2,,x3,) and 3, are3 x 1 vectors. We denote the sample sizeMonte Carlo
studies are based dl generated random samples. Table 1 presents the casesetedsid

In a first group of examples (A1l-A4), we consider classicdependent cases with bounded
heterogeneity. In a second one (B5-B8), we look at processetving large heteroskedasticity
so that some of the estimators we consider may not be asyingiptormal neither consistent
anymore. Finally, the third group (C9-C11) is dedicatedutmeorrelated disturbances. We wonder
whether the two-ste H AC' sign-based estimator performs better in small samplesttienon-
corrected one.

To sum up, cases Al and A2 presént. normal observations without and with conditional
heteroskedasticity. Case A3 involves a sort of weak noatimiependence in the error term. Case
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Table 1. Simulated models.

ALl:  NormalHOM:  (wa4, w34 u) “N(0,I3), t=1,...,n

A2 NormalHET:  (wa4, w34, 4:) "~ N(0, I3)
we = min{3, max[0.21, |zo.|]} X G, t=1,...,n

A3: Dep.HET, Tji = pueji—1+vl, j=1,2,
Py =5 w = min{3, max[0.21, |ze4|]} x V¥,
(2, v3,v%) il N(O,I3), t=2,...,n
v? andv$ chosen to insure stationarity.

A4:  Deb. design mat.: x5, ~ B(1,0.3), 25, " A(0,.012),

g 1/7\/(1 N(O, 1), Ty, Ug Independenﬂ; = 17 e, N

B5:  Cauchy dist.: (@24, x3.4)" ~ N(0, I2),
up "5 €y, uy, independentt = 1, ..., n.

B6:  Stoc. Volat.: (2,4, w3,.) bl N(0, I5), us = exp(ws/2)e; with

Wy = 0.5wt_1 =+ vy, Where€t lfl\/d N((), 1), Ut i"l\."d' X2(3)1
¢, ug, independent, = 1,...,n.

B7:  Nonstat. (a4, w30, 6) KEN(O,I), t=1,....n,
GARCH(1,1): up = orey, 02 = 0.8u?_; +0.802 ;.

B8: Exp. Var.: (@2, T3¢, €1) gt N(0,I3), up = exp(.2t)e;.
C9: AR(].)-HOM, ($2,t,$3,t,yy)l NN(O,Ig),t =2,...,n,

Pu = B Ut = Py Ut—1 + Vg’
(x21,231)" ~ N(0, I2), v} insures stationarity.

C10: AR(1)HET, Tji = puji—1+vl, j=1,2,
Py =5, we = min{3, max[0.21, |zo4|]} X Gy,
Pz = 5 Uy = puﬂ't—l + V%L’

i.49.d
(2, v v8) "N, ), t=2,...,n
v2,v$ andv¥ chosen to insure stationarity.

Cl11: AR(L)-HOM, (o0, 234, 00) ~ N(0,I3),t =2,...,n,
Py =9 Ut = P Ut—1 + VY,
(x21,231)" ~ N(0, I2), v} insures stationarity.
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A4 presents a very unbalanced scheme in the design matrias@when the LAD estimator is
known to perform badly). Cases B5, B6, B7 and B8 are otherscaktong tailed errors or arbi-
trary heteroskedasticity and nonlinear dependence. (2@de C11 illustrate different levels of
autocorrelation in the error term with and without hetesaksticity.

7.2. Bias and RMSE

We give biases and RMSE of each parameter of interest in Pahted we report a norm of these
three valuesn = 50 andS = 1000. These results are unconditional &n

In classical cases (A1-A3), sign-based estimators hawghtpuhe same behavior as the LAD
estimator, in terms of bias and RMSE. OLS is optimal in case Adwever, there is no important
efficiency loss or bias increase in using signs instead of LB&xsides, if the LAD is not accurate
in a particular setup (for example with highly unbalanceglawatory scheme, case A4), the sign-
based estimators do not suffer from the same drawback. BA&dsthe RMSE of the sign-based
estimator is notably smaller than those of the OLS and the leatimates.

For setups with strong heteroskedasticity and nonstatjotigturbances (B5-B8), we see that
the sign-based estimators yield better results than both &Ad OLS estimators. Not far from the
(optimal) LAD in case of Cauchy disturbances (B5), the sigasmators are the only estimators
that stay reliable with nonstationary variance (B6-B8). aésumption on the moments of the error
term is needed for sign-based estimators consistencyh&timatters is the behavior of their signs.

When the error term is autocorrelated (C9-C11), resultsvdked. When a moderate linear
dependence is present in the data, sign-based estimatergapd results (C9, C10). But when the
linear dependence is stronger (C11), that is no longer fhe.S H AC sign-based estimator does
not give better results than the non-corrected one in thedseted examples.

To conclude, sign-based estimators are robust estimatach ess sensitive than the LAD
estimator to various unbalanced schemes in the explanatoigbles and to heteroskedasticity.
They are particularly adequate when an amount an heterasteity or nonlinear dependence is
suspected in the error term, even if the error term fails tethgonary. Finally, the HAC correction
does not seem to increase the performance of the estimatoerideless, it does for tests. We show
in Coudin and Dufour (2009) that using a HAC-corrected stiatiallows for the asymptotic validity
of the Monte Carlo inference method and improves the te$bpeance in small samples.

8. Empirical applications

In this section, we go back to the two illustrations presgnteCoudin and Dufour (2007, 2009)
where sign-based tests were derived, with now estimatiamiria. The first application is dedicated
to estimate a drift on the Standard and Poor’'s Compositee Pnidex (3:P), 1928-1987. In the
second one, we search a robust estimate of the rafecofivergence between output levels across
U.S. States during the 1880-1988 period using Barro andiSdktin (1991) data.
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Table 2. Simulated bias and RMSE.

n = 50 oLs LAD SF 2SSHAC
S = 1000 Bias RMSE Bias RMSE | Bias RMSE| Bias RMSE
Al: B .003 142 .002 179 .002 179 .004 178
o .003 .149 .006 .184 .004 .182 .004 182
o —.002 .149 —.007 .186 —.006 .185 —.007  .183
[18][* .004 .254 .009 .316 .007 .315 .009 .313
A2: Bo —.003 .136 .000 .090 —.000 .089 —.000 .089
8, | —.0135 .230 —.006 218 —.010 .218 —.010 .218
o .002 142 —.001 .095 —.001 .092 —.001 .092
[18]] .014 .303 .007 .254 .010 .253 .010 .253
A3: By .022 .167 .018 .108 .025 107 .023 107
01 —1.00 .228 .005 215 .003 214 .002 215
Bs .001 .150 .005 .105 .007 104 .007 .105
18| .022 .320 .019 263 026 261 | .024  .262
A4: Bo —.001 174 .007 .2102 .010 2181 .008 2171
01 —.016 313 —.011 375 —.021 .396 —.021 .394
Bs —.100 14.6 077 18.4 .014 7.41 .049 7.40
[18]] .101 14.6 .078 18.5 .027 7.42 .054 7.41
B5: B 16.0 505 .001 251 .004 .248 .003 .248
o -3.31 119 .015 .264 .020 .265 .020 .265
By | —2.191 630 .000 .256 .003 .258 .001 .258
[18]] 26.0 817 .015 .445 .021 .445 .020 .445
B6: Bo —.908 29.6 —1.02 27.4 .071 2.28 .083 2.28
04 2.00 37.6 3.21 68.4 .058 2.38 .069 2.39
o 1.64 59.3 2.59 91.8 —-.101  2.30 —.089 2.29
18| 2.73 76.2 4.25 118 136  4.02 | 139  4.02
B7: By —127 3289 —.010 7.85 —.008 3.16 —.028 3.17
01 —81.4 237 .130 11.2 —.086  3.80 —.086 3.823
Bs —31.0 1484 —.314 12.0 —.021 3.606 | —.009 3.630
18| 154 4312 .340 18.2 089 6.12 | .091 6.15
B8: Bo | <-101  >1019 | <-10° > 10% 312 5.67 .307 5.67
By | > 10 > 1010 > 10° > 1010 782 5.40 .863 5.46
By | < =101 >1019 | < -10° > 10% .696 5.52 .696 5.55
18l | >10t° >10'°| >10° >10'°| 1.09 9.58 1.15 9.63
Co: B .005 279 .001 .308 .003 .309 .004 311
o —.002 .163 —.005 201 —.004  .200 —.005 .199
o .001 .165 —.004 .204 .003 .198 .002 .198
[18]] .006 .363 .007 .420 .006 418 .006 419
C1o0: Bo —.013 .284 —.010 315 —.015 314 | —.014 .314
054 —.009 182 —.009 .220 —.011 218 —.011 219
o .008 .189 .011 222 .007 215 .007 215
18| .018 387 .018 444 | 020 .439 | .019  .439
C11: By .070 1.23 —.026 .308 .058 1.26 .053 1.27
01 —.000 .268 .005 214 —.005 .351 —.008 .354
o .001 .273 —.004 210 .002 .361 —.001 .361
[18]] .070 1.29 .027 .430 .059 1.36 .054 1.37

* ||.|| stands for the Euclidean norm.
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8.1. Drift estimation with stochastic volatility in the error term

We estimate a constant and a drift on the Standard and Poong@site Price Index (SP), 1928-
1987. That process is known to involve a large amount of bekedasticity and have been used by
Gallant, Hsieh and Tauchen (1997) and Dufour and Valéry&20009) to fit a stochastic volatility
model. Here, we are interested in robastimation without modeling the volatility in the distur-
bance process. The data set consists in a series of 16,12 dlservations of5 F;, then converted

in price movementsy; = 100[log(SP;) —log(SP,—1)] and adjusted for systematic calendar effects.
We consider a model involving a constant and a drift,

y=a+bt+u, t=1,...,16127, (8.1)

and we allow thafw; : t =1,...,16127} exhibits stochastic volatility or nonlinear heteroskedas
ticity of unknown form. White and Breusch-Pagan tests farehmskedasticity both reject ho-
moskedasticity at%.’

We compute both the baskF sign-based estimator and tlhé7 AC' version with the two-step
method. They are compared with the LAD and OLS estimatesn,Mie redo a similar experiment
on two subperiods: on the year 1929 (291 observations) and$h90 days of 1929, which roughly
corresponds to the four last months of 1929 (90 observatidhge to the financial crisis, one may
expect data to involve an extreme amount of heteroskedwgstidhat period of time. We wonder at
which point that heteroskedasticity can bias the subsaagpimates. The Wall Street crash occurred
between October, 24tiBlack Thursday and October, 29thBlack Tuesday Hence, the second
subsample corresponds to the period just before the kragtd®ber), the krach period (October)
and the early beginning of the Great Depression (Novembermetember). Heteroskedasticity
tests reject homoskedasticity for both subsamples.

In Table 3, we report estimates and recall #38; confidence intervals fot andb obtained
by the finite-sample sign-based methatF{and SH AC);° and by moving block bootstrap (LAD
and OLS). The entire set of sign-based estimators is rahdree, all the minimizers of the sign
objective function.

First, we note that the OLS estimates are importantly biasetlare greatly unreliable in the
presence of heteroskedasticity. Hence, they are justtexbéor comparison sake. Presenting the
entire sets of sign-based estimators enables us to contfparewith the LAD estimator. In this
example, LAD and sign-based estimators yield very simitingates. The value of the LAD esti-
mator is indeed just at the limit of the sets of sign-basetin@gbrs. This does not mean that the
LAD estimator is included in the set of sign-based estingtbut, there is a sign-based estimator
giving the same value as the LAD estimate for a certain indial component (the second compo-
nent may differs). One easy way to check this is to comparentb@bjective functions evaluated at
the two estimates. For example, in the 90 observation satt@esign objective function evaluated
at the basic sign-estimators4g’s x 1072, and at the LAD estimat&. 10 x 10~2; the LAD objective

"See Coudin and Dufour (2009): White: 499\alue=.000) ; BP: 2781pfvalue=.000).

81929: White: 24.2p-values: .000 ; BP: 126)-values: .000; Sept-Oct-Nov-Dec 1929: White: 11 f8alues: .004;
BP: 1.76,p-values: .18.

®see Coudin and Dufour (2009)
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Table 3. Constant and drift estimates.

Whole sample Subsamples
Constant parameter (@) (161200bs) 1929(2910bs)  1929(900bs)
Set of basic sign-based .062 (.160,.163)«  (—.091,.142)
estimators (SF) [-.007,.105] % [—.226,.521]  [—1.453,.491]
Set of 2-step sign-based .062 (.160,.163) (—.091,.142)
estimators (SHAC) [—.007,.106] [—.135,.443]  [-1.030,.362]
LAD .062 .163 —.091
[.008, .116] [~.130,.456]  [—1.223,1.040]
OLS —.005 224 —.522
[—.056,.046]  [—.140,.588]  [—1.730,.685]
Drift parameter ( b) x 107° x1072 x1071
Set of basic sign-based | (—.184,—-.178) (—.003,.000) (—.097,—.044)
estimators (SF) [—.676, .436) [—.330, .342] [—.240, .305]
Set of 2-step sign-based (—.184,—.178)  (—.003,.000) (—.097,—.044)
estimators (SHAC) [—.699, .510] [—.260, .268] [—.204, .224]
LAD —.184 .000 —.044
[-.681,.313]  [-.236,.236]  [-.316,.229]
OLS .266 —.183 .010
[~.228,.761]  [-.523,.156]  [—.250,.270]

* Interval of admissible estimators (minimizers of the s@sjective function).
** 950% confidence intervals.

function evaluated at the LAD estimate2is).4 and at one of the sign-based estima&t&s.5. Both
are close but different.

Finally, two-step sign-based estimators and basic sigedastimators yield the same esti-
mates. Only confidence intervals differ. Both methods adedad expected to give different results
especially in the presence of linear dependence.

8.2. Arobust sign-based estimate of convergence across Usgates

One field suffering from both a small humber of observationd possibly very heterogeneous
data is cross-sectional regional data sets. Least squath®ds may be misleading because a few
outlying observations may drastically influence the estimaRobust methods are greatly needed
in such cases. Sign-based estimators are robust (in distdtEense) and are naturally associated
with a finite-sample inference. In the following, we examaign-based estimates of the rate of
(-convergence between output levels across U.S. Statee&eth880 and 1988 using Barro and
Sala-i-Martin (1991) data.
In the neoclassical growth model, Barro and Sala-i-Marfi@9(l) estimated the rate @

convergence between levels of per capita output across tBeStates for different time periods
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Table 4. Summary of regression diagnostics.

Period Heterosked.* Nonnormality**  Influent. obs.** Possible tats**
Basic eq. Eq Reg. Dum.
1880-1900 yes - yes - yes yes no no
1900-1920 yes yes yes yes yes yes yes (MT) yes
1920-1930 - - - - yes - no no
1930-1940 - - yes - yes yes no no
1940-1950 - - - - yes yes yes (VT) yes (VT)
1950-1960 - - - yes yes yes yes (MT) yes (MT)
1960-1970 - - - - - - no no
1970-1980 - - yes yes yes yes yes (WY) yes (WY)
1980-1988 yes - - yes yes yes yes (WY) yes (WY)

* White and Breusch-Pagan tests for heteroskedasticitypartormed. If at least one test rejectsb&t
homoskedasticity, a “yes” is reported in the table, els€ &"reported, when tests are both honconclusive.
** Scatter plots, kernel density, leverage analysis, Shaiiteed or standardized residuals3, DFbeta and
Cooks distance have been performed and lead to suspiciomofmormality, outlier or high influential
observation presence.

between 1880 and 1988. They used nonlinear least squarsnmae equations of the form
(1/T) (i, ¢ /yi.e—1) = a — [In(yi 7)) x [(1 — e PT) )T + 216 + €7,

i=1,...,48, T =8, 10 0r20, ¢ = 1900, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1988.
Theirbasic equatiordoes not include any other variables but they also considpecification with
regional dummiesHEqg. with reg. dun). Thebasic equatiorassumes that the 48 States share a
common per capita level of personal income at steady staile Wie second specification allows
for regional differences in steady state levels. Theiresgions involve 48 observations and are run
for each 20-year or 10-year period between 1880 and 1988r fEsellts suggest A-convergence
at a rate somewhat abo&; a year but their estimates are not stable across subpeandsjary
greatly from -.0149 to .0431 (for thieasic equation This instability is expected because of the
succession of troubles and growth periods in the last cgntdowever, they may also be due to
particular observations behaving like outliers and inflieg the least squares estimates. A survey
of potential data problem is performed and regression distigs are summarized in Table 4. It
suggests the presence of highly influential observatiorallithe periods but one. Outliers are
clearly identified in periods 1900-1920, 1940-1950, 19564l 1970-1980 and 1980-1988.

These two effects are probably combined. We wonder whichgbdnat variability is really due
to business cycles and which part is only due to the nonrobastof least squares methods. Further,
we would like to have a stable estimate of the rate of convergeat steady state. For this, we use
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Table 5. Regressions for personal income across U.S. S1&@8-1988.

Period Basic equation Equation with regional dummies
ﬁSIGN ﬂNLLS Hokok ﬁSIGN ﬁNLLS ok ok
1880 — 1900 .0012 .0101 .0016 .0224
[—.0068,.0123]*  [.0058,.0532]**  [-.0123,.0211]  [.0146,.0302]
1900 — 1920 .0184 .0218 .0163 .0209
[.0092,.0313] [.0155,.0281] [—.0088,.1063]  [.0086,.0332]
1920 — 1930 —.0147 —.0149 —.0002 —.0122
[—.0301,.0018] [-.0249,—.0049] [—.0463,.0389] [—.0267,.0023]
1930 — 1940 .0130 .0141 .0152 0127
[.0043,.0234] [.0082,.0200] [—.0189,.0582]  [.0027,.0227]
1940 — 1950 .0364 .0431 0174 .0373
[.0291,.0602] [.0372,.0490] [.0083, .0620] [.0314,.0432]
1950 — 1960 .0195 .0190 .0140 .0202
[.0084, .0352] [.0121,.0259] [—.0044,.0510]  [.0100,.0304]
1960 — 1970 .0289 .0246 .0230 .0131
[.0099, .0377) [.0170,.0322) [—.0112,.0431]  [.0047,.0215]
1970 — 1980 .0181 .0198 0172 .0119
[.0021,.0346) [-.0315,.0195]  [-.0131,.0739] [—.0273,.0173]
1980 — 1988 —.0081 —.0060 —.0059 —.0050
[—.0552,.0503] (.0130) [—.0472,.1344] (.0114)

* Projection-base®5% CI.
** Asymptotic 95% CI.
*** Columns 2 and 4 are taken from Barro and Sala-i-Marting1®

robust sign-based estimation withg (ﬂ, (X’X)—l). We consider the following linear equation:

(1/T)In(yi,e/yi.e-1) = a + Iy, 1)) + @58 + ¢ (8.2)
wherez;’s contain regional dummies when included, and we computgges-Lehmann estimate
for 3 = —(1/T)In(yT + 1) for both specifications. We also providé%-level projection-based
Cl, asymptotic Cl and projection-basgevalue functions for the parameter of interest. Results are
presented in Table 5 where Barro and Sala-i-Martin (1991l Sltesults are reported.

Sign estimates are more stable than least squares ones. vaityepetween —.0147, .0364]
whereas least squares estimates vary betWedin49,.0431]. This suggests that at leas?% of
the least squares estimates variability between subgsesie only due to the nonrobustness of least
squares methods. In all cases but two, sign-based estirraéawer (in absolute values) than the
NLLS ones. Consequently, we incline to a lower value of tlalstrate of convergence.

In graphics 6(a)-8(f) [see Appendix B], projection-bagedalue functions and optimal concen-
trated sign-statistics are presented for daasic equatiorover the period 1880-1988. The optimal
concentrated sign-based statistic reports the minimakvat Dg for a giveng (letting a varying).

The projection-baseg-value function is the maximal simulatgevalue for a givens over admissi-
ble values ofz. Those functions enable us to perform tests3085% projection based confidence
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intervals for( presented in Table 5 are obtained by cutting ghe&lue function with thep = .05

line. The sign estimate reaches the highestlue. Remark that contrary to asymptotic methods,
the estimator is not at the middle point of any confidencervaile Besides, the-value function
gives some hint on the degree of precision. Blgarameter seems precisely estimated in the period
30-40 [see graphic 7(b)], whereas in the period 80-88, thegzarameter is less precisely estimated
and thep-value function leads to a wider confidence intervals [seplgc 8(f)].

9. Conclusion

In this paper, we have introduced inference tools that caasbeciated with the Monte Carlo based
system presented in Coudin and Dufour (2009): ghalue function (and its individual projected
versions) which gives a visual summary of all the inferencailable on a particular parameter,
and Hodges-Lehmann-type sign-based estimators pfadue function associates to each value of
the parameter vector a confidence degree. It extends thedenoé distribution concept to mul-
tidimensional parameters and relies on a reinterpretaifahe Fisher fiducial distributions. The
parameter values the less rejected by tests (given the sasglization and the sample size) con-
stitute Hodges-Lehmann sign-based estimators. Thoseatstis are associated with the highest
p-value. Hence, they are derived without referring to asytiptconditions through the analogy
principle. However, they turn out to be equivalent (in prioibty) to usual GMM estimators based
on signs. We then present general properties of sign-bastedators (invariance, median unbi-
asedness) and the conditions under which consistency gmgpasic normality hold. In particular,
we show that sign-based estimators do require less assinamih moment existence of the distur-
bances than usual LAD asymptotic theory. Simulation stutfidicate that the proposed estimators
are accurate in classical setups and more reliable than msihods (LS, LAD) when arbitrary
heterogeneity or nonlinear dependence is present in tioe &mm even in cases that may cause
LAD or OLS consistency failure. Despite the programming pterity of sign-based methods, we
recommend combining sign-based estimators to the Montk Gemn-based method of inference
when an amount of heteroskedasticity is suspected in treeatat when the number of available
observations is small. We present two illustrative appilices of such cases. In the first one, we
estimate a drift parameter on the Standard and Poor’s Catagerice Index, using the 1928-1987
period and various shorter subperiods. In the second ong@rewide robust estimates for the
convergence between the levels of per capita personal memnmoss U.S. States occurred between
1880 and 1988.
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Appendix

A. Proofs

Proof of Proposition 4.1 We show that the set®/1 and /2 are equal with probability one. First,
we show that if3 € M2 then it belongs ta\/1. Second, we show that if does not belong ta/2,
neither it belongs tad/1.
If 3 € M2 then, )

DS(B) < DS(ﬁ)v VB e R?, (Al)

hence K
Ps[Ds(B) < Ds(B)] =1, VYBeR? (A.2)

and 3 maximizes thep-value. Conversely, ify does not belong td/1, there is a non negligible
Borel set, say4, such thatDg(8) < Dg(3) on A for somej. Then, asF(z), the distribution
function of Dg is an increasing function and is non negligible, and sincg is independent ofs
(Assumption 4.1),

F(Ds(B)) < F(Ds(8)). (A.3)

Finally, equation A.3 can be written in termspfalues
p(6) > p(B), (A.4)
which implies that3? does not belong ta/2. O

Proof of Proposition 5.2 ConsiderB(y,X, u) the solution of problem (4.4) which is assumed to
be unique, let3, be the true value of the parameferand suppose that ~ —u. Equation (5.1)
implies that

B(quvu) = _B(_quvu)

where both problems are assumed to have a single solutiarcetleonditional onX, we have
un~ —u= Bu, X, u) ~ —B(—u, X, u) = Med(ﬁ(u,X, u)) = 0. (A.5)
Moreover, equation (5.2) implies that

B(y,X,u) = ?( X507X U)‘f‘ﬁo
Blu, X, u) + 5. (A.6)

Finally, (A.5) and (A.6) entaiMed(3(y, X, u) — ;) = 0. O

Proof of Theorem 6.1 We consider the stochastic procdds = {W; = (y, z}) : 2 —
RP“}t:LQ,W defined on the probability spa¢€, F, P). We denote

aWe,B) = (a1(We, B),-..,aip(Wi, B))’
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= (s — T B)ar, .5y — B)a) s t=1,...,m.

The proof of consistency follows four classical steps. tF¥$~, ¢:(W;, 8) — E[q: (W3, B8)] is shown
to converge in probability to zero for afl € © (pointwise convergenck Second, that convergence
is extended to aveak uniform convergence Third, we adapt to our setup tleensistency theo-
rem of extremum estimators of Newey and McFadden (1994). Fpudhsistency is entailed by
the optimum uniquenessthat results from the identification conditions.

Pointwise convergence The mixing property 6.1 oV is exported to{qy (W, 5), k =
1,...,ph=12... HenceVg € O, Vk = 1,...,p, {qu(W, )} is ana—mixing process of
sizer/(1 — r). Moreover, condition 6.2 entailE|q:, (W, 3)|"+° < oo for somes > 0, for all
te N, k=1,...,p. Hence, we can apply Corollary 3.48 of White (2001)&@. (W, ) }1=12,...-

It follows V3 € O,

1 n
E Zth(Whﬂ) - E[qtk(Wth)] ﬂ) 0 k= 17° Y 2
t=1

Uniform Convergence We check conditions Al, A6, B1, B2 of Andrews (1987)'s géneveak
law of large numbers (GWLLN). Al and B1 are our conditions &8 6.1. Then, Andrews defines

qZIZ(WZvﬂvp) = . sup sz(VVmB)a
BEB(B,p)

QLik(Wivﬂvp) = . inf sz(VVmﬁ)a
BEB(B,p)

whereB(3, p) is the open ball aroun@ of radiusp. His condition B2 requires thaﬁ(Wt,ﬂ,p),

qri (W, B, p) and gy (W;) are random variablesiZi (., 8, p), qru(., 3, p) are measurable func-

tions from (2, P, F) to (R, B), Vt, B € ©, p, whereB3 is the Borels-algebra orR and finally,

thatsup Eq.,(W;)¢ < oo with € > r. Those points are derived from the mixing condition 6.1 and
t

condition 6.2 which insures measurability and providesnoled arguments.

The last condition (A6) to check requires the following: Lebe ac-finite measure that domi-
nates each one of the marginal distributiondif ¢ = 1,2.... Let p;(w) be the density ofV;
w.rt. w, gu(Wy, B)pe(Wy) is continuous in3 at 3 = * uniformly in ¢ a.e. w.r.t. u, for each
g% € O, qu(W, () is measurable w.r.t. the Borel measure for ea@nd eachs € ©, and
S supi>o, geo lau (W, B)|pe(w)du(w) < oo. Asu, is continuously distributed uniformly in[As-
sumption 6.4 (2)], we havé,[u; = z;0] = 0, V3, uniformly in ¢. Then,qy is continuous in3
everywhere except on®-negligible set. Finally, sinceg;, is L1-bounded and uniformly integrable,
condition A6 holds.

The generic law of large numbers (GWLLN) implies:

1 & , , :
(@) — E E[q:(W;, )] is continuous or® uniformly overn > 1,
n
i=0
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(b) glelg %;%(Wta B) — Eq(Ws, B)] — 0

asn — oo in probability underP.

TheConsistency Theorentonsists in an extension of Theorem 2.1 of Newey and McFai894)
on extremum estimators. The steps of the proof are the satrikeblimit problem slightly differs.
For simplicity, the true value is taken to be 0. First, theaganlaw of large numbers entails that

1 . .
lim ~ " E[s(u; — x}8)zy] is continuous o, k = 1,...,p. (A7)
n—oo N &
Let us define
1 n
Qn(B) = - > aps(u —2iB)|, k=1,....p,
t=1
1 n
QM (B) = - ;E[katS(Ut B, k=1,...,p.

We consideX 3, },>1 a sequence of minimizers of the objective function of the-wefighted sign-

based estimator )
p
Ly (zka _ x;m) _ SRk
k=1 t

k
Then for alle > 0, 6 > 0 andn > Ny, we have:

P >1-4. (A.8)

D IQuBIP <D [QRO) +e/3
k

k

Uniform weak convergence @}* to QE* at 3, implies:

[QE*(8,)12 < [QF(B8,)]> + €¢/3p, k =1,...,p, with probability approaching one as— oo,
(A.9)
hence,

D IQEx(B,)17 < D [Qk(B,)]* + /3, with probability approaching one as— co.  (A.10)
K K

With the same argument, At= 0

D IR0 < > [QEF(0)]? + /3, with probability approaching one as— oo.  (A.11)
k %
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Using (A.10), (A.8) and (A.11) in turn, this entails

D IREF(B1 < Z [QE*(0)]? + €, with probability approaching one as— co.  (A.12)
k
This holds for any, with probability approaching one. L& be any open subset 6f containing
0. As© N N¢ is compact andim,, >, [Q:*(3)]? is continuous (A.7),

33" € ©N N¢suchthat sup lim Y [QEF(B)]? = hm [QEk(p
o ) | 2|

Provided thab is the unique minimizer, we have:
lim » " [QFF(5%)]* > lim Y "[QF*(0)]?, with probability one.
k k

Hence, setting
1 o
= 5 { hHl E Q k }

it follows that, with probability close to one,

hmz QER(B))? < = [hmz [QEx (3% + liTILn Z[ka(O)]Ql < sup hmz (QEk (3
k

B€ONNe T

Hence,3,, € N. As this holds for any open subsist of © we conclude on the convergence®f
to 0.

Foridentification, the uniqueness of the minimizer of the sign-objective fiamcis insured by the
set of identification conditions 2.1, 6.5, 6.4, 6.6. Theseditions and consequently the proof, are
close to those of Weiss (1991) and Fitzenberger (1997) foiLthD and quantile estimators. We
wish to show that the limit problem does not admit anotheutsmh. When{2,,(5) defines a norm
for eachg (condition 6.6), this assertion is equivalent to

1
lim F |- — = = R?, A.l
Jim B % s(ug — x40)x ] 0=0=0,6¢ (A.13)
and
. 1
nlLIgo Eg s(ug — 249) ] =0=0=0, 6 € RP. (A.14)

t
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Let A(6) = E[L 3, s(ug — x}6)x¢|w1, . .., xp]. Then,

i ¢

1 x}6 x}6
Els(u; — 2}0)|x1, ..., xp] = 2 [5 — / fe(ulxq, ... ,xn)du] = —2/ filulzy, ..., x,)du]
oo 0

E[A

1
Eg s(ug — 2p8)xe|z1, . o0 | o -
t

Note that

HenceA(d) can be developed far > 0 as
9 x4
A((S) = 5 ngé I{\x£6|>7'} I{xéd>0} /0 —ft(u\xl, e ,xn)du
0

+1(15<0) / fr(u|zy, ... xn)du

)

x4}

+I{|x,@6\§7} I{$25>0} /0 —filu|z1, ... zp)du

0
T zy5<0) /,6ft(u\$17---7$n)dul }
Tt

Then,

) )
E[A((S)] = F {5 ZJL‘Q(S [I{x26|>7'} (I{x25>0}/0 —ft(u|x1, ce ,:cn)du
0
+1 2 5<0) /, fe(ulzy, ... zn)du

36
+1{ja151<ry ({a 5>0}/ —fr(ulzy,. .. 2n)du

+ I{x;5<o}/ ft(u|x17'~>$n)du)] }
x0

Remark that each term in this sum is negative. Hen@B[A(d)]) < 0 and|E[A(0)]| = —E[A(4)],
and

z,8

|E(4)] = Zfﬂtﬂ{\x 1557} (I{x 1550} fe(ulzy, ... z,)du
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0
—I{IQJSO} //5 ft(u|x1, ce ,xn)du>]
Tt

2 )
- Z xQ5I{|$25‘ST} (I{ggébo} /0 frlulzy, ... xn)du

0
_I{$£5§0} //5 ft(u|a:1, . ,xn)du>]

+EB

2 x}6
> B > Tusisn <$Q5I{w;5>o}/0 fe(ulzy, ... wy)du
0
| i(ule ) (A.15)
Tt
9 )
2 E E Z I{|x;5‘>7} $;(5I{x£5>0} /0 ft(u\arl, e ,xn)du
0
— x;él{xé(ggo} /’5 fe(ulzy, ... xp)du| [fe (0|21, ..., 24) > frlp1 (A.16)
Tt
2
> pFE {ﬁ > Iusisrymfrdl fiOa, . ) > fL} , (A.17)
2
> i frd- > Pllats| > 71 fi(0l2y, ... 20) > f1)]. (A.18)

To obtain inequation (A.15), just remark that each term isitp@. For the inequation (A.16) we
use condition 6.4. For inequation (A.17) we minorgtg)| by  and each integrals by;,d; where
dy = min(7,d/2). Condition 6.5 enables us to conclude, by taking the limit,

lim |E[A(S)]| > 27p1 frd x liminf P[|z}6| > 7|f;(0|z1,...,2,) > fr] >0, V& > 0,(A.19)

hence, we conclude on the uniqueness of the minimum, whighhvedast step to insure consistency
of the sign-based estimators. O

Proof of Theorem 6.2 We prove Theoren6.2 on asymptotic normality. We consider the
sign-based estimatoi’((zn) where §2,, stands for any x p positive definite matrix. We apply
Theorem 7.2 of Newey and McFadden (1994), which allows td deéth noncontinuous and
nondifferentiable objective functions for finite. Thus, we stand out from usual proofs of
asymptotic normality for the LAD or the quantile estimatds which the objective function is at
least continuous. In our case, only the limit objective fiortis continuous (see the consistency
proof). The proof is separated in two parts. First, we shaat f{3) as defined in equation (6.3)
is the derivative ofim,, ... 2 >, E[s(u; — z}(8 — B;))z:]. Then, we check the conditions for
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applying Theorem 7.2 of Newey-McFadden.

The consistency proof (generic law of large humbers) inspinat
1 n
=~ Bls(u —xi(8 = Bo))ar] (A.20)
t=0

is continuous or@ uniformly overn. Moreover condition 6.2 specifies that is L2 bounded.
As the fiy(\|x1,...,x,) are bounded by uniformly overn and A (condition 6.8), dominated
convergence allows us to write that

8—855[%3(% —24(B = By))]| = Exxifi(x4(8 — Bo)lzt, ..., xn)]. (A.21)

And, these conditions imply that

n

Lo(B) = = 3 Elwa (w5~ o)k, .- a)] (A.22)

t=1

converges uniformly i to L(;3). Uniform convergence entails thiatn,, % | E[s(us — 2, (68—
By)) ] is differentiable with derivative.(3).

We now apply Theorem 7.2 of Newey and McFadden (1994) whiekgits asymptotic normality
of a minimum distance consistent estimator with nonsmoabjkative function and weight matrix
2, 2 2 symmetric positive definite. Thus, under conditions forgistency (2.1, 6.1-6.6), we
have to check that the following conditions hold:

(1) zerois attained at the limit bg,;

(77) the limiting objective function is differentiable at, with derivative L(3,) such that
L(By)2L(5,)" is nonsingular;

(791) [y is an interior point of9;
(iv) \/ﬁQn(ﬂO) - N(07 J) ;
(v) for anys, — 0, supyg_g, | VallQu(B) — Qu(Bo) — EQ(B)[|/(1+ Va5 = Boll) + 0.

Condition (i) is fulfilled by the moment condition 2.1. Cotidn (ii) is fulfilled by the first part of
our proof and condition 6.10. Then, Condition (iii) is imgadi by 6.3. Using the mixing specification
6.9 of {us, Xt }+=12... and conditions 2.1, 6.2, 6.7 and 6.11, we apply a White-Dortzogentral
limit theorem [see White (2001), Theorem 5.20]. This fuifidondition (iv) of Theorem 7.2 in
Newey and McFadden (1994):

Vnd 2Qu(8y) — N(0, 1) (A.23)

36



whereJ,, = var [ﬁ > 7 s(u;)x;|. Finally, condition (v) can be viewed as a stochastic equico
tinuity condition and is easily derived from the uniform gergence [see McFadden remarks on
condition (v)]. Henceg({2,,) is asymptotically normal

\/5551/2 (B(Qn) - 60) - N(0>Ip)'

The asymptotic covariance matrixis given by the limit of

Sn = [Ln(B0) 920 (B0) L (B0)] " Ln(B0) 20(80) Jn 20 (89) Ln (B0) [Ln (B0) 20 (B0) Ln (Bo)] -

When choosing?,, = f;l a consistent estimator of, !, S,, can be simplified:

VS 2B = Bo) — N0, 1)

with R
Sn = [Ln(Bo)Jy ' Ln(Bo)] "

When the mediangale Assumption (2.2) holds, we find usualteesn sign-based estimato;&(Ip)
andB((X’'X)~!) are asymptotically normal with asymptotic covariance iratr

7’L2 !
lim S, = lim — E(xx))
n—00 n—oo 4

-1
ZE(a:t:c;ft(mX))] .

> E(z} £:(01X))

B. Detailed empirical results: concentrated statistic andorojected p-
value graphics

This appendix contains graphics of concentrated signebsisgistics and projectegvalues for the
(6 parameter in the Barro and Sala-i-Martin application.
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Figure 5. Concentrated statistics and projegta@lues (1880-1930)
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Figure 6. Concentrated statistics and projegta@lues (1930-1960)
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Figure 7. Concentrated statistics and projegta@lues (1960-1988)
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