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Abstract

This paper proposes a framework for demand estimation with data on bids, bidders’ iden-

tities, and auction covariates from a sequence of eBay auctions. First the aspect of bidding

in a marketplace environment is developed. Form the simple dynamic auction model with

IPV and private bidding costs it follows that if participation is optimal the bidder searches

with a ”reservation bid” for low-price auctions. Extending results from the empirical auc-

tion literature and employing a similar two-stage procedure as has recently been used when

estimating dynamic games it is shown that bidding costs are non-parametrically identified.

Unlike in a static auction model valuations are only identified up to location. The procedure

is tried on a new data set. The median cost is estimated at around 1% of transaction prices.

1 Introduction

The internet greatly reduced the transaction costs of selling objects via auctions and of partici-

pating in auctions. Entrepreneurs soon exploited this fact and developed platforms that offered

standardized selling mechanisms on the basis of auctions which can be used by any interested

individual at low costs. The story of eBay is probably the most stunning one: Every day sellers
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now offer millions of items over individual eBay auctions. The auction house claims to be the

most popular shopping address for online buyers. What once started off as an e-garage sale by

now has become a fully developed marketplace for private and professional resale of new and

used goods.

eBay’s success story did not go unnoticed. eBay’s reputation mechanism (e.g. Lucking-Reiley

et al. (2000) and Houser and Wooders (forthcoming)) as well as aspects of its specific auction

rules (e.g. Roth and Ockenfels (2002)) have received considerable attention in the scholarly

literature. The rich and readily available data further has been used to infer bidders’ valuations

(e.g. Bajari and Hortacsu (2003) and Song (2004)). In all of this work the choice set of a

bidder comprise a single eBay auction. Whenever a bidder comes to eBay, she though faces

not one but a multitude of auctions, closing one after the other, of which many offer similar

products. By employing a single-unit static auction framework the literature thus ignores a

primary idiosyncracies of this type of market. Further, by focusing on very specific products

within the group of collectibles,1 authors have lost sight of eBay’s most important segment, that

for standardized new products such as consumer electronics, computers, domestic appliances,

DVDs, etc.

This paper argues that ignoring alternative auctions in the bidder’s choice set leads to wrong

conclusions about her behavior and, hence, delivers incorrect estimates of bidders’ valuations.

This is demonstrated with a simple dynamic bidding model whose assumptions provide a good

description for auctions within eBay’s off-the-shelf segment. The model emphasizes that, when

confronted with an infinite sequence of stochastically equivalent auctions, bidders optimally

try in several auctions and choose at the beginning of each new auction on the basis of their

valuations for the product on offer and their bidding costs whether to participate in this specific

one. It follows for the bidding strategy that it is optimal for a bidder not to bid her valuation

but her valuation less her continuation value. Due to the additive continuation value, non-

parametric identification of bidders’ valuations is, without further assumptions, only possible

up to location. The panel structure of the data though allows to identify bidders’ costs. Using

data from auctions for a hand-held computer from eBay.de it is shown that the model delivers

realistic estimates for these costs.

1See e.g. Lucking-Reiley, Bryan, Prasad and Reeves (2000) and Bajari and Hortacsu (2003) for coins, Song

(2004) for university yearbooks, and Jin and Kato (2005) for baseball cards.
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The eBay environment will be captured as follows: When coming to eBay, a bidder faces

an infinite sequence of second price auction which offer comparable products. Her problem is

to acquire one of these products for a reasonably cheap price. In principle she can try as often

as she wishes. However, bidding is costly. When thinking about an optimal strategy the bidder

weights the cost of participation against the expected return from participating. The expected

return depends not only on her own bid but also on the competitors’ behavior. Bidders believe

that competitors’ bids always represent a random draw from the same distribution. The bidder

then basically faces an optimal stopping problem. Consequently, if participation is optimal, she

searches with a “reservation bid” for low-price auctions. The reservation bid consists of shading

her valuation by her continuation value.2

A key characteristic of the model is that bidders find it costly to bid in an auction. These

costs reflect, e.g., connection charges and the time spent in front of the computer when placing a

bid.3 In this model costs are allowed to differ: While some people enjoy bargain hunting, others

find they could spent their time better elsewhere; while some have access to a fast internet

connection or might be allowed to use their computer at work, others rely on a slow modem

and bear the connection charges themselves. Different costs lead to different continuation values

and hence different bidding strategies. Observed bids and transaction prices thus vary, not only

because of differing valuations but also due to different costs. This reflects insights from the

search literature: Price dispersion is caused by search frictions.

The model further relies on the assumption that a bidder does not update her beliefs about a

specific competitor after participating in an auction. While this is rather restrictive, it provides

a good approximation to eBay’s off-the-shelf segment. If there is a lot of entry and exit and

stochastic components to valuations,4 updating the beliefs about a specific competitor provides

little payoff since the bidder is neither sure that this competitor will also bid in the next auction

nor what his valuation will be. The assumption also implies, an individual bidder can influence

neither the number nor the future distribution of competitor’s characteristics by his current bid

or participation decision. It thus reflects the marketplace characteristic of eBay, which means,

2This is a well known result from the sequential auction literature. Standard sequential auction models,

however, do not provide a good approximation to the eBay market since they assume a fix pool of products for

which a much larger number of predetermined bidders compete until none is left.

3See also Bajari and Hortacsu (2003).

4For stochastic valuations in sequential auctions see e.g. Engelbrecht Wiggans (1994).
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the competition among a multitude of anonymous strangers.

Estimation of the parameters of interest, namely the distribution of valuations and the

individual bidding costs, is complicated by unobserved winning bids, endogenous selection, and

correlation across bids of the same bidder. Further, there is no closed from solution for the value

function as a function of the unobserved costs. Full information Maximum Likelihood inference

is thus computationally intensive and would have to rely on several parametric assumptions. I

suggest a stepwise procedure instead which allows me to show, both the distribution of valuations

(up to location) and the costs are non-parametrically identified from the data.

First, valuations are inferred by exploiting information on the ordering of the observed and

unobserved bids as is done in the empirical auction literature (for overviews see Laffont and

Vuong (1996), Hendricks and Porter (forthcoming) or Athey and Haile (2002)). For this pur-

pose an identification result by Song (2004) is extended to the case of asymmetric bidders:

Information on the second and third highest bid and on the identities of the winner and the sec-

ond highest bidder identifies the individual parent bid distributions. From the bid distributions

the distribution of valuations is identified up to location. Next, the parent bid distributions are

used to provide estimates of the unobserved winning bids, the highest bid of the competitors,

and bidders’ winning odds. With this information it is finally possible to compute a bidders’

costs from an optimality condition of the model.

The approach to first estimate the winning odds and then use these estimates to infer the

model parameters, here the costs, from observed optimal strategies is similar in spirit to Guerre,

Perrigne and Vuong (2000). The stepwise procedure resembles the approach used in the literature

on estimating dynamic games (see Bajari, Benkard and Levin (2005) and Pakes, Ostrovsky and

Berry (2005)): Computation of the value function can be circumvented by first estimating those

structural parameters which determine per period optimal policies and then estimating the

parameters which affect behavior only via dynamic considerations from equilibrium conditions.

The procedure is tried on a data set of 788 auctions for a Compaq PDA (personal digital

assistant or palm pilot) with a mean transaction price of 470e . First, the distribution of

bidders’ valuations is recovered. Secondly, individual specific bidding costs are computed. This

additional information derives from the bidders’ participation decision and from the fact that

at eBay bidders are observed with their identities over a sequence of auctions. The resulting
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distribution of costs is highly skewed with a median of around 1% of the average transaction

price.

While the estimation procedures differ, it is interesting to compare the results to those

obtained in the search literature. Estimating search models has a long history in the labor

market literature (e.g. van den Berg and Ridder (1998)). Recent contributions in IO are

Sorensen (2001), Hong and Shum (2003), and Hortacsu and Syverson (2004). The search costs

which are needed to justify the observed price dispersion are often very high. The advantage

of the data from eBay is that the “reserve bid” is observed in every auction, even when a

bidder is not winning, and that very detailed information on the covariates is available. This

allows to distinguish price dispersion caused by search frictions from that induced by product

differentiation. The costs which are estimated here are lower than in both Sorensen (2001) and

Hong and Shum (2003).

The next section introduces the model. The data is described in section 3. Section 4 discusses

identification while section 5 goes into the details of the estimation procedure. The results are

provided in Section 6. Section 7 concludes.

2 Model

When searching at eBay’s homepage for a certain product, the bidder gets back an overview

list with auctions which all offer variants of the product. By clicking into the items of the list

the bidder comes to individual auction pages where she finds detailed information. The choice

set of the bidder though comprises not only the auctions in this list but also new ones which

open all the time. There is no restriction as to how many auctions a bidder can participate in,

neither simultaneously nor over time. In each auction the bidding rules allow a bidder to either

bid incrementally as in an English auction or to submit her maximum willingness to pay to a

proxy bidding software that will then bid for her. Sellers can specify the minimum bid5 and the

length of an auction. From the latter it follows that there is a ”hard close”, that is, an auction

ends when time is up and not when bidding activity ceases.6 The rules do not specify when a

bidder can enter an auction: Bidder’s are free to abstain from bidding for a while or to only

5At eBay.de there exists no secret reserve price.

6If no bid is yet placed auctions can also be stopped by ”buy-it-now” given the seller made this option available.
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enter in the last seconds of the auction. Furthermore, the pool of active bidders permanently

changes since some bidders retire from bidding while new ones get interested in the product and

join the pool. Thus, a bidder never knows for sure how many people are currently competing

for the product nor whether the observed bid is the final bid of a competitor.

Besides being a rich source for observing strategic interaction among individuals, auctions

became the focus of econometric and applied work since, as opposed to many other situations

where people interact, the rules of the game are explicitly stated and common knowledge to all

participants at the outset of the game. Also, many of the auctions for which data is available,

e.g. procurement auctions, have been designed by economists and therefore come close to what

is taught in theory. Models for a structural empirical analysis are therefore readily available.

This does not hold true for eBay. The just describe setting does not fit any of the textbook

examples. Further, eBay’s rules are not so clear cut as many details are left to the discretion

of the competing parties. This section therefore introduces a simple dynamic bidding model

for eBay. After the main assumptions, bidders’ optimal strategies in a simplified version of the

setting are presented in the second subsection. While being too stylized for an empirical analysis

it helps to understand the basic mechanism. Finally, optimal strategies under the general setup

are analyzed. The aim of this paper is to focus on one of the main novelties of this type of

market. To be able to model it, I have to abstract from other aspects in the bidder’s decision

problem. The section therefore concludes with a critical discussion of the model’s assumptions

and its limitations.

2.1 Setup

The following six assumptions provide the basis for the theoretical model. The latter discussion

shows that many of them can be relaxed for sake of the theoretical model. More complexity

though goes at the expense of non-parametric identification and is therefore omitted.

Assumption 1. Vickrey Auction. The bidding rules in each auction can be approximated by

a Vickrey auction.

By assuming a second price sealed bid auction, I claim, that all that matters in an eBay

auction are the last minutes when bidders cannot observe their competitors’ actions anymore.

Most data sets on eBay, including my own, show a pronounced increase in bidding activity

towards the very end of an auction; actual bidder’s thus seem to find it in their best interest to
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bid late. The literature on eBay provides several reasons why a bidder might be reluctant to

reveal private information during the course of an auction (see e.g. Roth and Ockenfels (2002),

Bajari and Hortacsu (2003), Wang (2003)). In contrast, there is, to my knowledge, no theoretical

evidence how early bidding could benefit a bidder.

Assumption 2. Discrete Time Infinite Horizon. In each period t = 1, ..,∞ a new Vickrey

auction for the product is on offer.

Since by Ass. 1 all that matters is the end, auctions can be sorted into a sequence. Sequential

second price auctions have been studied before (e.g. Weber (2000)). This literature, however,

starts from a finite pool of products for which a much larger number of bidders compete until

none is left. At eBay new sellers can enter the marketplace whenever they want. As long as

the number of products is not limited exogenously - which is unlikely in the case of off-the-shelf

products - it is thus more appropriate to approximate the supply side by an infinite number of

auctions. For simplicity time will be discrete and in each period exactly one auction is open.

Assumption 3. IID Shocks. Supply side details st = (xt,at) are drawn at the beginning of

each period independently from a distribution Fs with compact support S.

At eBay products are rarely exactly the same: Some are new others used, some come with

additional extras or have little defects, etc. Instead of homogenous products I thus assume

stochastically equivalent ones. Also details in the auction rules change. Both, product char-

acteristic, xt and auction details, at, here a minimum bid (reserve price, rt), the duration of

an auction, or the availability of a buy-it-now option (bynt)7, follow an iid stochastic process.

Details of future auctions are only realized after the preceding auction ended.

Ass. 1 - 3 summarize the supply side. It can already be seen that a bidder who participates in

the game faces an intertemporal optimization problem. In solving the model I restrict attention

to Markov perfect equilibria in pure and symmetric strategies. Given such strategies exist, they

will, besides the supply side state variables, depend on bidders’ characteristics:

Assumption 4. IPV. Each potential bidder i draws her valuation, vit, after the realization of

s from a continuous density fv(·|xt) defined on [v(xt), v(xt)]. It remains private information.

7Since I do not have enough information on the byn option in the data, I will ignore it in the following. The

model could though explain why bidders take this option: If buying by byn is less costly since less time consuming

than bidding, bidders would exercise the option if the byn price it not too high.
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The focus of this paper is on eBay’s market segment for off-the-shelf products that are fre-

quently sold outside eBay. They are presumably mainly acquired for personal usage. The PV

assumption therefore seems more applicable and is taken as a good approximation to the true

model.8 The valuation depends on product characteristics and bidder i’s preferences. Condi-

tional on product characteristics, valuations are independent across individuals and over time.

Assumption 5. Private Bidding Costs. Bidder i incurs a bidding cost ci. It is drawn before

entering the market for the first time from a common and continuous density fc(·) defined on

[c, c]. It remains constant over time and private information.

While there is no cost in money terms for a bidder to participate in an eBay auction nor

for buying the product,9 bidders have to spent time sitting in front of the computer and pay

connection charges. Bidders presumably differ in the value they attach to their time, in their

connection speeds and connection costs. Therefore, these costs differ across bidders.

The personal characteristics of bidder i in auction t are summarized by the vector νit =

(vit, ci) with density fν(νit|xt) = fv(vit|xt)fc(ci).

From here if follows that a bidder has two strategic variables. Given positive bidding costs,

she has to decide whether to participate in auction t (δit = 1) or not (δit = 1). Let Dit denote

the set of vit for which participation of bidder i with cost ci is profitable in t:

Dit = D (ci, st) = {vit : δ∗it = δ (vit, ci, st) = 1} . (1)

When participation is optimal, the bidder places her optimal bid:

b∗it = b(νit, st) = bit(νit, st).10 (2)

Note that the strategies do not include any state variables which describe competitors. This

is correct under the following two assumptions which complete the setup:

8See Bajari and Hortacsu (2003) for common values and the winners curse in the market for coins at eBay.

9eBay does not charge bidders any fee. Instead, it charges a fixed listing fee to sellers which varies with the

auction details a seller chooses and a variable sales commission. eBay forbids sellers to role this fee over to bidders.

10I assume, a bidder can choose any bid on the real line, that is, I ignore the minimum increment of 1e that

eBay’s rules require since it is very small compared to the average transaction price. I further assume, bidding

strategies are differentiable and monotone in vit and ci.
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Assumption 6. Entry and Exit by Bidders. The total number of potential bidders stays

constant over time: mt = m.

At eBay permanently new bidders enter while others leave. In my data, only very few bidders

continue bidding after winning an auction. I will therefore assume, bidders are only interested

in one product and exit after winning. To keep the model simple for the time being entry will

happen deterministically. As soon as an active bidder exited the market, a new one enters.

Assumption 7. No Updating of Beliefs. Bidders believe that in each auction t the vector

of competitors characteristics ν−i,t is drawn from fν−i|x = fν(ν|x)m−1.

Bidder thus believe that the draw of their potential competitors’ valuations conditional on

product specific covariates invariantly comes from the same distribution. This excludes learning

about the characteristics of any specific competitor from past interaction. Given that bidders’

identities are available at eBay a bidder could in principle follow her competitors’ behavior over

time. Here the view is taken that due to noise, which is introduced by entry and exit and

stochastic components in valuations, the scope of learning is so limited that none of the bidders

finds it worth while to do so.

The aim of assumptions 6 and 7 is to keep the distribution stationary. Alternatively one

could think of entry and exit processes and distributions which would achieve stationarity en-

dogenously. Since this would lead to considerable complications in the modelling without adding

explanation a ‘reduced form’ approach is taken here.

To summarize, the timing of the events and the information structure is as follows: First,

new entrants receive their cost draw from the common density fc. Then, the auction specifics

s are realized and observed by everybody. The potential bidders draw their private valuation

for the product on offer from the common density fv|x and compute their optimal bid. Each

bidder next considers whether participation is profitable for her or not. Given participation, the

bidder places her bid. In case she wins, she leaves the auction market and a new bidder enters.

Otherwise, she continues and starts evaluating the auction that closes next.

2.2 The Bidders’ Problem in a Static Environment

It remains to be shown that the optimal strategies stated in the last paragraph do exist as the

outcome of a bidder’s optimization problem and see whether they can be characterized more
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closely. Let’s first look at a simple example where a bidder’s valuation is independently drawn

from a common density fv and remains constant over time: vit = vi. This characterizes a

situation with fully homogenous products. Further, there is no variation in the auction details.

While being highly stylized and therefore not useful for the purpose of empirical analysis, this

setting best illustrates the search aspect in the bidder’s behavior.

The bidder’s problem is to choose a strategy which maximizes her expected intertemporal

utility given the potential competitors play optimally. It can be represented by the following

Bellman equation:

Vi =





max
{

max
bi>r

Ebh
[1 {b∗h < bi} (vi − b∗h)− ci + 1 {b∗h ≥ bi}Vi ] , Vi

}
before winning

0 after winning,

(3)

where 1{·} denotes the indicator function.11 A bidder who decides to participate and wins,

which is the case when her bid is higher than the highest of the competitors, gets her valuation

and pays the price determined by the bid of the second highest bidder in the auction. She then

enters the absorbing termination stage where period rewards are zero. If she looses, she gets

the continuation value Vi. In any case she pays the bidding costs.12 If the bidder decides not

to participate, she receives the option to participate again tomorrow, Vi. Since the option value

depends on the bidder’s cost, it is different for different bidders.

The bidder has two decision variables. The optimal bid is given by:13

b∗i = b(νi) = vi − Vi. (4)

This bid is constant over time. Since the environment does not change, a bidder also decides only

once whether to participate or not. If participation is optimal in the first round, it will be so in all

following ones until the bidder wins and her valuation drops to zero. In this static environment,

it is optimal for a bidder to enter when her option value is above zero: δ∗i = 1{Vi > 0}.14

11To be fully correct a law of motion for the single state variable χi, with χi = 1 denoting an active bidder and

χi = 0 a bidder who already won, has to be specified. This is given by: χ′i = 1 {b∗h ≥ bi}χi with χi0 = 1. I avoid

this formulation since it distracts from the main points.

12Since ties are a zero-probability event, it does not matter where the weak inequality sign is placed.

13For the derivation see the proof of Prop. 1.

14It is assumed, if entry is profitable today, the bidder prefers to enter today instead of waiting for tomorrow.
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Substituting the bid back into the Bellman equation for the case that participation is optimal

and rearranging finally gives:

ci = Ebh
[1 {b∗h < b∗i } (b∗i − b∗h)] (5)

An optimal bidding policy thus equalizes the cost of bidding with the expected gain from winning

in a new trial.

The bidder’s decision rule here appears as myopic as that of the decision maker in an optimal

stopping problem which is at the basis of search models, known for example from the labor

market literature (see e.g. Albrecht and Axell (1984) and Burdett and Mortensen (1998)) or the

IO literature where a seller faces uncertain demand (see the seminal work by Diamond (1971)

and Rob (1985) for a model with heterogenous costs.). There the decision maker decides on

a reservation value which serves as a cutoff value for accepting a price or a wage offer. This

reservation value is found by equating the cost form one further search with the expected gain

from this search. As long as the environment is constant, that is the state variables do not

change over time, there is no added value in deciding sequentially. This holds true for both the

auction and the standard search setting. In both cases the state variable only changes once,

namely when the decision maker succeeds. The distribution of other bidders’ bids and the wage

or price offer curve stay constant.

2.3 The General Problem

The model described so far assumed an infinite sequence of identical products. At eBay there

are hardly any two products that are exactly the same. It is therefore necessary to allow for

valuations that take account of product heterogeneity. Additionally, details in the auction rules

can change. I therefore turn to the case of exogenous variation in the bidding environment as

described in subsection 2.1. The bidder’s problem including a minimum bid now is:

Vi(vi, s) =





max
{

max
bi>r

Ebh
[1 {b∗h < bi} (vi − b∗h)− ci + 1 {b∗h ≥ bi}V e

i |s] , V e
i

}
before winning

0 after winning,

(6)

where V e
i denotes the expected future payoff when the bidder stays active defined by:

V e
i =

∫

S

∫ v(x′)

v(x′)
Vi(v′, s′)dFv

(
v′|x′) dFs

(
s′

)
. (7)
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The main difference to before is that the continuation value now includes an expectation over

the unknown own future valuations for the products and the future realizations of the supply

side details.

The following proposition summarizes the bidder’s optimal bidding strategy and the corre-

sponding distribution of the maximum bid of the competitors, given these behave optimally as

well. All details of the computation are provided in the appendix.

Proposition 1. Under Assumptions 4-7, the following holds for a risk neutral bidder i with cost

ci who faces an infinite sequence of Vickrey auctions:

(a) Optimal Bidding Strategies. The bidder computes her optimal bid as:

b∗i = b(νi) = vi − V e
i (8)

This bid is placed when b∗i > r and δ∗it = 1.

(b) Distribution of the Maximum. From the optimal behavior of all participants it follows that:

fh
b̃
(b̃∗h|s) = (m− 1)

∫ c

c
fv(b̃∗h + V e|x)1{b̃∗h + V e ∈ D(c, s)}dFc(c)·

·




∫ c

c

∫

z∈D(c,s),

z<b̃∗h+V e

dFv(z|x)dFc(c)




m−2

(9)

and F h
b̃
(x|s) =

∫ x
−∞ fh

b̃
(b̃∗h|s)db̃∗h which is non-degenerate.

Proof. See appendix.

Note that a bidder still shades her valuation by her option value. As before, the option value

is individual specific because of the differing costs. As in any second price auction, the optimal

bid does not respond to changes in current auction details such as the reserve price; different

product characteristics, however, now make it optimal to adapt it over time.

If participation is optimal, the following condition holds:

ci ≤ F h
b̃
(b∗i |s)(b∗i − E[b̃∗h|b∗i > b̃∗h, s]) (10)

This condition follows from the fact that a bidder participates in an auction when the expected

return form participation with an optimal bid is higher than the return form waiting to the next
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auction. Given the possible changes in v and s, the bidder now might participate in some of the

auctions where her valuation is high or auction details are favorable and stay out of others.

The rather complicated expression for the distribution of the maximum of the competitors’

bids is due to the two-dimensional uncertainty - about the competitors’ costs and their valuations

- which both influence the participation decision as well as the bids. The expression in (9) is

derived by first conditioning on the unknown costs and then computing the extreme value

distribution for non-identically but independently distributed variables. Via the entry set, the

support and the shape of this distribution can depend on auction details.

The following lemma shows, the analogy to the search setting is still given:

Lemma 1. Optimality condition. A bidder’s optimal bidding policy given participation equates:

ci =

∫
S

∫
D(ci,s′) F h

b̃
(b∗i |s′)(b∗i − E[b̃∗h|b∗i > b̃∗h, s′])dFv (v|x′) dFs (s′)∫

S

∫
D(ci,s′) dFv (v|x′) dFs (s′)

(11)

which implicitly defines V e
i .

Proof. Insert the optimal participation strategy (v ∈ D(ci, s′)) and the optimal bid into (7)

using (6) and rearrange.

The difference to before is that the future return now depends on the realizations of the

shocks. The optimal bid is hence chosen such that the expected return, conditional on partici-

pation, is equivalent to the cost of participation.

Lemma 2 finally summarizes some results which will prove useful in the empirical part:

Lemma 2. Comparative Statics.

(a) Bidders with higher draws of v are more likely to enter an auction. The set of v for

which bidder i with costs ci and auction characteristics st will enter is given by Dit =

[gv(ci, st), v(xt)] if gv(ci, st) ∈ [v(xt), v(xt)].

(b) V e decreases in c, hence b∗ increases in c.

Proof. See appendix.

The last part of Lemma 2 shows, a bidder bids more aggressively the higher her costs. This

reflects the fact that bidders with higher bidding costs have a lower continuation value and

therefore shade their bids less. Current costs on the other hand are sunk. The first part states
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that only bidders with sufficiently high v will enter an auction. While one might suspect, there

is also a single cutoff value for the costs, that is, only bidders with low enough costs would enter

an auction, this cannot be proven without further assumptions on the functional forms. The

reason for this indeterminacy is that the costs influence the entry decision not only directly but

also indirectly via the winning probability.

2.4 Discussion

Vickrey assumption. Roth and Ockenfels (2002) show that “sniping”, that is, bidding in the

very last second, is a dominant strategy when a bidder faces other bidders who bid incrementally.

The argument is, by bidding late, bidders avoid price wars. Bajari and Hortacsu (2003) look

at a common value setting. Bidding early cannot be advantageous since it reveals valuable

information on the bidder’s signal. Wang (2003) shows that a common value component is

introduced into the private value setting when there is a series of auctions featuring the same

product: Since sequential auctions lead to bid shading and the amount of shading depends on

expectations about future competitors’ bids, different bidders’ expectations contain a common

component. Still, in reality, some bidders submit bids early on or even bid repeatedly within one

auction. Song (2004) provides a very general model for intra-auction dynamics. She shows that

within an IPV model bidders might submit a bid smaller or equal to their valuation at all their

monitoring opportunities but will submit their valuation at their last monitoring opportunity if

they have not done so yet. While this model can explain different bidding patterns it cannot

rationalize why a bidder would chose one or the other. Further, as soon as bidding costs

are introduced, many of the strategies are suboptimal. While I think modelling intra-auction

dynamics is interesting from a theoretical viewpoint and could add explanation to the data,

postponing it to future research is justified by the rather small fraction of bidder who do so.

IID shocks. Ass. 3 implies two things: First, sellers do not choose st strategically. Including

a strategic seller side, though interesting, is beyond the scope of this paper. Second, the st of the

next auction realize after the entry and bidding strategy in the current auction is decided upon.

This implies that a bidder considers the auctions in the overview list one after the other, first

looking at the one that closes next. A bidder thus is not allowed to jump directly to auctions in

the search list that attract her attention most nor can she act forward looking and have a number

of auctions in her choice set when starting to bid in one of them. Zeithammer (2004) discusses
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how forward looking behavior with respect to future product characteristics can be included into

a bidding model and presents reduced form estimation results that give evidence in favor of such

a behavior. While in principle forward looking behavior could be included into the model via

additional state variables, it would increase the computational burden in the empirical analysis

in a non trivial way.15 Further, it is hard to judge for the econometrician which other auctions

the bidder actually investigated more closely before placing her bid since there is no click data

available. I therefore opt for ignoring this aspect of a bidders’ search. Given the specific market

segment I have in mind, where new auctions on similar products open every few hours, I though

believe, this simplification does not present a major restriction.

IPV. At this point I do not allow for any difference in the valuations for product charac-

teristics across agents nor for any private information on valuations that is carried over from

period to period (see also Engelbrecht Wiggans (1994) and Jofre-Bonet and Pesendorfer (2003)).

While both extensions seem interesting and are feasible from the point of view of the model (see

e.g. subsection 2.2 ) they would cause non-trivial complications for identification and estimation

since they add additional layers of correlation.

Bidding Costs. Buying a product at eBay certainly is a costly process for most bidders.

It is though not evident that the costs only accrue while placing a bid. They rather accumulate

during the whole process and involve i) one time costs of learning the eBay rules, ii) information

costs, cinfo, and iii) bidding costs. The decision to stick to the bidding costs is once again driven

by identification. It is straightforward that any onetime cost of learning how to play eBay’s

rules is not identified without data on people who consider bidding at eBay but decide not to.

Identifying cinfo separately would require click data or data from eBay about which auctions

were observed. Also this is not available in my data set. Finally, from a technical perspective

positive bidding costs cause a bidder not bid infinitely many times with a bid close to zero and

thus serve the same purpose as a discount factor, β. Including both would be possible in the

model, β would though not be identified from the data. Given that the time between auctions

is very short I believe, costs provide a better explanation. Including cinfo and β in the bidders

15Searching for all products that include the words “Compaq” and “3850” in the category “PDA’s and Orga-

nizers” returns a list with usually more than 50 items. Including all details of these auctions would considerably

augment the state space.
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problem would alter the bidding strategy and the optimality condition as follows:

ci + cinfo + (1− β)V e
i =

∫
S

∫
D(ci,s′) F h

b̃
(b∗i |s′)(b∗i − E[b̃∗h|b∗i > b̃∗h, s′])dFv (v|x′) dFs (s′)∫

S

∫
D(ci,s′) dFv (v|x′) dFs (s′)

(12)

with b∗i = v − βV e
i (13)

The latter cost estimates thus provide an upper bound to the true bidding costs.

Supply of Auctions and Entry and Exit by Bidders. While the number of actual bid-

ders in a specific auction is derived by individual rationality conditions, the number of potential

bidders is assumed to stay constant. Also in each period exactly one auction is open. Letting

the relation between supply and demand change over time would be an interesting extension

and would fit the actual situation better. Exit is already stochastic in the model since some auc-

tions do not receive bids and therefore after some of them no bidder leaves the market. Adding

additional noise is possible. It could take the form of an exogenous exit probability which would

mean that some bidders would leave the market without winning and zero payoff. Alternatively,

bidders could start with an outside option which changes over time. This could e.g. induce a

formerly active bidder to leave the market for good. Neither the exit probability nor the size of

the outside option is though identified from the data. Allowing for stochastic entry or stochastic

arrival of auctions is a non-trivial extension, since the different stochastic process would have to

be brought in line to not run out of auctions or out of bidders.

No updating of beliefs. This assumption is from the model perspective the most critical

one. Allowing for an endogenous distribution of competitors bids including entry and exit, that

is modelling the full fledged dynamic game, is out of the realm of this paper. While it would

be interesting from a theoretical perspective I though believe, richer dynamic strategies have

a negligible influence on the data in this segment. The following discussions provides some

thoughts on what could happen.

There are several ways how a bidder could alter her strategies when confronted with a

dynamic game: First, she could misrepresent her valuation in her bid. To see why, go back

to the original sequential auction model by Weber (2000). There it was optimal to bid the

valuation minus the continuation value. The first auction thus provided a complete ranking of

competitors’ valuations. If there are two auctions and bidding is costly, only the second highest

bidder in the first auction will find it profitable to enter the second auction. All the others

know, they have no chance of winning and are therefore reluctant to incur the bidding costs.
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The winner in the second auction then pays a price of zero. Since everybody foresees that,

bidders will not find it optimal to follow the aforementioned strategies.16

Instead of changing the bidding strategy, bidders might also just decide to stay out of some

of the auctions but to reveal truthfully when entering (strategic non-participation). If bidders

know, they have no chance of winning since they experienced in past auctions that there are

many high value bidders currently in the market they might want to stay out until they believe,

the high value bidders left.17 As argued before, inferring which of her competitors will enter the

next auction and with which valuation is, however, rather difficult for a bidder at eBay. While

bidders in the data rarely interact twice with the same person there is no correlation between

a bidder’s rank in an auction which she looses and the number of auctions she passes before

trying again.

3 Data and Preliminary Evidence

3.1 The Data Set

The dataset was assembled from eBay.de during April to November 2002. During these eight

month, 1212 auctions of a PDA, the Compaq Ipaq H3850 (Ipaq3850), could be tracked. I chose

the product for several reasons: First, it is relatively homogeneous and frequently sold at eBay.

Secondly, substitution towards competing products was limited since consumer electronics are

heavily branded products that cater to different groups. Further, the Ipaq3850 then offered the

largest number of new features for the smallest price and was rated best among its competitors

by leading German consumer magazines (e.g. Connect). To see whether substitution was really

limited, I collected data on a potentially close competitor, the Casio Cassiopeia E-200G. The

16von der Fehr (1994) shows, in a two-objects-many-bidders model there is room for predation. While the bids

in the first auction still provide a complete ranking of bidders’ valuations, bids are higher than in Weber (2000).

Bidder’s might even bid more than their valuation for obtaining the chance of being the only bidder in the highly

profitable second auction. The optimality of this predatory strategy hinges on the assumption that there is a

limited number of objects available, that is, not every bidder will receive one. The proof does not necessarily

carry over to the case where an infinite number of objects are on offer. To see why, note that predation is costly

since it includes the danger of winning the object for a price higher than one’s valuation. Incurring these costs

might not be optimal if bidders could obtain the object at a later instant when the high value bidders exited.

17Caillaud and Mezzetti (2003) and Bremzen (2003) consider two-period models where bidders engage in strate-

gic non-participation since they are reluctant to convey information to the seller respectively to a new entrant.
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share of Ipaq3850 bidders that also tried in Casio auctions from April to May was less than 5%.

Table 1: Summary Statistics of Auctions

Full sample Restricted sample

Number of Auctions 1212 788

Number of unsuccessful auctions 182

Number of private auctions 174

Auctions with last bidding activity earlier

than 10% before end of auction
68

Transaction price (in e ): Mean/Min-Max/Std 477/280-999/79.07 470/280-872/78.34

Product characteristics:

- with extras 25.91% 32.49%

- with defects 9.49% 4.06%

- with foreign operating system 3.22% 3.43%

- used 59.08% 79.32%

Auction details:

- Auctions with default minimum bid 33% 43%

- Average minimum bid if >1e 284.3e 229.6e

- Buy-it-now auctions* 16.75% 15.74%

- Average (modus) duration of auction 5.2 (7) days 5.4 (7) days

- Average shipping costs 7.2e 7.2e

Auctions sold by professional sellers 10.73% 1.27%

Average no. of parallel auctions 42 37

Average distance between auctions 4.5 hours 4.8 hours

Average number of bidders per auction 6.86 9

* See comments in text

Substitution, however, did happen towards used Ipaq3850’s and those that came with extras

or had smaller defects. The dataset therefore includes all auctions that were open in the category

PDAs and Organizers and carried the words “Compaq” and “3850” or “Ipaq” and “3850” in

its title. An advantage of the data is the detailed information on product characteristics that

was manually retrieved from sellers’ descriptions. Appendix B.1 lists the variables and provides

more explanation. A product’s quality is assessed by the age and the condition of the product

as stated by the seller. This category also includes dummies for non-German operating systems
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and different kinds of defects, such as scratches and missing standard accessory. Next, there is

a number of extras that are frequently bundled with the Ipaq3850. The most typical are covers,

memory cards, charge and synchronization cables. Most common among the expensive extras

are expansion packs (jackets),18 navigation systems, and microdrives. Finally, the seller’s quality

might have an influence on the valuation, a buyer ascribes to the product. This is captured by

the seller’s eBay reputation and the variable PROFI that takes the value 1 if the seller gives

reference to an own shop outside eBay.

eBay auctions last 3, 5, 7 or 10 days. Most often sellers choose a duration of 7 days. By

paying a small additional fee, the seller can raise the default minimum bid above 1e . 67% of

sellers choose this option by asking on average for minimum bids in excess of 284e . Around 1/6

of the auctions were bought by buy-it-now. Since this information is only available in the data

when it was actually exercised or the auction did not receive any bids, the actual percentage of

auctions that carried this option is higher.19 Finally, the seller can choose the option private in

which case the pseudonyms of the bidders are not revealed. Sellers chose this option in 14.4%

of the observed auctions. Due to the lack in the data, these two options have to be ignored in

the following.

In addition to the information on the auctions, all bids that were placed in each auction,

together with the pseudonyms of the bidders and the bidding time are available (see Table 2).

In matching the auction and bidder sample, the number of auctions decreases to 856 since no

bid data is available for auctions that have the feature private. Further, 15% of the auctions

did not receive any bids. A total of 7630 bids was placed in the remaining auctions. Since it is

assumed, it is not optimal for a bidder to reveal any information about her true willingness to

pay before the last minutes of an auction, I consider the early bids as not informative and delete

them from the panel. By restricting the bids to those that are submitted in the last 10% of

the time, the number of bids reduces to 3202 observations. The 10% mark is found by striking

a balance between the informativeness of the bids and the number of remaining observations

per bidder.20 Figure 1 displays the bid distribution in the full (left) and the restricted sample

18Jackets are plastic casings that enhance the functionality of Ipaqs by for example providing extra slots for

memory cards

19Selling at a fixed price without the option for an auction was not available when the data was collected.

20Whenever possible, the estimation procedure will rely on the highest observed bids only since these are the

ones that are most likely to reflect bidders’ optimal bids in an ascending price auction (see Haile and Tamer
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Table 2: Summary Statistics of Bidders

Full sample Restricted sample

Number of bids 7630 3202

Number of individual bidders 3829 1869

Av. number of trials 2 1.7

Importance of “switching back”.* 9.72 % 3.1 %

Importance of “simultaneous bidding”.** 10.13 % 3.6 %

Bidder is observed in sample for:

Mean 5.65 days 7.15 days

Quantiles (25 50 75) 0min 5.6min 1.89 days 0min 2.44hrs 3.98 days

Bids (in e ):

Mean/Min-Max/Std. dev 334/1-827/155.39 438/203 - 872/78.73

Av. std. dev. per bidder 52.21 27.13

* Percentage of bids, placed by a bidder in an auction t after she was outbid in auction t+1.

* Percentage of bids, placed by a bidder while she still had a standing bid in another auction.

(right). The full distribution displays a second peak at very low prices. This is due to a number

of bids between 1e and 20e . Bidders will hardly believe, they will win with these bids. One

explanation why bidders engage in these bids is that it is an easy way to track an auction.21 By

excluding early bids the two peakedness of the distribution disappears.

Table 1 reports summary statistics of the remaining 788 auctions. Every day around 5

Ipaq3850 auctions closed. 20% of these auctions offered new products, 33% were bundled with

extras, 3.5% came with a non-German operating system, and 4% had some other kind of defect

such as scratches or missing standard accessory. Winners paid on average 469.93e for their

products plus an additional 7.2e for shipping and handling. Figure 2 displays the evolution

of prices over time. There is a pronounced decrease in the average transaction price during

the sample period. This is probably due to the high tech characteristic of the product. After

correcting for this, applying a simple linear time trend, the average standard deviation reduces

(2003) and Song (2004)). They are also least affected by the 10% cutoff rule.

21As opposed to eBay.com at eBay.de auctions that are closed cannot be searched for anymore. Alternative

ways for obtaining information on the price at which an auction closed are to use eBays tracking service (”observe

auctions”), to remember the ID of an auction and construct the URL afterwards manually, or to just participate,

since participants receive an email with all the necessary information at the end of the auction.
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Figure 1: Density of All Bids and Bids Submitted in Last 10% of an Auction.

from 78.34e to 52.83e . Figure 2 (b) compares transactions prices at eBay for standard products

as sold in the shop, that is, new products without any extras, with the corresponding prices

from guenstiger.de, a German price comparison machine. From the graphic it appears as if the

guenstiger.de prices built an upper bound to the prices at eBay.22

The 788 auctions are won by 744 different bidders. Only around 6 % of the winners thus

buy more than 1 item. Bidders that buy more than one item are in the following regarded

as different bidders, that is, for the purpose of the regression they receive a new identity after

winning. Table 2 reports summary statistics of the bids for the full and the restricted sample.

The bids that were placed in the last 10% of the time stem from 1869 different bidders. On

average a bidder was active on the market for 7 days (average time between first and the last

bid placed in any observed auction within the sample period). The modus is with 2.4 hours

much lower. During this time a bidder tried on average in 1.7 different auctions. Appendix B.2.

shows the number of trials of a bidder in more detail. 53.37% of the bidders received the object

when first showing up in the data. That also means, however, that nearly half of the bidders

tried twice or more often. Out of those that tried more often (repeat bidders), 60% tried more

than twice, 40% more than three times. Simultaneous bidding in two or more auctions as well

as switching back to auctions that had an earlier closing date, once a bidder is outbid in one

22Since I have only a few price observations from the beginning and the end of the period, I can not exclude

that heavy price drops as they can be observed in the guenstiger.de data towards the end of the sample period

are not an exception but the rule.
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Figure 2: (a) Evolution of Transaction Prices over the Course of the Sample

(b) Transaction Prices for New Products

auction is rarely observed (< 4% of the bids).

3.2 Evidence from Reduced Form Estimations

To find out whether and which of the variables have explanatory power, a simple OLS regression

of product characteristics onto winning bids is run. The results for the full specification (1) are

displayed in Appendix B.3. While most of the coefficients have the expected signs, many of

them do not prove significant. This holds first of all true for many of the cheaper extras such

as covers, books, or protective slides. The seller characteristics are insignificant as well.23 In

the following I restrict attention to a few of the more influential variables. For some other

more expensive extras there are not enough observations to allow for efficient estimation of the

parameters in the latter structural estimation. To keep the results comparable, these variables

are also omitted in the following. The results for this “parsimonious” specification are listed in

column (2) of Table 3. The Appendix shows that the change in the adjusted R2 is small.

Due to the data, repeat bidders play an important role in this market. This, however,

23When plotting the data, it appears that the (insignificant) positive effect is mainly due to a few outliers with

a very high reputation. The reason why the effects here are insignificant as opposed to previous work might also

stem from measurement error. The reputation variables do not capture the seller’s feedback at the time of selling

the object but at some later date when the data was collected.
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Table 3: OLS Estimation

(2) (3)

CONS 601.45 (4.16)∗∗∗ 604.45 (4.13)∗∗∗

TREND -.84 (.02)∗∗∗ -.84 (.02)∗∗∗

# TRIALS -1.95 (.49)∗∗∗

AGE -.11 (.02)∗∗∗ -.11 (.02)∗∗∗

AGE NS -26.82 (3.59)∗∗∗ -25.31 (3.57)∗∗∗

OS ENGL -18.53 (9.92)∗ -15.90 (9.50)∗

OS FRENCH -78.21 (23.72)∗∗∗ -80.48 (23.52)∗∗∗

DEFECT2 -46.50 (12.55)∗∗∗ -48.08 (12.64)∗∗∗

EXTRAS 5.73 (3.60) 5.53 (3.56)

JACKET1 54.46 (18.65)∗∗ 58.16 (19..11)∗∗∗

JACKET5 179.42 (23.56)∗∗∗ 179.29 (23.26)∗∗∗

MEMORY .46 (.08)∗∗∗ .46 (.08)∗∗∗

HARDDISK 92.61 (10.71)∗∗∗ 96.07 (11.00)∗∗∗

NAVIGATION 131.40 (19.33)∗∗∗ 128.19 (18.64)∗∗∗

CAREPAQ 16.74 (7.64)∗∗ 16.42 (7.49)∗∗

OBS 788 788

R2 0.780 0.784

adj R2 0.776 0.780

White heteroscedasticity robust estimation. Standard errors in parenthesis (marked confidence levels: 90, 95, 99).

does not mean, they also have an impact on the market outcome. To provide a first answer

to this question the transaction price in each auction is regressed on the product and auction

characteristics and an indicator for the bidding strategy followed by the winner in that auction

(# TRIALS). The indicator takes the values 1-9 according to the number of overall trials of a

bidder. Column (3) provides the results. The parameter estimate for the indicator is significantly

negative, stating that bidders that try more often pay lower prices.

The theoretical model finally posits a relation between supply side details and participation

behavior. Here, I try to find out whether such a relation exists in the data at all and which vari-

ables drive participation. Before estimating a binary choice model, the participation decisions

of bidders have to be elicited from the data. A bidder obviously participates, that is, δ∗ = 1,

if she places a bid. Since it is not known whether the auctions in which a bidder did not bid

were part of her choice set at all, the decision not to participate is not directly observable in

the data. The structural model though claims, a bidder is active as long as she has not won

a product. According to the model, all auctions in which a bidder did not bid and which lie

in between the first and the last auction in which a bidder was observed thus reflect δ∗ = 0.
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The vector δIp collects the corresponding participation decisions of all bidders in all auctions.

An alternative specification uses the vector δIs which is constructed in the same way, only that

here also assumptions about a bidder’s participation decision before her first and after her last

observed bid are included. Appendix B.4 describes these assumptions in more detail. Finally,

for the estimation, I only use a shorter window from the middle of the data set to avoid any

under-representation of δ∗ = 0 at the borders. The following table provides summary statistics

for the two entry panels:

δIP δIS

full window full window

Total number of observation 12388 4463 19657 7382

Percentage of δ = 1 28.59 27.82 16.19 14.51

From Lemma 2 it is known that a single cutoff value for the costs exists: Entry happens if

vit > g(st, ci). Since g cannot be solved analytically I approximate it by a p-th order Taylor

series expansion. Assuming that valuations are distributed logistically and that the interactions

with ci are not significant, the conditional maximum likelihood estimator proposed by Andersen

(1970) can be applied. The latter assumption is checked in the estimation by dividing the

panel into sub-panels, involving different groups of individuals, which are then independently

estimated by conditional logit. The selection equation is estimated for both δIp and δIs . As

auction details I use the minimum bid and the duration of the auction. Further, all product

characteristics from the parsimonious specification above are used as covariates as well as the

sellers’ eBay reputation since this might have an independent effect on the participation decision.

Table 7.B in Appendix 7.B gives the results for different specification. Since most of the

higher order and interaction terms were either not significant or had little explanatory power,

only the coefficients of a simple linear specification are reported. The first two columns in

the appendix show results for the full set of covariates using δIp and δIs , respectively. The first

notable fact is that nearly all of the coefficients for the product characteristics are not significant.

We will see later that this should be the case for a specific form of valuations. As for the auction

details, the coefficients have the expected signs: While the duration of an auction and the

positive feedback scores of a bidder influence the entry decision positively, a high minimum bid

and negative feedbacks make it more likely that the bidder stays out. The differences between

the two endogenous variable vectors δIp and δIs are small as well as for different subgroups of
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Table 4: Conditional Logit Estimation

δIs
, all bidders, parsimonious specification

DURATION .059 (.027)∗∗

MINIMUM BID -.002 (.000)∗∗∗

OBS 3394

log likelihood -789.40

bidders. Since the significance of the feedback variables is sensitive to the choice of the window,

I only use the duration and the minimum bid as explanatory variables for the participation

decision. The results for this parsimonious specification using δIs are given in Table 4.

4 Identification

The structural parameters of interest in the general model considered in Subsection 2.3 are

bidders’ valuations for the product conditional on its characteristics and the individual bidding

costs. The focus in the existing empirical work on auctions has been on the distribution of

bidders’ valuations. The main aim of this work is to see whether individual specific demand

parameters which affect strategies when dynamic considerations are taken into account, can be

identified as well when data with a panel structure is available.

In principle, all information is summarized in the distribution of the observed bids. Full

information Maximum Likelihood inference, if feasible at all, would though be computationally

very expensive in the current setting. Difficulties arise due to unobserved winning bids, endoge-

nous selection, and correlation among bids of the same bidder. Further, no closed form solution

exists for the value function as a function of the unobserved costs. By extending results known

form the literature on estimating demand from auction data, the first set of issues can be dealt

with. The problem with the unknown value function is solved when as in the literature on

estimating dynamic games the full information approach is swapped for a less efficient stepwise

procedure (see e.g. Bajari et al. (2005) and Pakes et al. (2005)). The following discussion on

identification focuses on the identifying restrictions in such a stepwise approach.

Rewriting the optimality condition given in (12) for bidder i as a function of optimal bids
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and the optimal participation decision of bidder i and using the expectations operator gives:

ci = Es, b∗i [F
h
b̃
(b∗i |s)(b∗i − E[b̃∗h|b∗i > b̃∗h, s])|δ∗i = 1]

The expectation is still build over the auxiliary random variable b̃j whose maximum over all j is

distributed according to fh
b̃|s depicted in Prop. 1. As was pointed out before, the two viewpoints,

either attach zero winning probability to bids which fall below the participation threshold but

still include the corresponding bidders when building the expectation or to only include bids of

participants and build expectations over different participation patterns, lead to the same result.

While the former viewpoint proofed more practical when trying to express the distribution of the

bids as a function of the underlying distributions of costs and valuations, the latter viewpoint

will be entertained in the empirical part since what we observe in the data is a draw from the

distribution of b∗j conditional on δ∗j = 1. The expected return from winning is then build over

different b∗h and different participation vectors δ∗−i.

Lemma 3. Given observations on supply side characteristics s, on all bids of participants, and

hence on participation decisions in case they are affirmative, bidder i’s costs can be computed

from:

ci = Es, b∗i [F
h
b (b∗i |s)(b∗i − E[b∗h|b∗i > b∗h, s])|δ∗i = 1]), (14)

where F h
b|s denotes the expected distribution of the highest bid over different participation vectors.

Proof. See Appendix.

In principle, the behavior of all bidders as well as the product characteristics and the auction

details can be observed at eBay. However, in a second price auction winning bids are not

observable but only a lower bound to them, the transaction prices which correspond to the

second highest bids. Using the observed bids would therefore bias the cost estimates. Estimates

of the parent distribution(s) from which all bids ultimately are drawn can, however, be obtained

from the observed bids by exploiting information contained in the ordering of the bids following

methodologies developed in the empirical auctions literature. The parent distribution(s) can

then be used to construct estimates of the unobserved winning bids which will be used to

complete the bid data set.

Since bids of the same bidder are correlated across auctions, it has to be taken into account

that the parent distributions from which bidders draw their bids conditional on a certain draw
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of c are not identical. Identification results for likelihood inference in second price auctions with

asymmetric bidders are available when the data consists of transaction prices and the identity

of the winner (see Athey and Haile (forthcoming) and Brendstrup and Paarsch (2004)). These

identification results can be traced back to the literature on competing risks. An insight from

this literature, which becomes valuable in the asymmetric bidders’ case, is that knowledge of

bidders’ identities eases identification (see Berman (1963) and Prakasa Rao (1992)). In the eBay

setting identities and bids of all of the loosing bidders are available as well. Song (2004) points

to the fact that, if lower ordered bids are observable, estimating from the distribution of the

second highest bid conditional on the third highest bid allows inference without having to know

the total number of bidders. Combining these two results, the following lemma can be stated:

Lemma 4. Let X1, ..., Xn be independent random variables with continuous distribution func-

tions Fi, i = 1, . . . , n.

(a) The probability distribution of the highest observed bid Xn−1:n with realization b2 con-

ditional on the third highest bid being Xn−2:n = b3 when the identities of the winner,

respectively the second and third highest bidder, are In:n = m, In−1:n = l, and In−2:n = k

is given by:

gn−1:n( b2, m, l| b3 ) =
(1− Fm( b2 )) fl( b2 )

(1− Fm( b3 )) (1− Fl( b3 ))
= (1− Fm( b2 | b3 )) fl( b2 | b3 ) (15)

(b) The Fi(·) are non-parametrically identified from observation of the second and third highest

bids when the identities of the winner and the second highest bidder are observed as well.

Proof. See Appendix.

In the asymmetric setting conditioning thus makes the distribution to estimate not only

independent of the number of lower ordered bids but also of the distribution functions of these

bidders. The distribution of the conditioning variable y is irrelevant as well, what matters is its

value.

Letting Fi be the bid distribution for bidder i we have from Lemma 4 that these are identified

from eBay data. Since the common distribution of valuations only differs by an individual

specific constant V e
i from the individual bid distributions, they can easily be related. However,

identification is, as opposed to the static setting, only possible up to location since the common

parts in v and V e cannot be separated. Given the bid distributions, estimates of the unobserved
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winning bids can be build and thus the costs can be computed from 14. The following proposition

summarizes the preceding discussion and presents the main identification results:

Proposition 2. Under the assumptions of the theoretical model proposed in 2.3, the following

holds given eBay data:

(a) The distribution of valuations is non-parametrically identified up to location.

(b) Bidding cost are non-parametrically identified.

Proof. See Appendix.

5 Estimation

After having established identification, I can now come to the procedure for estimating the

parameters of interest. The algorithm proceeds in steps:

1. Estimation of the observed bid distribution using information on the second and third

highest bid as well as the identities of the winner and the second highest bidder.

2. Estimation of the expected highest bids and replacement of the observed bids of the winners

by these estimates.

3. Computation of the bidding costs.

Since the first step requires the unknown costs as an input, the steps have to be iterated until

convergence.

5.1 Preliminaries: Bidder’s Valuations

While nonparametric identification is possible, the data requirements for nonparametric estima-

tion are huge. A characterizing feature of eBay data though is that the products are normally

rather heterogenous and the time dimension of the panel, that is, the number of observations

per bidder, is small. Finding an expected value for each bidder and all combinations of s in

equation (14) therefore is a limiting factor which should be considered when devising an esti-

mation procedure. An alternative is to first homogenize the data so that the bids present bids

for identical products and use the corrected data to build an expected value for c as described

above. This approach relies on some mild parametric assumptions.

28



The influence of product heterogeneity is via bidders’ valuations; homogenization of the

data thus starts from assumptions about the form of this dependency. To ease identification a

common index assumption with additive errors is maintained:

Assumption 8. Additive Separability. Bidders’ private information is composed of a com-

mon object specific component and an additive idiosyncratic part: vit = v(xt)+ εit. The εit’s are

iid draws from fε(ε; 0, σε) and are independent of ci.

From the additive form of the bidders’ valuations it follows that product characteristics do

not determine winning odds and expected returns.

Lemma 5. Under Assumption 8, the optimal entry strategy δ∗it and hence the entry set Dit as

well as the optimality condition given by (12) are independent of product characteristics.

Proof. Optimal bids are now given by: b∗it = v(xt)+εit−V e
i . Using these in entry condition (10)

gives: E[1maxj 6=i{v(xt) + εjt − V e
j } < v(xt) + εit − V e

i }(v(xt) + εit − V e
i −maxj 6=i{v(xt) + εjt −

V e
j })] ≥ ci which readily simplifies to E[1{maxj 6=i{εjt−V e

j } < εit−V e
i }(εit−V e

i −maxj 6=i{εjt−
V e

j })] ≥ ci. The proof for the optimality condition (12) follows along the same lines.

Firstly, the product characteristics in the selection equation can thus be ignored, that is,

all bidders with draws of εit > gε(ci,at) participate. The findings from the conditional logit in

section 3 corroborate this result. Secondly, for the purpose of estimation of the costs, the data

can first be homogenized and then only estimates of b∗i − v(xt) and maxj 6=i{b∗i − v(xt)|δ∗j = 1}
for each a ∈ A and all bidders are needed. This is advantageous since it reduces the data

requirements for consistent estimation since dim(a) < dim(s).

In principle estimation could now start from here. Given the large number of equally impor-

tant covariates as compared to the total number of observations in my specific data set, I will

simplify further and use an hedonic approach for v(x) which stipulates a simple linear relation

between product characteristics (1,x) = (1, x1, . . . , xK) and bidders’ valuations. Combining this

with Assumption 8 it follows for the bids:

b∗it = CONS + xtβ1 + b0
it with CONS = β0 − V

e (16)

and b0
it = −V 0

i + εit.

(β0, β1) = (β0, β11, β12, . . . , β1Kx) collects the common parameters and V 0
i = V e

i − V
e is the

individual specific influence of the continuation value. In other data sets for eBay one could

think of using a nonparametric approximation for the function v(x) instead.
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5.2 Estimation of Parent Distributions and of Missing Winning Bids

From the proof of Proposition 2 it follows that the likelihood contribution per auction is given

by:
fbl

(b2|x)(1− Fbm(b2|x))
(1− Fbm(b3|x))(1− Fbl

(b3|x))
(17)

where b2 and b3 denote the observed second, respectively third highest bid and m and l the

identities of the winner and the second highest bidder. Since auctions are independent of each

other, the log likelihood just sums the individual contributions:

l =
T∑

t=1

ln

[
fblt

( b2t |xt) (1− Fbmt
( b2t |xt))

(1− Fbmt
( b3t |xt)) (1− Fblt

( b3t |xt)

]
(18)

Song (2004) proposes a semi-nonparametric estimation procedure for estimation. As opposed

to her case, here the parent bid distributions are bidder specific. Given the small time dimension

of the panel it does not make sense to attempt a nonparametric approach. Instead, I use a

normal form for the parent bid distributions.24 The individual parameters as well as product

characteristics then only affect the mean: fbi(bi|x) = N [µbi , σ] with µbi = CONS + xβ1 − V 0
i .

Given the huge amount of bidders as compared to the number of auctions, is it not feasible

to estimate the V e
i as parameters. Instead, I exploit the fact that option values are functions

of the individual costs. The V 0
i thus can be approximated by a polynomial in ci. The ci are,

however, only known at the next step. I thus start with an initial guess for these costs given

by the observed number of trials of a bidder and then iterate this and the following steps until

convergence. The choice of the starting value is motivated by the fact that bidders with lower

costs will in expectation try more often until they win a product than those with higher costs,

so the two variables are correlated.

Once estimates of the parent bid distributions, F̂bi|x, are obtained, the expected winning bid

of bidder i in auction t, given it is higher than the bid of the second highest bidder, is computed

from:

b̂n:n
it ≡ E[bit|bit > b2t,xt; F̂bi|x] =

1
1− F̂bi(b2t|xt)

∫ ∞

b2t

bitdF̂bi(bit|xt) (19)

Due to the conditioning, the participation decision again becomes irrelevant. These estimates

replace in the following the truncated winning bids.

24Trials with log normal and gamma distributions gave similar, though, slightly worse results.
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5.3 Computation of Bidding Costs

From Lemma 5 we know that the optimality condition is independent of product characteristics.

What matters, however, are the auction details. The conditional logit estimation identified the

duration d of an auction and the minimum bid r as the major factors influencing participation.

The possible combinations of these details are collected in the set A = {a1, · · · ,aK}. Let

b̂0
i = {b̂0

i1, . . . , b̂
0
iK} be the set of estimated residuals for bidder i from the prior step, where

b̂0
ik = {b̂0

ik1, . . . , b̂
0
iaTik

} collects the residuals for bidder i from those auctions that have auction

details ak. Equivalently b̂0
hk = {b̂0

hk1, . . . , b̂
0
ikThk

} collect the highest bids in all auctions with

details ak. Expressing the expectations in terms of their sample means then gives:

ĉi =
K∑

k=1

α̂k

∑

b0i∈b̂0
ik

1
Tik

∑

b0h∈b̂0
hk

1
Thk

1{b0
h < b0

i }(b0
i − b0

h) (20)

where α̂k presents the empirical share of auction details ak.25

My eBay data is not rich enough to offer enough observations for each bidder so that the

individual beliefs for the error term conditional on all combinations of auction details can be

elicited from the data to build this expectation correctly. Even when only major groups of auc-

tion details are distinguished, for example, A = {(d < 7 days, low r), (d ≥ 7 days, low r), (d <

7 days, high r), (d ≥ 7 days, high r)}, correct computation is only possible for a few bidders. I

thus have to ignore the weighting by auction details. The error due to this simplification is alle-

viated by the fact, that the highest bid of the competitors will be affected by this simplification

in a similar way.26 A Monte Carlo study could help to assess how big the remaining mistake is.

This is deferred to future research.

5.4 Alternative Approaches

Due to data limitations, distributional assumption were made in the prior estimation procedure

for the bid distribution (Specification 1). Further, the likelihood estimation depends on the

incidental parameter ci and could for that reason provide inconsistent estimates. In this section,

25To be fully correct, the expectation should be independently done for different participation vectors as well.

For notational ease and since the data restrictions anyways do not allow to do this summation, I ignore this aspect

here.

26“Linear effects” would just be differenced away, following the same logic as, when arguing, in the proof to

Lemma 5, that product characteristics are irrelevant.
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I will introduce some other specifications which should be seen as a robustness check on the

results.

Since at eBay all lower bids are observed as well, the winning bids usually only present a

small share. It would thus be interesting to check whether ignoring the problem of the truncated

winning bids would have a major impact on the results (Specification 3). Another approach is to

use additional price data (Specification 2). In the data description it could be seen that the prices

from guenstiger.de built an upper bound to the prices at eBay. Assuming that a bidder always

prefers to buy at guenstiger.de when the prices are equal, any value in between the guenstiger.de

prices and the transaction prices (e.g. half the difference) can be used as an estimate for the

unobserved winning bids. The drawback of this approach is that normally one will not have price

data for all additional extras that are bundled with the eBay products and certainly will not have

external information on the discount attached to used products or products with defects. If one

is willing to assume that the relative prices between additional features and the basic product

are the same for eBay and guenstiger.de, fictional prices for guenstiger.de-prices for extras can

be computed though by multiplying the eBay.de average price for extras - represented e.g. by

the OLS regression coefficients times the value of the variable - with the ratio of the average

observed guenstiger.de price and the average eBay transaction price for standard new products.

As opposed to Specification 1, both approaches do not provide estimates of bidders’ val-

uations. To be able to homogenize the data, thus, an additional step is required. Given the

completed data and using the prior assumptions on the form of the valuations, standard panel

methods, such as first differencing, can be applied in principle. A difficulty arises through the

participation decision which causes that only selected bids of a bidder can be observed. It is

therefore necessary to distinguish the latent data, in the following denoted by an asterisk, from

the observed data (without asterisk). The bid equation (16) in its difference form now writes

as:

bit − bi,t−1 = δitb
∗
it − δi,t−1b

∗
i,t−1 = (δit − δi,t−1)CONS + (δitxt − δi,t−1xt−1)β1−

−(δit − δi,t−1)V 0∗
i + δitε

∗
it − δi,t−1ε

∗
i,t−1. (21)

Since δ is always one when observed and since the product characteristics are not affected by

the participation decision, the equation simplifies to:

bit − bi,t−1 = (xt − xt−1)β1 + δitε
∗
it − δi,t−1ε

∗
i,t−1. (22)
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Lets first look at the case when only the product characteristics but not the auction details

change over time (Specification a). While E[ε∗it|δit = 1, δi,t−1 = 1] is not zero, it is equal to

E[ε∗i,t−1|δi,t−1 = 1, δit = 1] for all differences of bids of the same bidder and thus falls out. The

parameter vector β1 therefore can be consistently estimated by OLS from (22).

The more general case is when the participation decision responds to auction covariates. Now,

the parameters γ from the participation equation which has been estimated before (coefficients

of the conditional logit estimation in Section 3 ) are used as described in Kyriazidou (1997)

to construct weights (Specification b). These weights are used in the OLS estimation of the

first differenced bid data to over-represent differences that are based on the same underlying

explanatory variables for participation and to under-represent the others. The idea is that when

the exogenous variables explaining selection are the same, the selection bias is the same and can

be differenced out. The parameter vector β1 is now estimated by OLS from:

∆bit

√
K

(
∆atγ

h

)
= ∆xt

√
K

(
∆atγ

h

)
β1 + ∆εit, (23)

where K(·) denotes a kernel density and h the bandwidth of data to be included.

After homogenizing the data, the bidding costs can be computed as described before.

6 Results

6.1 Bidders’ Valuations for Product Characteristics

Table 5 (1) reports the results from the estimation of the bid distribution by conditional order

statistics distributions. Since only those auctions where at least three bidders placed bids can

be used for the estimation, the number of auctions in the sample reduces to 537.

As an approximation to the value function I use a second order Taylor approximation in the

costs. I1 and I2 report the estimated coefficients. As expected V e decreases in the costs, but

does so at a decreasing rate.

Due to the normal form of the parent bid distribution the remaining estimates directly

describe bidders’ valuations. Not much can be said about the mean of the distribution of

valuations, only that it is above 520.38e , since the estimated constant subsumes the constant

part of the valuations and of the continuation values. The standard deviation of the distribution

is estimated at 25.41e .
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The negative time trend indicates that over time the valuations for the product decrease.

As already mentioned, this is due to the high tech characteristic of the product. Age, defects,

and a foreign operating system have a negative effect on the valuation, while additional extras

positively impact on the bidders’ willingness to pay. The relative importance of the different

extras reflects their relative prices outside eBay. The average age of a product is 131 days,

which means that the bidders either overestimate the age or presume, that it will be older than

average, when the seller does not specify it in the description.

(1) (2a) (2b) (3a) (3b)

CONS 520.38 (10.89)

TREND -.73 (.04) -.72 (.03) -0.55 (.11) -.77 (.02) -.70 (.10)

AGE -.05 (.06) -.11 (.02) -0.12 (.02) -.10 (.01) -.12 (.02)

AGE NS -27.70 (14.04) -16.97 (3.06) -22.21 (4.95) -17.34 (2.87) -22.57 (5.44)

DEFECT2 -30.51 (12.57) -36.51 (10.81) -30.41 (12.33) -36.51 (10.43) -32.03 (10.25)

OS ENGL -14.14 (8.80) -20.05 (5.84) -6.92 (6.27) -19.82 (5.50) -11.87 (5.61)

OS FRENCH -63.07 (14.57) -98.81 (12.54) -65.23 (21.81) -95.28 (11.94) -69.12 (22.96)

EXTRAS 6.18 (3.38) 6.82 (2.38) 10.97 (3.86) 7.12 (2.20) 10.21 (3.03)

JACKET 1 67.05 (10.27) 42.85 (9.68) 18.55 (17.17) 41.02 (8.96) 19.52 (16.42)

JACKET 5 206.11 (11.28) 171.81 (18.80) 159.67 (12.29) 166.50 (16.87) 127.03 (7.34)

MEMORY .48 (.05) .29 (.04) .24 (.074) .29 (.04) .29 (.09)

HARDDISK 62.22 (14.01) 105.48 (12.05) 66.46 (11.52) 103.12 (10.94) 75.84 (11.22)

NAVIGATION 167.50 (16.49) 110.46 (21.25) 269.58 (31.60) 114.66 ( 20.39) 277.74 (32.33)

CAREPAQ 18.02 (5.08) 16.74 (4.60) 13.56 (10.43) 17.07 (4.25) 14.60 (9.71)

a1 -3.38 (.40)

a2 .02 (.01)

OBS 537 2602 2602 2602 2602

log likelihood - 2 098.60

R2 0.457 0.724 0.527 0.779

adj. R2 0.454 0.723 0.525 0.778

σ 25.41 (3.50) 54.81 54.13 49.29 45.30

Table 5: Bid distribution

The estimated winning bids in those auctions where the winning bids exceeded the reserve

are on average 17.18ehigher than the transaction prices. This is money which was left on the

table and could have been appropriated by the sellers by setting high enough minimum bids.

Columns 2 to 5 report the corresponding results for the alternative specifications. While there

are smaller differences in general the estimates are very similar to the ones in column (1). Most of
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the estimated coefficients for product characteristics are not significantly different. The choice of

the panel method, with or without weighting, matters more for the results than which method

is used to substitute for the unknown winning bids. Already simple first differences without

correcting for missing winning bids give already good approximations to the true results.

The variance is in all alternative specifications about double the size of the one estimated

in specification (1). This is probably mainly due to the fact that one time bidders where given

the same identity in Specification (2) and (3) since I did not want to loose all of them (around

50%) when first differencing the data.27 Not all individual effects are thus differenced away and

might be partly reflected in the error term. Another reason could lie in the fact that the lower

bids - which are used in Specifications (2) and (3) but not in Specification (1) - at eBay not

necessarily reflect bidders intended last bids. Many bidders bid repeatedly in the same auction

(incremental bidders) and are not able to submit their willingness to pay in the end because the

standing bid might already be higher when they come back.

The results for estimation (2b) and (3b) should be interpreted with caution, however, since

they are highly dependent on the choice of the initial bandwidth constant. This is a problem

which has already been noticed by Kyriazidou (1997). The choice of the form of the kernel

matters less. Here I choose a bandwidth of 50 with a kernel of order 5.

6.2 Bidding Costs

The average cost of a bidder at eBay, using Specification (1), is estimated at 15.49ewhich is

equivalent to 3.3% of the average transaction price. The corresponding frequency distribution

is displayed in figure 3. The distribution is highly skew, the median bidder has a cost of only

4.43e . The standard deviation of a bidder’s costs from the mean bidder’s costs is estimated

at 26.55e . From the original 1968 bidders, 1889 are estimated to have positive costs. The

remaining 79 bidders thus always placed bids which did not have any winning chances.

In figure 4 kernel densities of the costs for the different specifications are plotted. We have

seen in the last paragraph that the estimates for valuations for product characteristics differ

only little among the different specifications. The different cost estimates are similar as well.

Here, though, the way the bids are imputed matters more than what kind of methodology is

27Taking them out of the sample would not only make the estimation less efficient but might also bias the

results since one time bidders on average have higher costs.
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Outcomes from specification 1. For expositional purposes observations > 100ewere dropped.

These present around 0.6% of the data.

Figure 3: Frequency of Bidding Costs

used to homogenize the data. The kernel density shows that there is a group of outliers with

very high costs. The second panel in figure 4 compares the density distribution for the cost

estimates of Specification (1) without these bidders to the other specifications. While the mean

cost and standard deviation from Specification (1) before were above those for the alternative

specifications, now they are below. The estimate of the median is little affected.

7 Conclusion

The paper presented a dynamic framework for the eBay marketplace, similar to a search model.

It was shown that a stepwise estimation approach can be used to consistently estimate demand

parameters from eBay bidding data. While costs and valuations are nonparametrically identified,

the huge amount of covariates asks for parametric assumptions in the estimation process. The

small time dimension of the panel requires further simplifications.

A number of issues remains for future research. First of all, the seller side so far is modelled

rather crudely. Further, the theoretical model assumed that in every instant a new auction

opens and bidders do not care whether the time difference between the auctions is small or

big. Including parameters for the degree of competition from other auctions into the theoretical

model would be desirable.

Secondly, when deriving the theoretic model it was assumed, the characteristics of poten-
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The first graph displays kernel densities using all costs; in the lower graph c > 80 are excluded from Specification (1)

estimates. For expositional reasons, the lower graph only show estimates below 40 e .

Figure 4: Distribution of Bidding Costs for Different Specifications

tial bidders are given exogenously and stay constant over time. Relaxing this assumption

could lead to more sophisticated dynamic strategies which include predation and strategic non-

participation. While I do not believe that this would add much explanation to the data gener-

ation process in markets for standardized products, it might play a role in thin markets and is

interesting from a theoretical perspective.

Finally, assuming, bidders exactly know the distribution of their competitor’s bids, is asking

a lot of a bidder. While here it was assumed that bidders exactly know the distribution, Sailer

(2005) allows for the possibility of learning about a parameter of the distribution of second

highest bid.
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Appendix: Proofs

Proof of Proposition 1.

(a) Optimal Bid:

Exploiting the fact that loosing is complementary to winning the decision problem of a

participating bidder given in equation (6) can be rewritten as:

Vi = max
bi>r

Ebh
[1 {b∗h < bi} (vi − V e

i − b∗h) |s]− ci + V e
i .

The proof of optimality of the bid is then a simple application of the proof for a standard second

price auction with valuation y = v − V e. (The additional constant −ci + V e
i influences neither

the price nor the winning probability and is thus irrelevant for the bidding strategy.)

(b) Distribution of the Maximum:

Computation of the distribution of the maximum as a function of the underlying distribution

of competitors’ characteristics is complicated by the two-dimensional uncertainty - about vj

and cj - and by the two-stage decision process - first compute the optimal bid, then decide

whether to participate with this bid or not. Following Gal, Landsberger and Nemirovski (2004),

I will collapse the two-stage decision on the side of the competitors into one by assuming, a

nonparticipating bidder places a bid blow
28 which is too low to have any winning chances. For

this purpose the new random variable:

b̃∗ =





blow if δ∗ = 0

b∗ if δ∗ = 1

is introduced. The highest bid out of the m − 1 competitors’ bids in auction t is now denoted

by b̃∗ht ≡ maxj 6=i{b̃∗jt}. Since b∗ht = b̃∗ht for all ν and s, building the expectation with respect to

the random variable b̃∗ is equivalent to using b∗δ∗ conditional on δ∗ = 1. The advantage of the

former is that it allows to express the distribution of the maximum in each period as a function

of the potential number of competitors; only its shape and the support potentially change with

changes in the expected participation decisions.

28Since in the next subsection, by definition, the lowest bid has to be strictly higher than the reserve, I can let

blow = r.
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Given participation is optimal from equation (6) it holds for bidder i:

Vi (·) = max
bi>r

E
[
1{max

j 6=i
{b(νj , s)|δ(νj , s) = 1} < bi}

(
vi − V e

i −max
j 6=i

{b(νj , s)|δ(νj , s) = 1})|s]−

−ci + V e
i .

Now build the expectation with respect to the unknown variables ν−i:

Vi (·) = max
bi>r

∫ c

c

. . .

∫ c

c

∫ v(x)

v(x)

. . .

∫ v(x)

v(x)

1{max
j 6=i

{b(νj , s)|δ(νj , s) = 1} < bi}·

·(vi − V e
i −max

j 6=i
{b(νj , s)|δ(νj , s) = 1})dFν−i

(ν−i|x)− ci + V e
i .

While the competitors’ bids are functions of both the costs and the valuations, the entry set Dj ,

which gives all v for which a bidder with costs cj enters, is a function of the costs alone. To apply

a change of variables it is therefore necessary to first condition on the unknown costs and then

to change the variable of integration to b∗j . The conditioning brings about that the variables

of interest, namely the bids of the competitors, are now drawn from different distributions.

The distribution of the maximum of m − 1 non-identically but independently drawn variables

distributed according to fj with cdf Fj is given by fm−1:m−1(b) =
[
Πm−1

j=1 Fj(b)
]∑m−1

j=1

( fj(b)
Fj(b)

)

(see David and Nagaraja (2003, p 96)) or f (m−1)(b) =
∑m−1

i=1 fi(b)Πm−1
j=1
j 6=i

Fj(b). Finally, from

transformation techniques we know that the distribution of a variable y = g(x) where x is a

continuous variable with pdf fx which is non-zero for x ∈ X and y a one-to-one transformation

of X onto Z is given by fy(y) =
∣∣∣ d
dyg−1(y)

∣∣∣ fx(g−1(y))1(y ∈ Z). For v ∈ Dj and V e
j a known

constant the function b̃j = v − V e
j is continuous and one-to-one; hence fb(b∗j |cj ,x) = fv(b∗j +

V e
j |x)1{b∗h +V e

j ∈ Dj}. The rest of the probability mass, that is when v /∈ Dj , is concentrated at

blow. Since blow by assumption does not influence neither the price nor the winning probability

it is irrelevant for the computation of the distribution of the maximum. It then follows for the

bidders’ problem:

Vi (·) = max
bi≥r

∫

b̃∗h<bi

(
vi − V e

i − b̃∗h
) ∫ c

c
. . .

∫ c

c
fh

b̃
(b̃∗h, c−i|s)dc−idb̃∗h − ci + V e

i

with

fh
b̃
(b̃∗h, c−i|s) =

m−1∑

j=1

fv(b̃∗h + V e
j |x)1{b̃∗h + V e

j ∈ Dj}fc(cj)
m−1∏

k=1
k 6=j

∫

z∈Dk,

z<b̃∗h+V e
k

dFv(z|x)fc(ck).

Since
∫ c
c fv(b̃∗h + V e

j |x)1{b̃∗h + V e
j ∈ Dj}dFc(cj) =

∫ c
c fv(b̃∗h + V e

k |x)1{b̃∗h + V e
k ∈ Dk}dFc(ck) we
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can also write

fh
b̃
(b̃∗h|s) =

∫ c

c
. . .

∫ c

c
fh

b̃
(b̃∗h, c−i|s)dc−i

= (m− 1)
∫ c

c
fv(b̃∗h + V e|x)1{b̃∗h + V e ∈ D(c, s)}dFc(c)·

·




∫ c

c

∫

z∈D(c,s),

z<b̃∗h+V e

dFv(z|x)dFc(c)




m−2

Proof of Lemma 2. Let

F h
b̃
(b∗|s) ≡

∫ c

c
. . .

∫ c

c

∫

b̃∗h<bi

fh
b̃
(b̃∗h, c−i|s)db̃∗hdc−i

and E[b̃∗h|b̃∗h < b∗, s] ≡
∫ c

c
. . .

∫ c

c

∫

b∗h<bi

b∗hfh
b (b∗h, c−i|s)db∗hdc−i/F h

b (b∗|s).

(a) Entry Set:

Start by defining:

F (v, c) : = (b∗ − E[b̃∗h|b̃∗h < b∗, s])F h
b̃
(b∗|s)− c, (24)

From the optimal participation strategy we know that F (v, c) < 0 ⇒ δ∗ = 0 and F (v, c) > 0 ⇒
δ∗ = 1 (see equation (10) ). This function monotonically increases in v: ∂F (v,c)

∂v = F h
b (b∗|s) > 0.

It is further negative for very low v and positive for high v (assuming that both are within the

range of v). Thus there is a single v0 = gv(V e, c, s) above which entry is profitable and below

which it is not. The set Dit is thus defined as [v0
it, v(xt)].

What about the derivative of F with respect to c? From (24) we have:

dF

dc
=

∂b∗

∂c
F h

b̃
(b∗|s)− 1

Using the result on the derivative of b∗ with respect to c proved in the next paragraph, it can

be shown that:
dF

dc
=

∫
S

∫ v(x′)
gv(V e,c,s′) F h

b̃
(b∗|s)dFv(v′|x′)dFs(s′)

∫
S

∫ v(x′)
gv(V e,c,s′) F h

b̃
(b∗′|s′)dFv(v′|x′)dFs(s′)

− 1

Whether this term is positive or negative depends on the size of today’s winning probability

compared to tomorrow’s expected winning probability.

(b) Derivative of b∗ with respect to c:

From the optimality condition (12) it follows that:
∫

S

∫ v(x′)

gv(V e,c,s′)

(
Eb̃h

[
1 {b∗h < bi}

(
v′ − V e

i − b∗h
) |s′]− c

)
dFv(v′|x′)dFs(s′) = 0.
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Using the implicit function theorem, Leibniz’s rule and the condition that F (v0, c) = 0 we get:

dV e

dc
= −

∫
S

∫ v(x′)
gv(V e,c,s′) dFv(v′|x′)dFs(s′)

∫
S

∫ v(x′)
gv(V e,c,s′) F h

b̃
(v′ − V e|s′)dFv(v′|x′)dFs(s′)

.

Given that F h
b̃|s is always smaller one the numerator is bigger than the denominator which leads

to the derivative being smaller than -1, hence ∂b∗
∂c = −∂V e

∂c > 1.

Proof of Lemma 3.

Writing the expected return from winning conditional on a certain b∗i and s in terms of observ-

ables gives Ebh,δ−i [1{maxj 6=i{b∗j |δ∗j = 1} < b∗i }(b∗i −maxj 6=i{b∗j |δ∗j = 1})|b∗i , s]. Just counting the

cases where b∗i would have been higher than all other bids given the same supply side details

and the same number of bidders and relating this to all auctions with these details and num-

ber of bidders provides an estimate for the winning odds for a specific number of competitors,

averaging these over different numbers of participants finally provides an estimate of F h
b (b∗i |s);

multiplying the winning odds with the average realization of b∗h build in the same way gives an

estimate for F h
b (b∗i |s)E[b∗h|b∗i > b∗h, s]. Averaging over different bids of the same bidder given a

certain s and then averaging over all possible supply vectors finally gives ci. From the economic

restriction that agents have perfect expectations, it follows that the corresponding sample means

provide consistent estimators for the expectations in (14) and thus identification obtains.

Proof of Lemma 4.

(a) Conditional Order Statistics Distribution:

The probability of the event {Xm ≥ Xl, Xk ≤ Xl ≤ b2, Xj ≤ Xk ≤ b3 ∀j 6= m, l, k} is given by

Fn−1,n−2:n(b2, b3,m, l, k) = P{Xn−1:n ≤ b2, Xn−2:n ≤ b3, In:n = m, In−1:n = l, In−2:n = k}

=
∫ b3

−∞

∫ b2

z
(1− Fm(u))


 ∏

j 6=m,l,k

Fj(z)


 dFl(u)dFk(z).

The probability of the event {Xm, Xl ≥ Xk, Xj ≤ Xk ≤ b3 ∀j 6= m, l, k} is given by

Fn−2:n(b3, {m, l}, k) = P{Xn−2:n ≤ b3, In:n ∈ {m, l}, In−1:n ∈ {m, l}, In−2:n = k}

=
∫ b3

−∞


 ∏

j 6=m,l,k

Fj(u)


 (1− Fm(u))(1− Fl(u))dFk(u).

Taking derivatives with respect to b2 and b3, respectively b3 gives the corresponding densities.

Equation (15) now follows from applying Bayes’ theorem.
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(b) Identification:

Since gn−1:n(b2, In:n = m, In−1:n = l|b3) = (1−Fm(b2 |b3 ))fl(b2 |b3 ) = f1:2(b2, I2:2 = m|b3) and

limb3→−∞ f1:2(b2, I2:2 = m|b3) = f1:2(b2, I2:2 = m) the proof now directly follows from Athey

and Haile (forthcoming), Theorem 2.

Proof of Proposition 2.

(a) Identification of Distribution of Valuations:

Bidder i has costs ci and continuation value V e
i in all periods. At the beginning of each period

st and vit realize. Since V e
i is considered a constant for the bids of bidder i it follows from the

formula for the optimal bids, that, given st, these vary only with the change in valuations. The

econometrician observes these bids only when δ∗it = 1. We know from lemma 2 that in that case

vit > gv(ci, st) or equivalently bit > gv(ci, st) − V e
i . The observed bids of bidder i thus come

form the following parent density:

fbi(b|s, δ∗i = 1) =
fv(b + V e

i |x)∫
z+V e

i >gv(ci,s)
dFv(z + V e

i |x)
.

Defining fbi(b|x) ≡ fv(b + V e
i |x) we can also write

fbi
(b|s, δ∗i = 1) =

fbi(b|x)∫
z>gv(ci,st)−V e

i
dFbi(z|x)

.

Plugging this into equation (15) we obtain

gn−1:n(b2,m, l|b3,x) =
(1− Fbm(b2|x))fbl

(b2|x)
(1− Fbm(b3|x))(1− Fbl

(b3|x))

which we know from lemma 4 identifies Fbj |x given eBay data. Since E[bit|xt] = E[vit|xt]−E[V e
i ]

normalizing E[vit|xt] = kvt and E[V e
i ] = kV e finally identifies Fv|x.

(b) Identification of Bidding Costs:

The individual parent bid distributions Fbj |x can be used to construct estimates of the unobserved

winning bids. The identification of ci then directly follows from lemma 14.
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Data

Description of Variables Used in Regression

Category Variable Description

Product Quality

OVP 1 if in original packing (unopened) .

AGE/AGE NS
Age in days as stated by the seller/1 if age

is not mentioned in description.

COND NEW/

COND USED

Condition is said to be new/used (as op-

posed to average condition)

OS ENGL/OS FRENCH 1 if english/french operating system.

DEFECT1-4

1 if product comes without bill (1), lacks

standard accessory (2), has scratches on

the display (3) or other defects (4).

Extras

EXTRAS
1 if the product comes with any additional

extra.

JACKET1-5

1 if with PC Card Jacket (1), CF Card

Jacket (2), Dual Slot Jacket (3), Bluetooth

Jacket (4), GSM/GPRS Jacket (5).

HARDDISK
1 if with external memory in form of

Toshiba 1GB harddisk.

NAVIGATION
0, 1, or 2 depending on the scope of the

included navigation system.

MEMORY
Amount in MB of external memory in form

of CF, SD, or MMC card(s).

CAREPAQ
0, 1, 2, or 3 depending on the scope of the

additional producer warranty.

Other extras: Dummies for book, cover, earplugs, keyboard, modem,

protective slides, software, synchronization and charge cable.
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Auction details

TREND Ending date of auction or bidding time.

MINIMUM BID
Minimum bid required by the seller to en-

ter an auction.

DURATION
Categorial Variable, either 3, 5, 7, or 10,

depending on the length of the auction.

SHIPPING/

SHIPPING NS

Shipping costs as stated by the seller/ 1 if

shipping costs are not specified.

Other details: A seller can further chose the option privat (bidder

pseudonyms are not revealed) and buy-it-now (fixed price option, see

description in text).

Seller Characteristics
PROFI

1 if the seller gave a link to an own shop

outside eBay.

REP POS REL
Percentage of positive eBay feedback

scores.

47



7.A Frequency of Trials

Full Sample Restricted Sample

# of trial Freq. Percent Cum. Freq. Percent Cum.

1 2,505 65.44 65.44 966 53.37 53.37

2 603 15.75 81.19 318 17.57 70.94

3 285 7.45 88.64 196 10.83 81.77

4 152 3.97 92.61 110 6.08 87.85

5 92 2.4 95.01 66 3.65 91.49

6 49 1.28 96.29 38 2.1 93.59

7 36 0.94 97.23 28 1.55 95.14

8 19 0.5 97.73 13 0.72 95.86

9 15 0.39 98.12 12 0.66 96.52

10 12 0.31 98.43 10 0.55 97.07

11 9 0.24 98.67 8 0.44 97.51

12 6 0.16 98.82 6 0.33 97.85

13 7 0.18 99.01 7 0.39 98.23

14 3 0.08 99.09 2 0.11 98.34

15 9 0.24 99.32 8 0.44 98.78

>16 26 0.74 100.00 23 1.25 100.00

Total 3,828 100.00 1,810 100.00
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7.B OLS Estimation

(1) (2) (3)

CONS 612.10 (24.20)∗∗∗ 601.45 (4.16)∗∗∗ 604.45 (4.13)∗∗∗

TREND -.85 (.02)∗∗∗ -.84 (.02)∗∗∗ -.84 (.02)∗∗∗

# TRIALS -1.95 (.49)∗∗∗

OVP 8.71∗∗ (2.95)

AGE -.09 (.02)∗∗∗ -.11 (.02)∗∗∗ -.11 (.02)∗∗∗

AGE NS -24.30 (3.59)∗∗∗ -26.82 (3.59)∗∗∗ -25.31 (3.57)∗∗∗

COND NEW 1.19 (3.26)

COND USED -7.43 (3.42)∗

OS ENGL -13.21 (9.44) -18.53 (9.92)∗ -15.90 (9.50)∗

OS FRENCH -74.63 (23.34)∗∗∗ -78.21 (23.72)∗∗∗ -80.48 (23.52)∗∗∗

DEFECT1 -16.10 (7.21)∗

DEFECT2 -44.442 (11.00)∗∗∗ -46.50 (12.55)∗∗∗ -48.08 (12.64)∗∗∗

DEFECT3 -18.97 (10.15)∗

DEFECT4 -38.86 (7.72)∗∗∗

SHIPPING -1.23 (.66)∗

SHIPPING NS -10.51 (5.58)∗

EXTRAS 1.73 (4.48) 5.73 (3.60) 5.53 (3.56)

JACKET1 46.38 (16.05)∗∗ 54.46 (18.65)∗∗ 58.16 (19..11)∗∗∗

JACKET2 -6.13 (9.88)

JACKET3 95.14 (23.50)∗∗∗

JACKET4 11.70 (12.32)

JACKET5 177.28 (25.03)∗∗∗ 179.42 (23.56)∗∗∗ 179.29 (23.26)∗∗∗

MEMORY .50 (.08)∗∗∗ .46 (.08)∗∗∗ .46 (.08)∗∗∗

HARDDISK 94.40 (11.21)∗∗∗ 92.61 (10.71)∗∗∗ 96.07 (11.00)∗∗∗

NAVIGATION 141.29 (19.13)∗∗∗ 131.40 (19.33)∗∗∗ 128.19 (18.64)∗∗∗

CAREPAQ 13.18 (4.60)∗∗ 16.74 (7.64)∗∗ 16.42 (7.49)∗∗

MODEM 50.59 (40.60)

KEYBOARD 23.17 (13.99)∗

EARPLUGS 5.71 (12.71)

PROTECT 1.21 (1.43)

COVER 0.56 (1.78)

BOOK -24.74 (16.27)

SOFTWARE 12.04 (5.50)∗

REP POS REL -6.54 (24.52)

URL 25.65 (16.14)

OBS 788 788 788

R2 0.798 0.780 0.784

adj R2 0.789 0.776 0.780

White heteroscedasticity robust estimation. Standard errors in parenthesis (marked confidence levels: 90, 95, 99).
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Participation Decision

The following figure shows a bidders observed participation. 1 signifies that a bidder placed a

bid, while − and O denote that no bid was observed. The first assumption, which follows from

bidder/auction 1 2 3 4 5

1 1 O O 1 −
2 − 1 O 1 −
3 − − − 1 −
4 − − − − 1

the theoretic model, is that a bidder considered all intermediate auctions, that is, O is equivalent

to δ∗ = 0. It can further be assumed that those auctions with ending dates in between the time

the first bid is placed and the end of this first auction of bidder i were observed by the bidder

but not chosen, so that also here δ∗ = 0. All these decisions are now collected in the vector δIP .

The assumption, a bidder entered the eBay marketplace when first observed in the data is

not realistic since it states that the first participation decision is always affirmative. Further the

bidder might also consider a few more auctions after being observed last before finally exiting.

Both assumptions understate the share of δ∗ = 0. In a second approach, I therefore try to

correct for this bias by making somehow more sophisticated assumptions. First, bidders are

divided into groups according to the number of bids with which they are observed. Then, the

average number of Os between two bids are computed for each group. Half of this number will

be added in form of δ∗ = 0 at the beginning of the observational period for each bidder in the

same group. In case the bidder leaves the auction without winning, another half is added at

the end. The rational behind this approach is that bidders with the same entry costs have ex

ante, that is before the auction specifics realize, in expectation the same number of trials.29 The

observed number of times it takes a bidder to participate in a new auction (Os) is on the other

hand a proxy for the time it took a bidder with similar bidding costs to enter the first auction.

These decisions are now collected in δIS
.

29If the errors have a logistic distribution it further was shown by Andersen (1970) that the number of trials

are a sufficient statistic for the unknown individual effects.
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δIp δIs

full specification parsimonious specification

all bidders bidders with > 4 trials

TREND -.008 (.013) -.006 (.011)

DURATION .122 (.025)∗∗∗ .084 (.022)∗∗∗ .058 (.019)∗∗∗ .059 (.027)∗∗

MINIMUM BID -.002 (.000 )∗∗∗ -.001 (.000)∗∗∗ -.002 (.000)∗∗∗ -.002 (.000)∗∗∗

POS. FEEDBACK .000 (.000)∗ .000 (.000)∗

NEG. FEEDBACK -.025 (.011)∗∗ -.021 (.009)∗∗

AGE .001 (.001) .001 (.001)

AGE NS .257 (.188) .338 (.166)∗∗

COND NEW .178 (.136) .329 (.121)∗∗∗

COND USED .006 (.147) .045 (.132)

OS ENGL -.046 (.292) -.226 (.270)

DEFECT1 .519 (.354) .61 (.322)∗

DEFECT2 .479 (.503) .561 (.455)

DEFECT4 .212 (.633) .619 (.576)

SHIPPING .022 (.031) .024 (.027)

SHIPPING NS .099 (.264) .09 (.228)

EXTRAS -.169 (.138) -.119 (.125)

JACKET1 .686 (.636) .368 (.615)

JACKET3 -30.771 (2822693) -31.521 (4008317)

JACKET5 -29.529 (2537765) -30.484 (3396592)

MEMORY ALL .002 (.002) .002 (.002)

HARDDISK -.413 (.291) -.296 (.282)

NAVIGATION NS -30.391 ( 2681384) -31.364 (3551661)

CAREPAQ -.502 (.358) -.468 (.358)

OBS 4614 5684 6948 3394

GROUPS 199 221 221 72

log likelihood -1195.277 -1456.119 -1591.467 -789.400
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The fact that the panel arbitrarily begins at auction 1 and ends at some auction T leads to

an under-representation of δ∗ = 0. To circumvent this problem in the later estimation, I will

only use a shorter window from the middle which in the figure is equivalent to auctions 2 to 4.

This does not create any bias as long as the auction details do not change in a systematic way

over time. In the above example this restriction causes that bidder 4 will not be relevant for

the estimation; bidder 3 is denoted as a one time participant, while 2 and 3 both evaluated all

three auctions 2-4.30

While I consider the non-successful auctions in the construction of both panels, the private

auctions are dropped since no information on bidders’ pseudonyms are available. Private auc-

tions which did not receive any bids are kept. Also those bids that were place before the last

10% of the auction are left aside. That is, if a bidder only places a bid early on in the auction I

denote that she did not participate in the auction.

30Using for each bidder only a random sample of x % of the observations would do the same trick and would

also overcome some of the problems mentioned in the last paragraph. The drawback of this method is, however,

that many of the bidders that are observed only a few times would be lost in this way which again would bias

the results.
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