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Abstract

This paper proposes a method to structurally estimate an auction
model using a variation of OLS, under commonly held assumptions in
both auction theory and econometrics. In spite of its computational
simplicity, the method applies to a wide variety of environments, in-
cluding interdependent values in general, and certain forms of endoge-
nous participation and bidder asymmetry. Furthermore, it can be used
for hypotheses testing about the shape of the valuation distribution,
valuation interdependence, or existence of bidder asymmetry.

JEL Codes: D44, C14.
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1 Introduction

Empirical methods designed to investigate auction data are of interest not
only because they can be used to test auction theory, but also because they
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provide a rich source of information about the underlying consumer pref-
erences or producer costs that give rise to the bidders’ observed behavior.
As such they can be of considerable interest to a wide class of empirical
economists, not necessarily restricted to those directly involved in auction-
theoretic issues.

For that purpose, one would want to use an empirical strategy that is at
once well-founded in auction theory, robust to misspecification of the details
of the environment, and yet easy to implement, both computationally and
intuitively. The purpose of this paper is to propose such a method.

Studies that seek to understand how covariates affect demand in auction
markets usually run regressions like that:

p = Xβ + ε, (1)

where p is the transaction price (or its log). To provide a specific example,
several studies investigated the importance attributed by consumers to the
reputation of sellers in eBay using specifications of this sort (Houser and
Wooders, 2000; Lucking-Reiley et al., 2000; McDonald and Slawson, 2002;
Melnik and Alm, 2002).

The problem with analyses that rely on such specification is not in the
right-hand side of regression — covariates may indeed impact consumer pref-
erences in a linear fashion — but rather in the left-hand side. A superior
starting point for an empirical analysis would be a specification like

Vi = Xβ + εi, (2)

where Vi is consumer i’s valuation, or willingness to pay, for the product being
auctioned. Unlike price, a valuation is a demand concept, that reflects the
consumer’s preferences in isolation of effects through supply or the market
institutions. A bidder will never elect to pay his or her own valuation for the
product — doing so would guarantee that that the bidder would not gain
anything from participating in an auction. Because of that, we know prices
and valuations are not supposed to be the same. Therefore, whenever the
objective is to measure consumers’ preferences, a regression like equation 1
would suffer from misspecification bias.

Given a precisely defined institutional environment, one can use auction
theory to obtain a mapping between valuations and observed bidding be-
havior and from that mapping develop an estimation strategy. Laffont and
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Vuong (1996) have shown that, depending on the auction protocol, the valu-
ation distribution is just identified from bidding data. Several methods have
been developed to estimate valuations from auction data: for example, for
independent private values, Laffont et al. (1995) have proposed a simulated
nonlinear least squares methodology; Donald and Paarsch (1993) have in-
troduced a piecewise pseudo-maximum likelihood estimator; Guerre et al.
(2000) have shown how to obtain fully non-parametric estimates of the val-
uation distribution, and Haile and Tamer (2003) use bounds estimation on
an imcomplete model of an English auction.

These structural methods have two weaknesses from the point of view of
its applicability: they are taylored to a specific type of the auction being
played and they are computationally complex. This state of affairs may lead
to the perception that applied work with auction data informed by auction
theory would necessarily lead to overly complex and specific empirical proce-
dures, and that, for researchers unwilling to adopt them, the only alternative
is to rely on misspecified regressions like equation 1.

This is not true. The objective of this paper is to show that, starting from
a specification like equation 2, one can obtain an estimation method that is
at once structural, justified by auction theory, computationally simple and
robust to several types of misspecifications of the auction game being played.

The method proposed involves running an ordinary least squares regres-
sion of observed transaction prices in the covariates of interest and an ad-
ditional regressor involving the number of bidders in each auction. Compu-
tationally the method is as straightforward as running an OLS regression,
involving variables that are readily observable in an auction dataset. There
is no need for example to use information on losing bids, that is often not
observable or not reliable from theoretical and practical grounds.1

And yet, the method is fully theoretically justified. It also remains valid
in a wide variety of auction rules and assumptions about the statistical prop-
erties of valuations, including common values and other forms of affiliation.
It also robust to several versions of endogenous or hidden entry, and can also
accommodate some forms of bidder heterogeneity.

1Bikhchandani et al. (2002) have shown that In English auctions there is a continuum
of symmetric equilibria with losing bids not uniquely determined. Furthermore, in practice
the English auction rules do not fully pin down the losing bidders drop-out points (Haile
and Tamer, 2003). Even in first-price auctions, in practice bidders sometimes submit
“non-serious” bids — bids at very low prices that they do not expect to win (Garcia and
Rezende, 2000).
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A second product of the methodology is that it provides not only infor-
mation about the impact of covariates, but also delivers in a computationally
cheap way a significant amount of information about the shape of the valua-
tion distribution within each auction. The discussion on how to explore the
method to obtain such information is done in section 6.

This work is related to several strands in the empirical literature on auc-
tions. The regression proposed, involving winning bids in the left hand side
and the number of bidders in the right hand side, is similar to regressions
ran both in the reduced form literature (e.g. Gilley and Karels, 1981) or as
an initial step in the structural literature (e.g. Paarsch, 1991). The main dif-
ference is that, because here the number of bidders is included in a nonliear
fashion, our regression method is fully justified on theoretical grounds.2

The method here will exploit two import properties of auctions: the Rev-
enue Equivalence Theorem and the invariance of the set of equilibria to affine
transformations on valuations (see Proposition 2 below). Both ideas have
been used elsewhere, but not simultaneously: Laffont et al. (1995) use the
Revenue Equivalence Theorem to justify their simulated NLLS methodology;
versions of the invariance property are used in Bajari and Hortaçsu (2003),
Deltas and Chakraborty (2001) and Krasnokutskaya (2002). However, these
papers do not combine both ideas; as a result, their methodologies are ei-
ther computationally demanding, applicable to a limited class of auctions, or
both.

The paper is organized as follows: Section 2 introduces the method in
the classic independent private values framework. Sections 3 to 5 discuss the
robustness of the method in more general contexts: Interdependent values
are discussed in section 3; bidder heterogeneity is discussed in section 4;
and various types of endogenous or hidden participation are discussed in
section 5. The possibility of exploiting the information obtained from the
method for inference about valuations distributions is discussed in section 6,
and illustrated by an practical application on a sample of Palm Pilot eBay
auctions in section 7. Section 8 concludes.

2Also, in most cases these regressions include the number of bidders in a linear or
quadratic form, which will be shown to be incorrect functional assumptions (see Proposi-
tion 1 below).
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2 The Basic Method

With minor modifications, the method proposed in this paper applies to a
variety of symmetric auction models, including auctions with interdependent
values and endogenous entry. For the sake of expositional clarity, it is conve-
nient to present the method first in the context of the benchmark model in
auction theory: the independent private values model. This is done in this
section. Sections 3–5 discuss the necessary changes to accommodate a richer
set of assumptions.

Let Vil be the valuation of the i-th bidder in the l-th auction. Let µl

be the mean and σl the standard deviation of valuations in auction l. As
the subscript suggests, they may vary across auctions. We will assume that
variation across auctions only affects the location and scale of valuations, not
other aspects of the valuation distribution:

Assumption 1 Vil = µl + σlεil, where the εil are i.i.d. with distribution F .

The normalized valuation, εil = (Vil − µl)/σl, has a common distribution
F that does not vary across auctions or bidders. For the moment we also
impose independence, both across auctions and bidders.

Independence across different auctions is an assumption made here for
mere convenience. Relaxing it in what follows would have the same effect
of having non-spherical disturbances in a linear regression model: it would
affect efficiency, but not unbiasedness of the estimators.3

Independence across bidder valuations within an auction is one of the
central characteristics of the benchmark model in auction theory, the inde-
pendent private values auction model. Imposing independent private values
simplifies the analysis somewhat, but is not necessary: see Section 3 for an
extension to the much more general interdependent values case.

The first object of interest of the researcher is to evaluate the effect of
covariates on µl and σl. Let Xl be the vector of covariates that affect the
expected valuation µl and Zl the vector of covariates that affect σl. We
assume that [Xl, Zl] are either deterministic or otherwise publicly known by
all bidders before auction l starts. Linearity is imposed:

Assumption 2 µl = Xlβ and σl = Zlα.

3In any case, spherical disturbances in equation 2 is not enough to guarantee efficiency
of OLS, since the regression will be heteroskedastic even under this assumption.
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We intend to obtain estimates of β and α from a sample of auctions
of which we know the covariates [Xl, Zl], the number of bidders nl and the
winning price pl. The method will exploit the central result in auction theory,
the Expected Revenue Equivalence Theorem. Besides independent private
values, we impose

Assumption 3 The number of bidders, nl, is exogenous and common knowl-
edge. Bidders are risk-neutral, and maximize their profits at each auction in
isolation.

Here exogeneity is meant both in the game theoretic sense — nl is taken
as given, and is not determined by each bidder decision-making process —
and in the econometric sense — εil and nl are independent. The number of
bidders is also assumed to be publicly known before bidding. Both hypotheses
can be relaxed somewhat: See Section 5 for details.

One remarkable advantage of the Independent Private Values framework
is that it allows the method to be unaffected by the details of the auction pro-
cess: The same method applies to any standard auction rule. More precisely,
we require that

Assumption 4 The auction rules are such that the good is always assigned
to the bidder with the highest value, and the lowest valuation bidder expects
to pay nothing.

This is a condition satisfied by the English auction, the sealed-bid auction,
the second-price auction, and also by the all-pay auction.4

Although this is an admittedly long list of assumptions, they are quite
conventional. In fact, assumptions 3, 4 and independence and identical distri-
bution of valuations within an auction are the conditions for an independent
private values model, the classical auction-theoretic framework introduced
by Vickrey (1961). Assumptions 1 and 2 are typical in Econometrics; if for
example F is standard normal and Zl included just the intercept we would
obtain the classical regression model for Vil (except for the fact that Vil is
not observed). A richer Zl allows for heteroskedasticity.

The method explores the central result in auction theory, the Expected
Revenue Equivalence Theorem (Vickrey, 1961; Myerson, 1981):5

4In the case of an all-pay auction, pl should be interpreted as the sum of the prices
payed by all bidders, rather than the amount payed by the winner.

5In what follows the notation x(k:n) represents the kth-highest order statistic from an
i.i.d. sample of n observations of x.
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Theorem 1 (Expected Revenue Equivalence) Under assumptions 1, 3
and 4, the expected payment for the good in auction l is E[V(2:nl)l].

Here the expectation is taken with respect to all information that is pub-
licly available at the time of the auction; therefore the Expected Revenue
Equivalence Theorem establishes that E[pl|Xl, Zl, nl] = E[V(2:nl)|Xl, Zl, nl].

2.1 Estimation

Suppose a dataset of auctions is available with information about the final
selling price pl, the number of bidders nl and covariates [Xl, Zl]. Then under
the assumptions made we can write

E[pl|Xl, Zl, nl] = E[V(2:nl)|Xl, Zl, nl]

= E[µl + σlε(2:nl)|Xl, Zl, nl]

= µl + σlE[ε(2:nl)],

where the first equality is due to the Expected Revenue Equivalence Theorem,
the second is due to the specification of the location and scale parameters,
and the third by the definition of conditional expectation. Defining a(n) =
E[ε(2:n)],

E[pl|Xl, Zl, nl] = Xlβ + Zlαa(nl). (3)

Note that the conditional expectation of the winning bid is linear in β
and α. This means that OLS is an unbiased, consistent estimation method to
estimate these coefficients. This observation gives rise to two straightforward
procedures to estimate β and α: If the researcher is willing to impose a
particular choice for the shape of the distribution of values, the following
method is suggested:

Method 1 Using the normalized value distribution F , compute a(nl) for all
values of nl in the sample. Construct the set of regressors [Xl, a(nl)Zl],
and run OLS of the observed winning bids on these regressors.

The first step requires the computation of a(n) = E[ε(2:n)] for the specified
distribution of ε. These calculations are shown for some normalized distri-
butions in Table 1 below. After this calculation is done, unbiased estimates
of the parameters can be obtained by OLS.
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n Uniform Normal Log-normal Chi-square
2 -0.6188 -0.6074 -0.4304 -0.4720
3 0.0000 0.0000 -0.2030 -0.2227
4 0.3695 0.3168 -0.0237 -0.0068
5 0.6158 0.5279 0.1279 0.1803
6 0.7917 0.6844 0.2606 0.3445
7 0.9237 0.8077 0.3793 0.4902
8 1.0263 0.9088 0.4873 0.6213
9 1.1083 0.9941 0.5865 0.7401
10 1.1755 1.0677 0.6785 0.8489
11 1.2314 1.1322 0.7645 0.9491
12 1.2787 1.1895 0.8453 1.0420
13 1.3192 1.2410 0.9216 1.1286
14 1.3544 1.2876 0.9940 1.2096
15 1.3851 1.3302 1.0628 1.2858
16 1.4122 1.3693 1.1285 1.3576
17 1.4362 1.4055 1.1915 1.4256
18 1.4577 1.4391 1.2518 1.4902
19 1.4771 1.4704 1.3099 1.5516
20 1.4945 1.4997 1.3658 1.6101

Table 1: Values of a(n) for selected distributions.
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It is important to notice that method 1 is not the same as introducing
nl as an additional regressor, as is often done in the literature, but rather
it entails introducing a(nl), a nonlinear function of nl. In fact, ignoring the
nonlinearity is never correct; there is no distributional assumption that would
justify that:

Proposition 1 There is no non-degenerate distribution F such that a(n) is
affine in n.

Because the proof of this proposition depends on tools that will be devel-
oped in section 6, it will be deferred to appendix B.

Unbiased estimators for α and β do depend on introducing an appropri-
ately chosen nonlinear function of the number of bidders as an additional
regressor, and the appropriate function depends on the shape of the valu-
ation distribution. Often, however, one may be unwilling to commit to a
specific assumption about the valuation distribution. In that case, one can
still obtain unbiased estimates for α and β using the following method:

Method 2 Run OLS of the observed winning bids on Xl and interactions
of Zl and dummies for each nl in the sample.

Method 2 has the advantage of allowing the researcher to be agnostic
about the shape of the valuations distribution. It requires constructing dum-
mies dkl for the event nl = k for every k in the support of nl, and then
running an OLS regression of pl on Xl and interactions of Zl and dkl.

An interesting feature of method 2 is that the pattern of the estimated
dummy coefficients contains information about the shape of F — in fact, it
will be shown in section 6 that the sequence {a(n)}∞n=2 identifies F . This
gives rise to the possibility of using the dummy estimates for inference about
the shape of F . Section 6 discusses this possibility in detail.

3 Interdependent Values

For expositional convenience, the presentation of the method in the last sec-
tion was done under the assumption of independent private values. However,
this assumption is not at all necessary. This section shows that the method
works essentially unchanged for virtually any other information structure and
most auction rules (including all commonly observed auction rules).
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To describe the necessary conditions on the auction rules, let bi to be bid-
der i’s “bid” in a given auction (The quotation marks here are used because
bi does not necessarily need to be a bid per se; it is simply a way to describe
bidder i’s action). In most auctions, bi is taken to be a number (but not
necessarily a payment promise); all that will be needed here is that bi be a
member of a real vector space. Let b = (b1, . . . , bn). Given an auction rule,
let Wi(b) be i’s (expected) probability of winning the item given that bidders
in the auction played b, and let Pi(b) be the expected payment given b.

Let vi be i’s valuation (not necessarily private or independent), let v =
(v1, . . . , vn), and let µ and σ > 0 be constants. Then we have the following
proposition, that generalizes results found in Bajari and Hortaçsu (2003),
Deltas and Chakraborty (2001) and Krasnokutskaya (2002):

Proposition 2 Suppose an auction rule is such that (i) Wi(µ+σb) = Wi(b)
and (ii) Pi(µ+σb) = µ+σPi(b), for all i. Then, if β = (β1, . . . , βn) is a Nash
equilibrium of an auction when bidders have valuations v, then µ + σβ is a
Nash equilibrium of the auction when valuations are µ+σv. As a consequence,
if the expected selling price in the first auction is p̄, then the expected price
in the second auction will be µ+ σp̄.

Proof: For β to be a Nash equilibrium under v, it must be that it prescribes
i to bid

argmax
bi

E[viWi(b)− Pi(b)],

where this expectation is taken to be conditional on all information available
to i (including the contingency of winning), and b−i follows β−i.

In the game with valuations µ+σv, by following µ+σβ bidder i achieves

E[(µ+ σvi)Wi(µ+ σb)− Pi(µ+ σb)] = E[µ+ σviWi(b)− (µ+ σPi(b))]

= σE[viWi(b)− Pi(b)].

Clearly, any bi that solves the first problem solves the second as well.
As for the expected selling price, this is a consequence of this result

combined with the affinity of Pi. �

Notice that the two conditions on Wi and Pi are satisfied by all common,
and many uncommon, auction rules. For example, the condition on Wi

is satisfied by any rule that assigns a winner based on a ordering of the
bids. This includes all standard auctions, that assign the good to the highest
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bidder, and many non-standard auctions, that for example assing the good
to the k-th highest bidder.6

The condition on Pi is also very easily met; any auction where payments
depend linearly on a bidder’s own bid (as in a first price auction or the all-
pay auction) or somebody else’s bid (as in the Vickrey or English auctions)
will satisfy it.

For our purposes proposition 2 is very important because it implies that,
in any auction equilibrium, we can write something very similar to equation 3,
namely,

E[pl|Xl, Zl, nl] = Xlβ + Zlαã(nl), (4)

where ã(nl) = E[p̃l|nl] and p̃l is the selling price from an auction where
bidders have normalized valuations.

So for estimation purposes the only impact of relaxing the IPV assump-
tion is that the first step in method 1 involves calculating a different ã func-
tion, a function that depends not only on the distribution of the normalized
values, but also on their statistical dependency, their relation with the bid-
ders’ information, and the specific auction rule (recall that without IPV rev-
enue equivalence no longer holds). Appendix A illustrates these calculations
for several affiliated values models.

Such calculations might be quite hard in particular instances, but for-
tunately for researchers interested in only estimating β and α they are not
necessary. From equation 4 we learn that method 2 would work here in
exactly the same manner without requiring the researcher to commit to a
specific informational structure or auction rule.7

4 Asymmetry

Another important assumption imposed in section 2 is that bidders are sym-
metric, in the sense that within auction their ex-ante value distribution is the

6It may may be worthwhile to point out that this assumption implictly imposes some
restrictions on reserve prices. For W to have the desired property, either the reserve price
r must be trivial (in the sense that the probability of vi and µ+σvi be below r is zero) or
it must change in line with v (so that in the second auction the reserve price is µ + σr).

7That of course assumes that no changes occur in the auction rules across the sample.
If, for example, part of the sample contains sealed-bid auctions and part contains open
ascending auctions, one must introduce different sets of dummies for each type of auction
rule.
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same. On the other hand, as the discussion in section 3 suggests, the driving
property of auction models that validates the method is Proposition 2, and
it does not depend on symmetry. This suggest that the method can also
accomodate asymmetric auctions. This section discusses this possibility.

For concreteness, suppose we consider an auction where bidders come
from two different categories (say, “A” and “B”). Bidders from different cat-
egories obtain their values from different distributions, and this distinction is
publicly known (that is what makes this model fundamentally different from
a symmetric one). Let nA

l and nB
l be the number of bidders from categories

A and B that participate in auction l. Then, in light of Proposition 2, we
have

E[pl|Xl, Zl, n
A
l , n

B
L ] = Xlβ + Zlαa(n

A
l , n

B
l ), (5)

where a(nA
l , n

B
l ) is the expected price of a normalized auction with nA

l bidders
of category A and nB

l of category B.
The same regression strategies would still work, but now the nonlinear

function ã is somewhat more complex. Not only it is now a function of two
rather than one index, but calculating it would require finding an equilibrium
of an asymmetric auction. This can be hard; for example, in first-price
auctions that would involve solving a system of ordinary differential equations
(Lebrun, 1996; Bajari, 1999).

Another difficulty with the asymmetric setting is in how to exactly inter-
pret µl and σl (or, equivalently, on how to normalize valuations). It would
probably be desirable to have a definition based on means and standard de-
viations from each category’s valuation distributions; while it is clear that
they are related with µl and σl, the relationship is far from transparent, and
is dependent on the specific nature of the asymmetry.

In any case, here again method 2 is applicable, provided that we allow
dummies for both nA

l and nB
l , and does not require specifying the exact nature

of the asymmetry, let alone computing equilibria of asymmetric auctions.
The estimated β and α would not provide information about the exact

nature of the asymmetry (e.g., they would not tell which group tends to have
higher values), but they would provide information on how covariates affect
valuations in a way that is robust to asymmetry.

Furthermore, the values of the dummy coefficients can be used to test
whether symmetry is present (or more precisely, whether it significantly im-
pacts selling prices). To test whether valuation distributions differ across cat-
egories A and B, a researcher can run a regression of equation 5 by method 2
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and then perform a linear hypothesis test, where the null hypothesis of sym-
metry corresponds to the restriction a(nA, nB) = a(nA +nB) for all values of
nA and nB.

5 Endogenous or Hidden Participation

So far the analysis has relied on the hypothesis that the number of bidders
in each auction is determined exogenously and is common knowledge among
bidders. This is a conventional assumption in the auction theory literature,
but may not necessarily hold in practice. Because the number of bidders play
such an important role in the estimation strategy, it is appropriate to discuss
how alternative hypotheses about bidder entry would affect the estimation
method.

This section discusses three possible alternative hypotheses: endogenous
entry prior to learning about values, endogenous entry after learning about
values, and exogenous hidden entry.

5.1 Why the Timing of the Entry Decision is Impor-
tant

A natural way to formalize the entry decision process is to assume that prior
to participating in the market bidders face an entry cost. This cost may be
related to the process of searching for the auction and evaluating the item
being sold, or can be related to the effort to submit a bid. This distinction
is important, because in the first case bidders must decide to enter and
incur the cost before they know the value they attach to the item (ex-ante
endogenous entry), while in the second case they do so after they know their
value (interim endogenous entry).

Statistically, the distinction can be described as following: let N be the
original number of potential bidders in a given auction, that is typically
not observed by the econometrician directly. Let as before n ≤ N be the
number of bidders that participate. Let λi be the probability that bidder i
participates. The crucial distinction between ex ante endogenous entry and
interim endogenous entry is that they predict different correlation paterns
between λi and εi. In ex-ante endogenous entry models, λi is independent of εi
(and typically assumed to be the same across bidders); in interim endogenous
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entry models, λi = Pr(εi > c), where c is a threshold that depends on the
magnitude of the entry cost.

5.2 Ex Ante Endogenous Entry

The theory for the case of ex-ante endogenous entry can be found in McAfee
and McMillan (1987b) and Levin and Smith (1994). McAfee and McMillan
(1987b) studied asymmetric equilibria where a deterministic number of bid-
ders enter; Levin and Smith (1994) focused on the symmetric, mixed strategy
equilibrium of the same game. In either case, as long as the number of bid-
ders that eventually enter is common knowledge when bidding is decided,
bidding behavior is not affected.

As long as participation is large enough (n ≥ 2),8 information about
N is not necessary to estimate β and α: If the parameterization of the
value in Assumption 1 is still valid, the methods work unchanged. The
number of bidders n is endogenous in the game-theoretic sense, but not on the
econometric sense, since it is still uncorrelated with the regression residual.
Variation in n can be justified by (unobserved) variation in entry costs or by
the realizations of a mixed strategy equilibrium. An econometric endogeneity
problem would arise only if ε is correlated with information observable by
bidders prior to entry that would affect their entry decision.

The ex-ante endogenous entry model provides a justification for not wor-
rying about sample selection bias. As long as the values within an auction
(and therefore the residuals) are independent from the variables that deter-
mine entry, then no sample selection bias exists. In this theory low parti-
pation would be explained through either a low number of initial potential
bidders (N) or high participation costs, and not through an unobserved value
component.9

5.3 Interim Endogenous Entry

Another possibility is that the entry decision happens after bidders learn
about their value (Samuelson, 1985). This assumption is appropriate if the

8Auctions with little or no participation (n ≤ 1) obviously cannot be included in the
regression, since for them the expected price does not obey equation 3.

9Here one would need to assume that participation costs are independent of the unob-
served value component as well.
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entry cost is related to the bidding process itself, rather than finding the
auction or evaluating the value of the product.

Consider a situation where there are N potential bidders with indepen-
dent private values, but in order to bid they must pay an entry cost. A
bidder would enter if the expected payoff in the auction is enough to cover
the entry cost. Since the expected payoff is increasing in the bidder’s valua-
tion, there will be a cutoff such that bidders with values above it enter and
those below it stay out. In this case, the probability of i entering would be
λi = Pr(εi > c), a function of εi. (Notice that this would also happen in the
presence of a reserve price.)

So the entry process distorts the valuation distribution of entrants — it
truncates it below. However, the expected transaction price is still a second
order statistic. So the methods proposed here would still work, provided
that the researcher used the number of potential bidders N rather than the
number of actual bidders.

Unfortunately in practice the number of potential bidders is seldom ob-
served by the econometrician. In these circumstances substituting the actual
number of bidders would lead to specification bias. The next two sections
discuss two ways to account for lack of direct information about N in the
estimation.

5.3.1 Nonlinear Error in Variables

One way to proceed, bar direct knowledge of N , would be to assume the re-
searcher has access to a setW of proxies for it. Assuming a linear relationship
between N and W , we could perhaps write

N = Wγ + u, (6)

where u is an error term (possibly assumed to be independent of {εi}). In
that case, however, the initial regression would read

p = Xβ + Zαa(Wγ + u) + η,

something that cannot be estimated in a straighforward fashion given the
non-linearity of a(·). This is a nonlinear error-in-variables model. Because of
the nonlinearity aroundN , such a model cannot be estimated by instrumental
variables (Amemiya, 1985).
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Inference with nonlinear-error-in variables is a topic of active research.
The existing methods require further sources of information, such as valida-
tion data (e.g. Lee and Sepanski, 1995; Newey, 2001), specific distributional
assumptions for the measurement error (Hong and Tamer, 2003), or the avail-
ability of separate data about the marginal distribution of the measurement
error (Hu and Ridder, 2003). Furthermore, most of the literature cannot be
applied to the problem at hand, since they focus on the case of a continuous
mismeasured variable. An exception is Hu (2004), that develops a method for
a discrete variable with error in the presence of an instrument. Hu’s method
may be applied in conjuction to our method on auction data, provided valid
instruments are available.

5.3.2 Systematic Relationship between n and N

An alternative that avoids the non-linear error in variables problem is to
assume that the entry process is such that, conditional on observable intru-
mentes W , there is a systematic relationship between the observed number
of bidders n and the potential number of bidders N we are interested in:

n = φ(W,N). (7)

If φ is strictly monotonic with respect to N , then one can invert this
relationship and write10

N = ψ(W,n),

so that

p = Xβ + Zαa(ψ(W,n)) + η = Xβ + Zαã(W,n) + η. (8)

Estimation would be straightforward: all that is needed is to allow ã do
depend not only on n, but on W as well.

While this idea provides an easy way out of the problem of not observing
N , it is not easily justifiable on theoretical grounds. Natural theories of entry
that justify focusing onN in the first place would predict that the relationship
between n and N is not deterministic; for example, the model discussed in
section 5.3 would predict that n is a binomial random variable from a sample
of size N . It is not clear whether it is possible to find a reasonable model of
endogenous entry that would simultaneously justify using N in equation 3
and yet have N and n be deterministically related as in equation 7.

10This “trick” is originally due to Olley and Pakes (1996), and has been used otherwise
in the empirical auction literature by Campo et al. (2003) and Haile et al. (2003).
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5.4 Exogenous Hidden Entry

Another aspect of entry that is important in the analysis is whether bid-
ders know the number of competitors before bidding. McAfee and McMillan
(1987a) have developed the theory of how lack of knowledge about the num-
ber of bidders affects the properties of an auction.11

The way hidden entry affects the method will depend on the specific
auction rule. In an English or a Vickrey auction bidders do not use infor-
mation about the number of competitors in their strategies; therefore lack of
knowledge about it does not have any effect.

In a first price auction, equilibrium bidding strategies do depend on the
number of bidders. So if required to bid without knowing n, a bidder will
have to follow a strategy that maximizes the expected payoff over the range of
possible values for n. That would lead to a different equilibrium bid strategy,
and therefore a different expected price, depending on whether n is hidden
or not.

McAfee and McMillan (1987a) show that a version of the Expected Rev-
enue Equivalence Theorem is still valid: the expected price of a first-price
auction with hidden n is the same as the English or Vickrey auction, and
therefore also of a first price auction with known n. However, this is not suf-
ficient for the applicability of the method. Revenue equivalence holds only
ex-ante, for the unconditional expected price. For the method to work un-
changed we would need instead equivalence of the expected price conditional
on n. If the econometrician uses the methods described here with informa-
tion about n that was not available to the bidders in a first price auction,
the regression would be misspecified, since compared with predicted behav-
ior bidding would be too aggressive in auctions with few bidders and not
aggressive enough in auctions with many bidders.

6 Identifying Distributions from Least Squares

Coefficients

Besides providing unbiased estimates for parameters that determine the loca-
tion and scale of the value distributions, the method proposed in this paper
also provide indirect information about the underlying shape of the valuation
distribution through the estimated pattern of a(n)’s.

11Here entry is again assumed to be exogenous.
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This section discusses ways to explore this information. It establishes
that this information is enough to fully identify the valuation distribution:
in other words, in principle it is possible to obtain a nonparametric estimator
of the valuation distribution from the estimated coefficients of an ordinary
least squares regression!

It also provides a straightforward test for specific distributional assump-
tions. The methodology is illustrated in the next section with an application
to a dataset of Palm III PDA auctions from eBay.

6.1 Full Identification of F from {a(n)}
A perhaps surprising fact is that a distribution can be fully identified from
knowledge of its a(n)’s. This has been shown in several versions in the
Statistics literature (Hoeffding, 1953; Chan, 1967; Pollak, 1973). Here a
constructive proof is provided, that directly shows how to compute F from
{a(n)}∞n=2.

Theorem 2 Suppose that F has a finite expectation. Then there is a one-
to-one mapping between F and the sequence {a(n)}∞n=2.

The overall strategy of the proof follows Pollak (1973): the construction
of F from a(n) will be made in two steps, that we state as lemmas.

Lemma 1 (Recurrence relation) Let ω(k:n) = E[ε(k:n)], for all n = 2, 3, . . .
and all k = 2, 3, . . . , n. Then the following recurrence relation holds:

ω(k:n−1) =
n− k

n
ω(k:n) +

k

n
ω(k+1:n).

Proof: See appendix B.�

Corollary 1 Knowledge of a(n) = E[ε(2:n)] for every n = 2, 3, . . . is suffi-
cient to know all ω(k:n) = E[ε(k:n)], for all n = 2, 3, . . . and all k = 2, 3, . . . , n.

Proof: See appendix B.�

Observe that the recurrence relation is valid for any random variable
(with finite expectation). If the mean (=ω(1:1)) of it is known, then one can
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further compute ω(1:n) using the recurrence formula. However, this will not
be needed in what follows.

Another remarkable fact is that the same recurrence relation is valid
for the expectation of any measurable function g of the order statistics:
E[g(ε(k+1:n))] = n

k
E[g(ε(k:n−1))]− n−k

k
E[g(ε(k:n))]. So the same lemma applies

to other moments, such as the variance of the order statistics.12

Lemma 2 Let {kn} be a sequence of integers such that 1−kn/n→ α ∈ [0, 1].
Then ε(kn,n) → F−1(α) in probability.

Proof: See appendix B.�

Proof of Theorem 2: To obtain the quantile F−1(α) for any α ∈ [0, 1],
select a sequence {kn} such that kn ≥ 2 and kn/n→ 1−α. Use the recurrence
formula to compute ω(kn:n) from the a(n)’s, and then take the limit. The
converse is immediate. �

In principle Theorem 2 provides a way to obtain a non-parametric esti-
mate of the distribution of F by ordinary least squares. From method 2 we
obtain estimators â(n) that are unbiased and consistent for a(n). Since the
recurrence formula is linear, the corresponding ω̂(k:N) are also unbiased and
consistent (for a fixed N , as the number of auctions goes to infinity). Finally,
for large N , from lemma 2 the expectation of these estimators converges to
the quantiles of the original distribution.

However, it should be kept in mind that the linear combinations that arise
from the recurrence formula have large coefficients of opposing signs. So the
variance of ω̂(k:n) can be very large even if the â(n) are estimated precisely.
So the method of the last paragraph is likely to perform very poorly even in
a very large dataset.

Using the recurrence formula, the following closed form expression for
ω(k:n) can be obtained:

ω(k:n) =
n!

(n− k)!(k − 1)!

k−2∑
j=0

(−1)k−j−2 (k − 2)!

j!(k − 2− j)!

a(n− j)

(n− j)(n− j − 1)
.

12Another application of the recurrence relation in Economics can be found in Athey
and Haile (2002). Using the relation with g(x) = 1I{x < t} one obtains a recurrence
relations between the distributions of order statistics. Athey and Haile (2002) use this
relation to investigate ways of testing for the winner’s curse.
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So ω(k:n) is a linear combination of the k − 1 previous a(n)’s, with coeffi-
cients that alternate signs. As k and n grow, not only the number of terms
in the sum grow, but also do the coefficients. This means that the estimator
for ω(k:n) is likely to have a variance too large to be of practical use.

To see that, consider the case where there are no covariates for the the
mean and variance of the valuations (µl = 0 and σl = 1). In this case the
estimators for â(n) are means of different auction subsamples, and are there-
fore independent. In this case, the variance of ω̂(k:n) is simply Var(ω̂(k:n)) =∑k−2

j=0 c(j, k, n)2Var(â(n−j)), where c(j, k, n) = n!
(n−k)!(k−1)!

(k−2)!
j!(k−2−j)!(n−j)(n−j−1)

.
Suppose we are interested in estimating the median of the valuation dis-

tribution, and for that we use ω̂(n/2:n) for some large choice of n. Take the
first coefficient c(0, k, n). For k = n/2 we find

c(0, k, n) =
n!

(n− k)!(k − 1)!n(n− 1)
=

(n− 2)!

(n− k)!(k − 1)!

' n!

((n/2)!)2
−→
n→∞

∞.

So the variance of ω̂(n/2:n) would be arbitrarily large for large values of
n even if we had a sample that allowed us to estimate a(n) well. For this
reason, one should not expect to obtain accurate estimates of quantiles of F
using this direct method.

However, that theoretical result indicates that there is a significant amount
of information in {a(n)}; in particular, about aspects of the shape of the up-
per tail that are of interest to study revenue and surplus issues. The next
section discusses a practical way to explore this information.

6.2 Hypothesis Testing about Distributions

Perhaps the easiest and most useful way to use the information contained on
the â(n) estimators is to test for the hypothesis of a specific distribution F .

Under the null hypothesis that a given F is the normalized valuation dis-
tribution, method 1 would be appropriate. Under the alternative hypothesis,
method 2 would be. But the regression by method 1 is a restricted version
of the regression in method 2, where the a(n) terms are required to follow
the shape specified by F . So one can simply test the hypothesis by running
both methods and applying an F-test on the R2 difference. This procedure
is illustrated in section 7. In an application to data on Palm III auctions,
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this method succeeds in indicating that the distribution of bidder valuations
is log-normal — a distribution that is often thought to be appropriate for
valuations in auctions.13

Of course, this idea is not restricted to the IPV class of distributions;
any distribution of values to which one can compute equilibrium bids and
therefore the corresponding a function can be tested in the same way. Sec-
tion 7.1 provides an illustration by testing and rejecting several common
values models for Palm Pilot eBay auctions.

7 An Application to the Palm Pilot Market

This section illustrates the capacity of the method to deliver information
about the shape of the value distribution using actual data. The method has
been applied to a sample of 2299 Palm III personal digital assistants auctions
at eBay, from October 14 to November 13, 2000.

We have introduced as covariate for the mean a dummy for the object
being described as broken, and no covariate for the variance. Unfortunately
there is no data on the number of bidders per auction in this sample, and the
number of bids have been used in its place. That potentially overestimates
the number of bidders. Although, under the proxy bidding rules used in
eBay, bidders do not have an incentive to bid more than once, if valuations
are independent.

Estimated coefficients for all regressions are reported in Tables 5 and 6
at the end of the paper. Figure 1 presents graphically the estimated a(n)’s,
obtained with the method 2 and the corresponding estimated expected trans-
action prices under the assumption that ε has uniform, normal, log-normal

13If F is known up to a family of distributions indexed by a set of parameters θ, a similar
idea can be used in a two step procedure to estimate θ.

Assume that εil is drawn from a distribution F ∈ {Fθ}θ, where {Fθ}θ is a family
parameterized by θ. We are interested in finding θ such that F = Fθ. Then, for every n
observed in the sample, we can use the moment condition

a(n) =
n!

(n− 2)!

∫
xF

(n−2)
θ (1− Fθ)dFθ

for each n to run a GMM method using as the left hand side the estimates that come from
method 2. Further research is needed to investigate if this approach is feasible and yields
good estimators in small samples.
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or chi-square distribution.14

Figure 1: Estimated a(n)’s, Palm Pilot III regression.

The more concave lines are the a(n)’s of the uniform and normal distri-
bution. The least concave lines, that seem to fit the data better, correspond
to the distributions with a thicker upper tail, namely the log-normal and
chi-square.

As discussed in Section 6.2, formal hypothesis testing is straightforward,
requiring a mere linear restriction test on the coefficients of a linear regression
Table 2 presents the results of this test for each distribution.15 The conclu-
sions coincide roughly with the ones reached informally with the graphs:

14Because the number of auctions with many bids is small (cf. Table 7 at end of the
paper), it is convenient to introduce dummies for high values of n. All five regressions
include dummies for each n above 20.

15The test statistic is the F-test based on R2 differences, for the hypothesis that the
estimated dummies for â(2) to â(20) is equal to the numbers in each column of table 1, up
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the hypotheses of uniform or normal residuals are rejected at conventional
significance levels.

H0 : residuals are R2 test statistic p-value

Uniform 0.2337 4.0901 0.0000
Normal 0.2379 3.3461 0.0000

Log-normal 0.2487 1.4236 0.1154
Chi-square 0.2490 1.3846 0.1339

Unrestricted 0.2568 — —

Table 2: Hypothesis testing on the distribution of residuals.

7.1 Testing for Gaussian Common Values

Tests have also been run for the hypothesis that the true data generating
process is an English common value auction with distributional assumptions
as described in appendix A. Tests have been run for s2 = 1/2, 1, 2, 4, 16
and 64.16

s2 R2 test statistic p-value

1/2 0.2042 9.3214 0
1 0.2105 8.2120 0
2 0.2219 6.1900 0.0000
4 0.2315 4.4920 0.0000
16 0.2455 2.0024 0.0087
64 0.2319 4.4152 0.0000

Unrestricted 0.2568

Table 3: Hypothesis testing, Gaussian Common Values.

The results reported on table 3 show that all of the affiliated models
tested have been rejected. The results therefore do not provide evidence
against the independent private values assumption in this sample. One must

to scale and location. Here the degrees of freedom are 57− 30 = 17 and 2299− 57 = 2242.
16See appendix A for details.
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keep in mind, however, that these are tests on specific affiliated models. They
provide no indication on whether some other affiliated model is rejected.

8 Concluding Remarks

This paper proposes a method that combines the strenghts of two distincts
branches of the auction econometrics literature, being at once computation-
ally accessible and theoretically sound. It is also robust in a wide variety of
contexts.

In a nutshell, the main finding of the paper is that one can estimate
parameters that affect the location and scale of the value distribution in a
simple and unbiased way, provided one controls for variables that affect bid-
ding behavior in a flexible way. Under symmetry, the main such variable is
the number of participating bidders (equation 4); in more complex asymmet-
ric situations, it is the number of bidders of each given type (equation 5);
similarly, the discussion in section 5.3.2 suggest that when entry is a concern,
the appropriate regression would include a correction parameter that depends
on instruments correlated with the entry decision process (equation 8).

As such, the method provides a simple way to separate the effect of regres-
sors that affect bidding only by affecting the value distribution from those
that affect bidding strategically. It provides an useful tool for researchers
interested in measuring the former while properly controlling for the latter;
conversely, it helps identify the misspecification bias that occurs when the
latter are not accounted for.

And because it not only provides a way to control for variation across
auctions, but also allows for testing about value distribution assumptions, it
also might be a helpful preliminary exploratory tool for researchers interested
in applying more ambitious structural econometric models in auction data.

A Examples with Affiliation

This section provides examples of the methodology applied to the context of
the affiliated model of Milgrom and Weber (1982). In this model, the value
of the item for each bidder is no longer private and independent; it is rather
a function of a number of affiliated random variables. Vil, the value of the
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item for bidder i in auction l, is

Vil = Vl(S
l
i, S

l
−i, S

l
0),

where Sl
i is the signal of bidder i in auction l, Sl

−i is the vector of signals
of the other bidders, and Sl

0 is an additional random variable or vector not
observed by any bidder. Each bidder j observes Sl

j prior to the auction, but
not Vjl. S

l
0, . . . , S

l
n are affiliated, and Vl is increasing in all arguments.

We parameterize the model in a way analogous to Assumption 1:

Assumption 5 Vil = µl + σlνil, where νil = ν(Sl
i, S

l
−i, S

l
0). The distribution

of (Sl
0, . . . , S

l
n) is i.i.d. across auctions, and ν is the same across auctions.

As before, all variation across auctions is captured by the mean and the
variance of the valuations. Signals and values are allowed to exhibit fairly
complex dependencies within an auction, but once one normalize the values,
one obtains a random sample of auctions.

One feature that is lost once we move away from the independent private
values framework in the Expected Revenue Equivalence Theorem. Now the
expected price for the good will depend on the specific auction format to
be used. Following Milgrom and Weber (1982), we discuss three possible
auction formats: the second-price or Vickrey auction, the English auction,
and the first-price auction. We distinguish bid functions and resulting prices
across these auctions using superscripts V , E and F , respectively. Milgrom
and Weber (1982) have provided characterizations for equilibria in each of
the three alternative mechanisms.

In the Vickrey auction l, it is an equilibrium to bid according to

bVl (s) = E[Vil|Sl
i = s,max(Sl

−i) = s],

where bVl (s) represents the bid of bidder i when it observes a signal s. Assum-
ing bV is increasing, and since the affiliated model is symmetric, the winner is
the bidder with the highest signal, and the final price will be pV = bV (Sl

(2:nl)
).

Using assumptions 2 and 5, we can write the expected price as follows:

E[pV
l |Xl, Zl, nl] = E[bVl (Sl

(2:nl)
)|Xl, Zl, nl]

= E[E[Vil|Sl
i = S(2:nl)l , Sl

(1:nl)
= Sl

(2:nl)
]|Xl, Zl, nl]

= E[E[µl + σlνi|Sl
i = S(2:nl)l , Sl

(1:nl)
= Sl

(2:nl)
]|Xl, Zl, nl]

= µl + σlE[νi|Sl
i = S(1:nl)l = Sl

(2:nl)
],
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where the second equality comes from the equlibrium bidding function, the
third from the specification of Vil, and the fourth from linearity of the con-
ditional expectation operator. Defining aV(n) = E[νi|Sl

i = Sl
(2:n), S

l
(1:n) =

Sl
(2:n)], we have

E[pV
l |Xl, Zl, nl] = Xlβ + aV(nl)Zlα. (9)

As in equation 3, the conditional expectation of the price is linear, and
OLS provides unbiased and consistent estimates. Both methods 1 and 2
can again be used; the only change in method 1 needed to accommodate
affiliation would be to calculate aV(n) = E[νi|Sl

i = Sl
(2:n), S

l
(1:n) = Sl

(2:n)]

instead of a(n) = E[ε(2:n)]. Method 2 does not require any change.
The same result obtains in the English auction. In that case, a bid func-

tion must specify a drop-out point for each signal and each history of drop-out
points by the opponents. Let bEl (s,∅) is the drop-out point of a bidder with
signal s who has not seen anybody drop out, and bEl (s, (d1, . . . , dk)) is the
one for a bidder that has observed a history (d1, . . . , dk) of drop-out points.

Milgrom and Weber (1982) characterize an equilibrium to this game re-
cursively as follows:

bEl (s,∅) = E[Vil|Sl
i = s, Sl

−i(1)
= · · · = Sl

−i(n−1)
= s],

bEl (s, (d1)) = E[Vil|Sl
i = s, Sl

−i(1)
= · · · = Sl

−i(n−2)
= s, bEl (Sl

−i(n−1)
,∅) = d1],

bEl (s, (d1, d2)) = E[Vil|Sl
i = s, Sl

−i(1)
= · · · = Sl

−i(n−3)
= s, bEl (Sl

−i(n−2)
, (d1)) = d2,

bEl (Sl
−i(n−1)

,∅) = d1],

...

Assuming that these functions are one-to-one on s, one can infer the signal
of each losing bidder from their drop-out points. The auction price, the
drop-out point of the final losing bidder, is

pE = E[V(2:nl)l|S
l
(1) = Sl

(2), S
l
(2), . . . , S

l
(n)],

that is, the estimated value for this bidder if we know the signals of all losers
and assume the winner has the same signal as the last loser.

Since the price is still a conditional expectation, linearity holds in this
case as well. We obtain

E[pE
l |Xl, Zl, nl] = Xlβ + aE(nl)Zlα, (10)
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where this time aE(n) = E[E[νi|Sl
i = Sl

(2), S
l
(1:n) = Sl

(2:n), S
l
(2), . . . , S

l
(n)]]. So

again method 1 is applicable using this espression for a(n), and method 2 is
applicable unchanged.

We now turn to the case of a first-price auction. Milgrom and Weber
(1982) show that in a symmetric equilibrium of this game the bid function is

bF (s) =

∫ s

bV (t)dL(t|s),

where

L(t|s) = exp

(
−

∫ s

t

h(y|y)dy
)
,

and h(x|y) is the hazard rate of the opponents’ highest signal, conditional on
an individual’s signal. Observe that L is a function of the signal structure of
the model only, and not of the value function. So it does not change across
auctions.

So we can write

bF (s) =

∫ s

E[µl + σlνi|Sl
i = t,max(Sl

−i) = t]dL(t|s)

= µl + σl

∫ s

E[νi|Sl
i = t,max(Sl

−i) = t]dL(t|s),

and therefore the expected price is

E[pF
l |Xl, Zl, nl] = Xlβ + aF (nl)Zlα, (11)

where this time aF (n) = E
[∫ Sl

(1) E[νi|Sl
i = t,max(Sl

−i) = t]dL(t|Sl
(1))

]
.

In all three cases the methodology suggested works. Unbiased, consistent
estimates of the coefficients that determine the expectation and variance of
the valuations can be obtained by OLS even in the more general affiliated
framework. In order to apply method 1 the only necessary modification is
to redefine the artificial regressor a(n) in a way that depends on the specific
auction rule. For method 2, no changes are necessary.

We now provide artificial regressors ã(n) for a particular example of an
affiliated model: a case where agents have a common value for the object,
and only differ because they observe different signals of that value.

In order to obtain specific figures for ã(n), we assume Vil = Vl ∼ N (µl, σ
2
l )

is common across bidders within an auction. Let vl = (Vl − µl)/σl be the

27



normalized value. Bidders observe different signals Sl
i, with Sl

i = vl + εil,
with disturbances εil ∼ N (Vl, s

2) independent of each other and vl.
This model is a special case of the affiliated model, known in the literature

as the common-values or mineral rights model. Here we allow for variation
in the mean and variance of the valuations across auctions as before. We
impose a specific distributional assumption for valuations and signals in order
to compute artificial regressors.17

Artificial regressors have been computed for the English auction, the Vick-
rey auction and for the First-price auction, for all numbers of bidders between
2 and 20. They are reported in Table 4. Three values for the variance of
the signal error have been used: 0.5, 1 and 2. Since the variance of the nor-
malized value is 1, these choices represent the cases where uncertainty about
signal errors is smaller than, equal, or greater than uncertainty about the
value.

B Proofs

Proof of lemma 1: Since ω(k:n) = n!
(k−1)!(n−k)!

∫
vF (v)n−k(1−F (v))k−1dF (v),

we have that

nω(k:n−1) = n!
(k−1)!(n−1−k)!

∫
vF n−1−k(1− F )k−1dF (v)

= n!
(k−1)!(n−1−k)!

∫
vF n−1−k(1− F )k−1[F + (1− F )]dF (v)

= n!
(k−1)!(n−1−k)!

∫
vF n−k(1− F )k−1dF (v)

+ n!
(k−1)!(n−1−k)!

∫
vF n−1−k(1− F )kdF (v)

= (n− k)ω(k:n) + kω(k+1:n)

so the recurrence relation holds. �

Proof of corollary 1: By induction, since it is immediate that with all
ω(k:n) and a(n+ 1), one can directly compute all remaining ω(k:n+1). �

Proof of lemma 2: The argument roughly follows Hoeffding (1953). We
will show that the distribution of ε(kn,n) converges to the constant F−1(α).

17We truncate the distributions of normalized values at the interval [-10,10]. This is
done both for computational convenience and to make the model satisfy the requirement
in Milgrom and Weber (1982) that restricts attention to variables in a compact interval.
Numerical results do not seem to be sensitive to the truncation point.
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English auction Vickrey auction First-price auction
n s = 1/2 s = 1 s = 2 s = 1/2 s = 1 s = 2 s = 1/2 s = 1 s = 2
2 -0.2508 -0.3761 -0.3761 -0.2508 -0.3761 -0.3761 -0.4522 -0.5443 -0.4390
3 -0.1302 -0.2116 -0.2418 -0.1483 -0.2341 -0.2551 -0.2674 -0.3508 -0.3077
4 -0.0862 -0.1465 -0.1831 -0.1101 -0.1789 -0.2055 -0.2001 -0.2750 -0.2538
5 -0.0636 -0.1113 -0.1484 -0.0897 -0.1487 -0.1772 -0.1646 -0.2331 -0.2231
6 -0.0500 -0.0894 -0.1251 -0.0770 -0.1294 -0.1586 -0.1423 -0.2061 -0.2027
7 -0.0410 -0.0744 -0.1081 -0.0682 -0.1158 -0.1451 -0.1270 -0.1870 -0.1880
8 -0.0346 -0.0635 -0.0952 -0.0617 -0.1057 -0.1349 -0.1157 -0.1726 -0.1767
9 -0.0299 -0.0553 -0.0850 -0.0568 -0.0979 -0.1267 -0.1069 -0.1614 -0.1677
10 -0.0262 -0.0489 -0.0768 -0.0528 -0.0916 -0.1201 -0.1000 -0.1523 -0.1604
11 -0.0233 -0.0437 -0.0699 -0.0495 -0.0864 -0.1146 -0.0942 -0.1447 -0.1542
12 -0.0210 -0.0395 -0.0642 -0.0468 -0.0820 -0.1098 -0.0895 -0.1383 -0.1489
13 -0.0190 -0.0360 -0.0593 -0.0445 -0.0782 -0.1057 -0.0854 -0.1329 -0.1443
14 -0.0174 -0.0330 -0.0550 -0.0425 -0.0750 -0.1021 -0.0819 -0.1281 -0.1403
15 -0.0160 -0.0305 -0.0513 -0.0408 -0.0722 -0.0990 -0.0788 -0.1239 -0.1367
16 -0.0148 -0.0283 -0.0481 -0.0393 -0.0696 -0.0961 -0.0761 -0.1201 -0.1335
17 -0.0138 -0.0264 -0.0452 -0.0379 -0.0674 -0.0936 -0.0736 -0.1168 -0.1306
18 -0.0129 -0.0247 -0.0427 -0.0367 -0.0654 -0.0913 -0.0715 -0.1138 -0.1280
19 -0.0121 -0.0232 -0.0404 -0.0356 -0.0635 -0.0892 -0.0695 -0.1110 -0.1256
20 -0.0114 -0.0219 -0.0383 -0.0346 -0.0619 -0.0873 -0.0677 -0.1085 -0.1234

Table 4: Values of a(n), Gaussian common values.
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Given a quantile u, Pr(ε(kn,n) < F−1(u)) can be written as∫ u

0
(1− t)kntn−kndt∫ 1

0
(1− t)kntn−kndt

.

We must show that this goes to 0 for u < α and to 1 for u > α.
Take u < α. Fix v ∈ (u, α). For a sufficiently high n, αn = 1− kn/n > v.

The function tαn(1− t)1−αn is increasing for t < αn; so∫ u

0
[tαn(1− t)1−αn ]ndt∫ 1

0
[tαn(1− t)1−αn ]ndt

≤
∫ u

0
[tαn(1− t)1−αn ]ndt∫ αn

v
[tαn(1− t)1−αn ]ndt

≤∫ u

0
[uαn(1− u)1−αn ]ndt∫ αn

v
[vαn(1− v)1−αn ]ndt

=
u

αn − v

[
uαn(1− u)1−αn

vαn(1− v)1−αn

]n

→ 0.

The argument for u > α is analogous, since the function tαn(1 − t)1−αn is
decreasing for t > αn. �

Proof of proposition 1: Suppose there was such distribution. Let a(n) =
ω(2:n) = c + bn for some constants c and b. We must necessarily have b ≥ 0.
If b = 0, by the mapping from Theorem 2 it is easy to verify that the
distribution is degenerate. So we must have b > 0.

Now, successively apply the recursion formula to the case where k = 1.
We obtain

ω(1:n) =
n

n− 1
ω(1:n−1) −

c+ nb

n− 1

=
n

n− 1

[
n− 1

n− 2
ω(1:n−2) −

c+ (n− 1)b

n− 2

]
− c+ nb

n− 1

= nω(1:1) −
n

n(n− 1)
(c+ nb)− n

(n− 1)(n− 2)
(c+ (n− 1)b) + · · ·

= n

[
ω(1:1) − c

(
1

n(n− 1)
+

1

(n− 1)(n− 2)
+ · · ·

)
− b

(
1

n− 1
+

1

n− 2
+ · · ·

)]
→ −∞,

as n→∞, since the sum that multiplies b diverges (while the one that mul-
tiplies c does not). This contradicts the fact that ω(1:n) should be increasing
in n. �
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regressor coef. st.dev. regr. coef. st.dev. regr. coef. st.dev.
broken -106.66 28.70 21 198.53 14.39 42 212.50 102.50

2 58.82 7.93 22 220.01 12.91 43 292.50 72.48
3 59.63 8.63 23 217.47 14.21 44 293.35 59.17
4 91.68 9.81 24 218.39 13.94 45 300.00 102.50
5 109.82 10.68 25 221.85 14.49 46 322.00 102.50
6 109.99 10.68 26 219.85 14.07 47 310.00 102.50
7 136.57 10.74 27 226.79 17.32 48 167.50 102.50
8 145.31 11.32 28 242.82 19.03 53 305.00 102.50
9 182.05 10.93 29 242.71 18.71 58 222.50 102.50
10 139.77 10.64 30 236.44 17.57 64 281.00 102.50
11 160.15 11.46 31 233.96 20.50 67 225.00 102.50
12 162.11 10.06 32 228.80 26.46 90 291.00 102.50
13 184.43 10.63 33 246.58 29.58 93 205.00 102.50
14 199.03 12.08 34 239.61 28.42 106 280.00 102.50
15 198.21 11.99 35 172.84 34.16 126 285.50 102.50
16 187.46 12.61 36 182.14 38.74 128 215.50 102.50
17 214.40 13.23 37 242.10 45.84 134 280.00 102.50
18 217.64 11.68 38 190.00 51.25
19 228.21 10.92 39 206.25 51.25
20 204.15 12.92 40 278.50 59.17

Table 5: Estimated coefficients (and standard deviations) under free distri-
butional assumptions.
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uniform normal lognormal chi-square
regressor coef. st.dev. coef. st.dev. coef. st.dev. coef. st.dev.
broken -109.98 28.94 -109.45 28.86 -108.00 28.65 -108.50 28.65

intercept 77.72 4.17 79.48 4.05 93.45 3.45 90.65 3.54
slope 78.06 3.83 81.53 3.93 95.45 4.41 81.25 3.75
21 120.94 15.14 119.16 15.07 105.13 14.82 107.95 14.84
22 142.29 13.71 140.53 13.64 126.56 13.38 129.35 13.41
23 139.75 14.97 137.98 14.90 124.02 14.65 126.81 14.67
24 140.67 14.71 138.91 14.64 124.94 14.39 127.73 14.41
25 144.13 15.24 142.37 15.17 128.40 14.92 131.19 14.94
26 142.13 14.84 140.37 14.77 126.40 14.51 129.20 14.53
27 149.07 18.01 147.31 17.94 133.34 17.69 136.14 17.71
28 165.10 19.70 163.34 19.62 149.37 19.37 152.17 19.38
29 164.99 19.38 163.23 19.30 149.26 19.06 152.05 19.07
30 158.71 18.26 156.95 18.19 142.99 17.94 145.78 17.95
31 156.24 21.15 154.47 21.07 140.51 20.82 143.30 20.83
32 151.07 27.09 149.31 27.00 135.35 26.73 138.14 26.74
33 168.86 30.22 167.09 30.12 153.13 29.83 155.92 29.84
34 161.89 29.05 160.13 28.96 146.16 28.68 148.95 28.69
35 95.12 34.81 93.36 34.70 79.39 34.39 82.18 34.40
36 104.42 39.41 102.65 39.29 88.69 38.95 91.48 38.96
37 164.37 46.55 162.61 46.42 148.64 46.04 151.44 46.04
38 112.27 52.01 110.51 51.86 96.54 51.44 99.34 51.44
39 128.53 52.01 126.76 51.86 112.80 51.44 115.59 51.44
40 200.78 60.00 199.01 59.83 185.05 59.37 187.84 59.37

Table 6: Estimated coefficients (and standard deviations) under selected
distributional assumptions, linear formulation. (Coefficients for n > 40 were
included but not reported.)
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bids auctions bids auctions bids auctions
2 167 21 51 40 3
3 141 22 63 42 1
4 109 23 52 43 2
5 92 24 54 44 3
6 92 25 50 45 1
7 91 26 53 46 1
8 82 27 35 47 1
9 88 28 29 48 1
10 93 29 30 53 1
11 80 30 34 58 1
12 104 31 25 64 1
13 93 32 15 67 1
14 72 33 12 90 1
15 73 34 13 93 1
16 66 35 9 106 1
17 60 36 7 126 1
18 77 37 5 128 1
19 88 38 4 134 1
20 63 39 4

Table 7: Number of auctions, by number of bids.
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