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Abstract

When a secret reserve price is used in an auction, the auctioneer cannot guarantee that the

good can be sold out at the auction, and can re-auction the unsold objects in the next round.

Motivated by this interesting feature observed in the procurement auctions organized by the In-

diana Department of Transportation, we construct a bidding model in multi-round procurement

auctions with secret reserve prices and evaluate how the release of the auctioneer�s reserve price

a¤ects bidders�bidding behavior and the auctioneer�s expected payment. Our theoretical model

predicts that the equilibrium bids uniformly decline over stages, and the numerical analysis of

our model indicates that hiding the reserve price may be better than announcing it for the auc-

tioneer under some speci�cations of underlying distributions. We develop an empirical model to

recover the unknown structutral parameters and to conduct counterfactual analyses.
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1 Introduction

This paper is motivated by an interesting feature we observed from the procurement auctions

organized by the Indiana Department of Transportation (INDOT): many of these auctions are

held with multiple rounds. This feature is attributed to the use of secret reserve prices in these

auctions. Prior research has indicated that auctions with reserve prices sometimes lead to no

transaction if no bidder can propose a price better than the reserve price.1 However, there are

still chances of trade if bidders�values for the unsold objects change. Thus the seller can continue

auctioning the unsold objects from previous auctions. Previous research, however, has not paid

much attention to this feature in auctions. In this paper, we propose a game-theoretic bidding

model in multi-round procurement auctions with secret reserve prices and evaluate how the release

of the auctioneer�s reserve price a¤ects bidders�bidding behavior and auctioneer�s expected payment.

Then we carry out a structural econometric analysis on the multi-round procurement auction data

from the INDOT. Using the structural estimates, we evaluate how the release of the reserve price

a¤ects the government�s expected payment through counterfactual analysis.

To model the multiple stages and secret reserve price, we focus our �rst-price sealed-bid auction

model on a simple environment �the independent private value (IPV) paradigm. We also restrict

our attention to bidders�strategic changes over stages, while assuming that the government�s reserve

price is exogenous and private over stages.2 This assumption, although restrictive, is consistent with

our data.3

While our model focuses on the procurement auctions that are low-bid auctions, as it is motivated

by the procurement data from the INDOT, it can be readily extended to high-bid auctions. Our

model yields some interesting predictions and implications. First, the bidding prices uniformly

1See, for example, Elyakime, La¤ont, Loisel and Vuong (1997), Bajari and Hortasu (2003), and Li and Perrigne

(2003).
2The theoretical study of the seller�s optimal reserve price strategy is often in a relatively simple environment. See

e.g., Riley and Samuelson (1981) and La¤ont and Maskin (1980). The empirical study of auction data in complicated

environment, on the other hand, often treats the seller�s reserve exogenous and concentrates on analyzing bidding. See

e.g., Bajari and Hortacsu (2003)�s study of eBay auctions with reserve prices and endogenous entry, and Jofre-Bonet

and Pesendorfer (2003)�s study of repeated games of highway auctions.
3According to the o¢ cials at the INDOT, generally no change is made in the engineer estimate (as the reserve

price) after a round of unsuccessful auction and in practice there were very few changes made. Hence the reserve price

is the government�s knowledge rather than its dynamic strategy.
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decline over stages, because of the information about the secret reserve prices revealed in the

previous stage. Second, under some conditions, hiding the secret reserve price is better for the

government than announcing it. This result provides an explanation as to why secret reserve prices

are commonly used in auctions from a new perspective.

Note that use of secret reserve prices in auctions has been studied in empirical work. See, e.g.,

Hendricks, Porter and Wilson (1994) for the Outer Continental Shelf auctions, Ashenfelter (1989)

for wine and arts auctions, Elyakime, La¤ont, Loisel and Vuong (1994, 1997) and Li and Perrigne

(2003) for timber auctions, and Bajari and Hortacsu (2003) for eBay auctions. Theoretical work in

studying secret reserve prices, however, has been limited, with exceptions such as Vincent (1995)

using risk aversion to explain the use of secret reserve prices in a common value paradigm and

Li and Tan (2000) in an independent private value paradigm. They show that in the presence

of risk aversion, using a secret reserve price is better for the seller than using the optimal public

reserve price for single-round auctions under some conditions. Alternative explanations have also

been provided through the seller�s objectives other than maximizing pro�ts such as maximizing the

expected sales as in Elyakime, La¤ont, Loisel and Vuong (1994).4

On the other hand, studies of multi-round auctions have been quite limited. Elyakime, La¤ont,

Loisel and Vuong (1997) study a two-round auction game where the �rst round is conducted as a

�rst-price sealed bid auction with a secret reserve price, and if the object is not sold, the second

round is conducted through bargaining between the seller and the bidder with the highest bid from

the �rst round. Horstmann and LaCasse (1997) propose a common value second-price bidding

model in which the seller is assumed to know the true common value and has the option of holding

the auction for a one-time resale. The seller announces a reserve price for screening inferior bids

but does not guarantee a sale in the �rst round auction. Evidently, these two models do not �t

with the multi-round procurement auctions organized by the INDOT as these auctions can be held

for more than two rounds if the project is not sold in the previous round, and the government does

not strategically choose to re-auction the project.

To analyze the procurement auction data, and in addition to provide an empirical framework

4Hiding reserve prices may also help the auctioneer deter collusion from bidders as explained in Ashenfelter (1989).

In addition, as argued in Bajari and Hortacsu (2003), secret reserve prices may be used to encourage participation in

auctions with entry.
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within which the multi-round model with secret reserve prices can be analyzed, we develop a struc-

tural model from the theoretical model that we propose. Our structural approach takes into account

of the unobserved auction heterogeneity, the existence of which in procurement auctions has been

documented (e.g. Krasnokutskaya (2002) and Li and Zheng (2005)). Failing to control for the

unobserved auction heterogeneity can cause severe bias in structural estimation, and hence result

in misleading policy evaluations and recommendations.

We adopt the method of simulated moments (MSM) to estimate the underlying structural para-

meters. This approach provides a uni�ed framework within which some interesting hypotheses can

be tested, in addition to the computational advantage in obtaining consistent estimates. For exam-

ple, we can test whether the private cost distribution varies across stages. We use our structural

approach to analyze the INDOT data. Using the structural estimates, we carry out a counterfactual

analysis by simulating the auctions with di¤erent government�s reserve price release policies in the

multi-round scenario. We �nd that the government could save more than $13,000 (or about 2.5%

of the project value) on average on a representative bridge work auction by hiding the engineer

estimate rather than disclosing it. Hence the use of secret reserve price may be a good policy in

practice in procurement auctions.

This paper is organized as follows. In Section 2, we present the data to motivate the model. In

Section 3, we construct the model of multi-round procurement auctions with secret reserve prices,

and solve the Bayesian Nash equilibrium. We also investigate the implications from our model. In

Section 4, we compare the e¤ects of di¤erent information release policies. In Section 5, we conduct

a reduced-form econometric analysis of the data. In Section 6, we provide a structural econometric

framework for analyzing multi-round auction data. In Section 7, we apply the structural approach to

analyze the INDOT data. In Section 8, we use counterfactual analysis to evaluate the government�s

reserve price policy. Section 9 concludes. All technical proofs are included in the Appendix.

2 Data

This paper analyzes a data set of highway auctions held by the INDOT. The INDOT lets highway

construction contracts through auctions. The auctions are held as �rst-price sealed-bid auctions

where the INDOT reserve prices are unknown to bidders. Each contract speci�es the construction
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work on highways within Indiana State undertaken by the winner of the auction. The winner of

each auction performs projects described in the contract and is paid by the government. The prices

bid by all participants are the amount that they ask for compensation.

An auction proceeds as follows. The INDOT posts the notice to contractors to invite bids �ve

weeks prior to the bidding day. The notice includes simple information such as the type of projects

in each contract, date of completion requested, and the length or area of the projects. Bid proposals

and plans for the contracts that consist of more information on characteristics of the projects are also

available upon request. Next with the advent of the bidding day, each bidder submits a sealed bid

to an electronic bidding system under the government�s secret reserve price. Finally on the bidding

day, the received bids are unsealed and ranked by the government publicly. If the lowest bid in the

auction is lower than the reserve price, the contract is then awarded to the bidder. Otherwise the

contract will be readvertised and reauctioned in the following month. This feature makes the data

unique.

The INDOT lets four types of construction work: road work, bridge work, tra¢ c facilities and

highway maintenance. We select one speci�c type of bridge work, which is called bridge rehabilita-

tion, to analyze for two reasons. First, there exists large heterogeneity across di¤erent auctions. The

characteristics of bridges are relatively more observable to econometricians among all work. Second,

among all bridge work, bridge rehabilitation work reveals most characteristics to econometricians

and occurs most frequently.

The sample analyzed in this paper is from INDOT monthly lettings from September 1996 to

December 2004. For each auctioned contract, we have the following observations: the identity of

each bidder, all bids, the reserve price, the number of bidders, the number of projects, the length

of projects, the number of working days (or the completion date), the DBE goal and the structure

of the bridge.5 Before we exclude the lettings whose descriptive variables are missing, we have 37

5DBE (short for disadvantaged business enterprise program) is committed by the INDOT to implement to en-

sure nondiscrimination in the award and administration of USDOT-assisted contracts. DBE goal is expressed as a

percentage. This percentage, when applied to the total federal highway construction funds received by the INDOT

during the year, represents the amount of dollars that DBE �rms working on INDOT contracts as prime contractors,

subcontractors, or truckers should receive. Hence in a particular letting, the primary contractor if not a DBE �rm,

has the responsibility for contracting all ready, willing and able DBE �rms who express a desire to work on any of

the pay items of the contract; and must subcontract at least as much as the required percentage of the total value to

4



lettings that have two rounds of auctions. In a majority of 34 lettings, the contractors in the second

round are a subset of the contractors in the �rst round. There are three lettings, however, all of

which have one single bidder in the �rst round and one new single bidder in the second round.

We exclude them from our sample. We also exclude from the sample the lettings whose descriptive

variables are missing. As a result, our �nal sample consists of 273 lets and 1428 bids in total. Among

the 273 lets, 243 were sold in the �rst round that involve 1261 bids. There are 30 lets unsold in the

�rst round (near 12.5%) but sold in the second round with totally 167 bids in both rounds, and 102

bids in the �rst round, and 65 bids in the second round, respectively.

Table 1 and Table 2 give the description of the variables and the summary statistics of the

data. On average, DBE percentage is 7.52 which means 7.52% of the total value of the contract is

operated by DBE �rms. DBE is regulated by the government hence it is not the choice of bidders.

The average number of working days for completing the bridge work is around 138. The average

length of the projects is 79.21 meters (about 260 feet). Intuitively, the longer a project takes and/or

the longer the bridge is, the more work needs to be done and hence the higher cost it could result

in. The average number of projects in each contract is 1.18, meaning that there can be multiple

projects on vicinity sites. Multiple projects could potentially a¤ect the capacity as well as the share

ability of the facilities of the �rms. 38% of the bridges have a steel structure, with the rest having

structures of concrete, wood and others.

The summary statistics also reveal several important features of the data. On average, the

number of bidders in the �rst round is 4.99 whereas the number of bidders in the second round

is 2.23. Second, the average reserve price is $855,615 and the average bid is $839,506 for those

with only one round. The former is greater than the latter meaning that the secret reserve price is

e¤ectively binding. On the other hand, they are very close. Third, if we concentrate on the auctions

with two rounds, we �nd that on average, the bid is $ 638,917 in the �rst round and $588,992 in

the second round, with a di¤erence of $49,925. This indicates that bids on average are lower in the

second round than in the �rst round.

one or more DBE �rms.
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3 TheModel for Multi-Round Auctions with Secret Reserve Prices

In this section, we propose a game-theoretic model for multi-round procurement auctions with secret

reserve prices, and derive the corresponding Bayesian-Nash equilibrium.

3.1 Setup of the Game

The government lets a single and indivisible contract to �rm contractors. There are N potential

contractors who are interested in bidding for the contract. Each potential bidder is risk-neutral

with a disutility equal to his private cost c. The government has an engineer estimate that is kept

secret and serves as a reserve price in that the lowest bid has to be below it to become the winning

bid. Because of the secret reserve price, it is possible for a project not to be awarded in an auction.

If this is the case, the project will be re-auctioned later. Thus the game has multiple stages.

The government�s secret reserve price r0 is drawn from a distribution G(�) with support [c; c]

where c � 0: G(�) is twice continuously di¤erentiable and has a density g(�) that is strictly positive

on the support. Potential bidders draw their private costs independently at stage j from a common

distribution denoted Fj(�) with support [c; c] and the corresponding density fj(�) that is strictly

positive on the support.6 Thus we focus on the independent private value paradigm. When forming

his bid, each bidder knows his private cost c, but does not know r0 as well as others� private

costs. On the other hand, each bidder knows that r0 is drawn from G(�) and all private costs are

independently drawn from Fj(�). G(�) and Fj(�) are common knowledge to all bidders. As a result,

all bidders are identical a priori and the game is symmetric.

More speci�cally, the game can be characterized in the following order. In the �rst stage, the

government has an engineer estimate that serves as the reserve price. The reserve price is kept �xed

and secret until the contract is sold. It is exogenous in that it is not related to the government�s

optimal and strategic decision. As a result, we can focus on the strategic changes of the bidders�

strategies across stages. Without knowing the reserve price, all N potential bidders participate in

the game in the �rst stage and submit their bids. At the end of the �rst stage, all bids are opened,

ranked and released. The reserve price, however, is not made public until after the contract is

sold out. If the lowest bid, which requests the least compensation of cost from the government, is

6While we assume that G(�) and Fj(�) have a common support for simplicity, our approach can be readily generalized

to the general case where G(�) and Fj(�) have di¤erent supports.
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lower than the reserve price, the contract is awarded to the associated bidder and the game ends.

Otherwise, the game continues to the next stage.

In the second stage, there are two main changes. First, each contractor re-draws his private cost

from a common distribution F2(�), which in general can be di¤erent from F1(�); his re-drawn cost

is independent of his cost from the preceding stage. This is a key assumption in our model, and

will be labeled as the �random cost replacement�assumption hereafter. This assumption implies

each bidder�s cost in one auction round is independent of his in another. Being endowed with the

lowest cost in the �rst round does not mean being endowed with the lowest in other rounds. This

assumption can be used to justify our observation that in most of the auctions in our data, the

actual bidders of the second round are a subset of the bidders in the �rst round. Moreover, the

assumption that each bidder re-draws his private cost in a di¤erent round is reasonable. Each �rm

can participate in several di¤erent auctions in one month. They may lose in some auctions while

winning in others. In a later round, the �rm�s private cost for the same project can change from

the previous round because the �rm may face di¤erent capacity constraints and may have di¤erent

opportunity costs.7

Another important feature of our model is that there is a Bayesian updating on the reserve

price from the bidders. Speci�cally, when an unsold project is re-auctioned, though the engineer�s

estimate is still kept secret, bidders have more information about this secret reserve price in this

round than in the preceding one as they know the lowest bid from the preceding round. Therefore,

they take this lowest bid into their strategy calculation as additional information as they know the

secret reserve price has to be below this lowest bid. If a potential bidder�s private cost he re-draws

in this new round is above the lowest bid from the preceding round, he will not submit his bid.

Thus this lowest bid plays a similar role to that of a public reserve price in screening bids. Thus,

though we assume that there is no entry problem in the �rst round in that all potential bidders

submit their bids, in the subsequent rounds, a potential bidder will not submit his bid if his private

cost is higher than the lowest bid he observes from the preceding round. As a result, the actual

bidders in the subsequent rounds must be a subset of the potential bidders of the �rst round.

7Statistical tests we perform in the data o¤er support for the random replacement assumption. The correlation of

the ranks of the bidders in the �rst round and in the second round is about 0.30. Further test of the correlation of

same bidders�bids across auction rounds shows that the correlation is 0.17.
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3.2 The Bayesian-Nash Equilibrium Bidding Strategy

Denote a bidder�s cost at the j-th stage cj ; and the associated bidding strategy bj : We focus on the

symmetric increasing Bayesian-Nash bidding equilibrium. De�ne the equilibrium bidding function

as bj = �(cj) such that �0(�) > 0: We also use s�j to denote the lowest bid in the j-th stage.

In this paper, we assume that bidders solve their bidding strategies stage by stage without

considering possible future rounds at the current round.8 Under this assumption and the random

cost replacement assumption, we can derive the bidder�s Bayesian-Nash equilibrium across stages

as follows.

Proposition 1 The Bayesian-Nash equilibrium strategies are

�1(c) = c+

R c
c [1� F1(x)]

N�1[1�G(�1(x))]dx
[1� F1(c)]N�1[1�G(�1(c))]

; (1)

for the �rst round and

�j(c) = c+

R s�j�1
c [1� Fj(x)]N�1[G(s�j�1)�G(�j(x))]dx
[1� Fj(c)]N�1[G(s�j�1)�G(�j(c))]

: (2)

for the j-th reauction round respectively.

3.3 Comparing Bidding Strategies across Stages

Expressions (1) and (2) indicate that the bidding strategies di¤er from stage to stage in our model,

and the interval over which the bidding strategy is de�ned also changes over stages. For instance

while the �rst round equilibrium is de�ned on [c; c], the second round equilibrium is de�ned on the

interval [c; s�1]; which is truncated from above compared to the �rst round. While the secret reserve

price is not revealed, the rejected lowest bid from the previous round gives bidders information that

the secret reserve price is below this bid; bidders will not submit their bids above this lowest bid.

Intuitively, this would make bidders bid more aggressively and reduce their bids over stages. This

is indeed the case, as shown in the next proposition.

Proposition 2 In the multi-round auction model, the equilibrium bid in stage j is less than or

equal to the equilibrium bid in the previous stage everywhere on [c; s�j�1]; i.e., �j(c) � �j�1(c):
8This assumption rules out forward-looking bidders. On the other hand, it has a generality in that it allows for

di¤erent private cost distributions across di¤erent rounds, while one has to assume the same private cost distribution

across stages in a dynamic game with forward-looking bidders.
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A few remarks follow. First, this proposition shows that the equilibrium bidding strategies are

indeed decreasing from stage to stage if the contract is not sold out. Moreover, the reduction is

universal on the whole common interval. Second, this result is established allowing for the private

cost distributions to vary across stages. Thus it is a strong prediction from the model as it is robust

to the change of the bidders�cost distribution over stages. Third, this result is empirically testable

and can be used for testing rationality of bidders in real auctions.

3.4 Numerical Examples

To explore more properties of the bidding functions across stages, we give some numerical examples.

We specify di¤erent distributions and vary the number of potential bidders. As the analytical

solutions are in general not attainable, we numerically solve for equilibrium bids. Without loss of

generality, we illustrate �1(c) and �2(c): The bidding functions under di¤erent speci�cations are

depicted in �gure set 1 (�gure 1-1 �1-3).

The depicted curves reinforce two main �ndings from the theoretical model. First, the bidding

functions are strictly increasing. Second, the bids in the second round are everywhere below the bids

in the �rst round on the common support. We conduct a large number of numerical speci�cations

and these �ndings are generally consistent.

The graphs also reveal some other interesting patterns. First, the bids are negatively related to

the number of potential bidders in every round. This is simply because of the competition e¤ect.

Second, the disparity between �1(c) and �2(c) are a¤ected by two factors. On one hand, it is

a¤ected by the number of potential bidders. The di¤erence between them shrinks as the number of

potential bidders increases. This is reasonable because as the number of potential bidders increases,

the competition e¤ect becomes more intense, which makes a bidder�s mark-up in every auction

round small and converging. On the other hand, it is a¤ected by the lowest bid in the �rst round

of unsold auction. The smaller this lowest bid is, the larger the di¤erence between �1(c) and �2(c):

We label this e¤ect as boundary e¤ect. In the �rst round, the boundary condition is at the upper

bound of the cost distribution, while in the second round the boundary condition is at the previous

lowest bid (upper bound of a truncated distribution). The lower the truncated bound is, the lower

the maximum possible bid in the second round is. Hence the boundary e¤ect tends to enlarge the

di¤erence in bidding across stages.
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4 Government�s Information Revelation

In this section we compare welfare impacts of di¤erent reserve price release policies from the gov-

ernment. Motivated by the INDOT data feature, our model has focused on the use of the secret

reserve price by the government. Alternatively, the government can make the engineer�s estimate

public and use it as a public reserve price. In this scenario, the government can �nd no bids sub-

mitted if all bidders�private costs are above the public reserve price. If we maintain the random

cost replacement assumption, then the government can re-auction the project in the next round

with the same public reserve price. As a result, under the random cost replacement assumption,

the multi-round feature can be accommodated by both secret and public reserve prices. It would

be interesting to compare the welfare implications of these two mechanisms and gain insights on

why secret reserve prices are used in auctions.

4.1 Multi-Round Auctions with Public Reserve Prices

We maintain all the assumptions made in Section 2.1 except that now the reserve price r0 is public.

In the j-th round, the Bayesian-Nash equilibrium strategy, as shown in Riley and Samuelson (1981),

is given by

�pj(c) = c+

R r0
c [1� Fj(x)]

N�1dx

[1� Fj(c)]N�1
(3)

for c < r0; for a potential bidder whose private cost is above r0, he will not bid.

If all potential bidders�private costs are above r0, no bids are submitted at the current round,

and the project can be re-auctioned in the next round. As in the secret reserve price case, we

assume that the set of potential bidders remains the same across stages. At each round, however, a

bidder�s bidding strategy as de�ned in (3) may change because of the new private cost he re-draws

from Fj(�).

4.2 The Comparison of Mechanisms

We compare the government�s ex ante expected payments under the two reserve price policies,

assuming that bidders re-draw their private costs at each round, and the government will re-auction

the unsold contract in the next round until it is sold out. Since it is infeasible to make such
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a comparison generally as the ex ante expected payments in these two cases do not have closed

form expressions in general, we conduct some simulation studies by assuming that the private cost

distribution remains the same across stages, and by considering some commonly used functional

forms for the private cost distribution and the reserve price distribution such as the uniform and

exponential distributions.

We specify di¤erent distributions and vary the number of potential bidders to carry out a group of

simulations. We then compare the government�s expected expenditures under the two mechanisms.

We �rst plot the simulated expected expenditure as a function of the reserve price. As can

be seen from the graphs, under some speci�cations, the secret reserve price policy dominates the

public reserve price in that the (ex post) expected expenditure under the secret reserve price is

below that under the public reserve price. Some other speci�cations, however, yield the opposite

�ndings. We further compute the ex ante expected expenditures by integrating out the reserve

prices and report them in Table 3, which reveals that the expected expenditure under secret reserve

prices is sometimes lower and sometimes higher than under public reserve prices.

The graphs also reveal some other interesting patterns. First, the (ex post) expected expenditure

as a function of either a secret or public reserve price is almost increasing with the reserve price9.

This is reasonable because the higher is the reserve price, the less restrictive is the auction to the

bidders. The acceptable bids are high when the reserve prices are high. Second, the e¤ect of the

number of bidders is complicated. On one hand, the larger the number of bidders, the closer the two

curves are because of the competition that tends to o¤set the di¤erent e¤ects of di¤erent reserve

prices on bidding. This competition e¤ect is in analogy to that in the earlier numerical results on

equilibrium bids between stages. On the other hand, the minimum bid in the previous round is

lowered by the intensity of competition in the case of a secret reserve price. This is a factor that

drags down the bids in the auctions with secret reserve prices, which does not exist in the public

reserve price mechanism. The boundary e¤ect favors the secret reserve price. It a¤ects the position

of the intersection and the di¤erence of the two curves. Consequently, the boundary e¤ect tends to

enlarge the favorable range for the secret reserve price and increase the distance between the two

curves in its favorable range. The net e¤ect is determined by the combination. It seems that the

9The sampling variation resulting from simulations causes the small �uctuations on the curve; otherwise the curve

could be more monotone.
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competition e¤ect often dominates from the graphs.

5 Reduced-Form Empirical Analyses

In this section, we provide a preliminary analysis of our data, trying to relate our theoretical model

to the data by justifying some assumptions, and to test some predictions from the model.10

5.1 Exogeneity of Number of Potential bidders in the First Round and the

Reserve Price

In our model, we assume that there is no entry in the �rst round. In other words, the set of

potential bidders is identical to that of actual bidders. To justify this assumption, we take a look

at the number of bidders in the �rst round and test the exogeneity of this variable. To this end,

we use both the Poisson model and the negative binomial model as the number of bidders is a

count variable. Using all data in the �rst round including both sold lettings and unsold lettings,

we estimate both models. Since in our data set, we do not have any auction that has no bidder

participation, the number of bidders in our data is truncated from zero. Thus we use the truncated

Poisson and negative binomial models.

The ML estimation results of both models are reported in Table 4. The results show that no

covariates used in the regression are statistically signi�cant in explaining the number of bidders.

Thus, the number of actual bidders can be treated exogenous and considered the same as the number

of potential bidders.

Another important assumption in the theoretical model is that the government�s reserve price

is exogenous in that it is not related to the number of bidders and does not change across di¤erent

rounds. To test the exogeneity of the reserve price in our data, we run a regression of the logarithm

of the reserve price on a set of covariates including the number of bidders. From the results reported

in Table 5, we can see that interestingly, both the number of bidders and the round-two dummy are

not signi�cant in the regression.11 That both the number of bidders and round-two dummy have

10While our model is general enough to allow for possibility of in�nite rounds, we can only focus on analyzing the

�rst two rounds because of our data limitation.
11�round-two�is a dummy variable equal to 0 when an auction is in the �rst round and 1 when an auction is in the

second round.
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no e¤ect on the reserve price provides support for the exogeneity of the reserve price.

5.2 Regression Analysis of Bids

There are two empirically testable implications about the equilibrium bids from our theoretical

model. First, it can be easily veri�ed that the Bayesian-Nash equilibrium strategies given by (1)

and (2) are monotone decreasing with the number of potential bidders. Intuitively, the larger the

number of bidders, the more competitive the auction. The competition drives the bidders to bid

more aggressively. Second, the theoretical model predicts that the equilibrium bids are lower in the

second stage.

To test these two implications, we run a pooled regression of the logarithm of bids on a set of

covariates. To allow for structural change in bid over the two auction rounds, which is indicated

by the theoretical model, we include the round-two dummy variable and its interactions with other

variables. We report the regression results in Table 6. It turns out that the number of bidders is

strongly signi�cant and negatively related to bids. The round-two dummy and some interactive

terms are strongly signi�cant, meaning that there exists structural change in bid across auction

stages. Furthermore, we calculate the marginal e¤ect of the round-two dummy on the bids. The

marginal e¤ect is -$53004 and strongly signi�cant, meaning that on average the bidders tend to

lower their bids in the second round by $53,004 which is about 8.3% of the project value. This

result is quite close to the outcome in the summary statistics. These �ndings o¤er support to our

theoretical model.

The R2 of the pooled regression is 0.51, indicating that on the one hand the model �ts moderately

well, on the other hand we may ignore some unobserved auction heterogeneity. To further ascertain

the existence of unobserved auction heterogeneity, we conduct a random-e¤ect panel data analysis

using only the �rst round auction data, as the auction data have a panel feature. We report the

regression results in Table 7. The results strongly indicate that there exists unobserved auction

heterogeneity as the error variance from the unobserved heterogeneity accounts for 95% of the total

error variance. Hence it calls for controlling the unobserved heterogeneity in the structural inference.
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6 Structural Inference of Muti-Round Auction Models

6.1 The Parameterization of the Structural Model

Based on the theoretical auction model, there are three primitives, namely, the government�s reserve

price distribution G(�) and the private cost distributions Fj(�), j = 1; 2. F1(�) can be in general

di¤erent from F2(�). Nonparametrically, G(�) can be identi�ed from the observed reserve prices as

they are assumed to be random draws from G(�). Moreover, following Guerre, Perrigne and Vuong

(2000) and Li and Perrigne (2003), it can be veri�ed that F1(�) is identi�ed over its entire support

[c; c] by the observed bids in the �rst round, and F2(�) is identi�ed over [c; s�1] by the observed bids

in the second round. In this paper, however, we adopt the parametric approach because we only

observe 30 auctions in the second round, which makes nonparametric estimation problematic.

In an econometric framework, asymptotic statistical inference is based on a large number of

auctions. Let L1 be the number of auctions that transact in the �rst round, L2 be the number

of auctions that transact in the second round. For the `-th auction at the j-th round, let G`(�);

Fj`(�) and Fj`(�) denote each primitive distribution respectively with corresponding densities g`(�)

and fj`(�), j = 1; 2. Assume that G` = G(�jx`; u`; 
) and Fj` = F (�jx`; u`; �j), where x` is a vector

of variables that we use to control for the observed auction heterogeneity, and u` is a scalar variable

that represents the unobserved auction heterogeneity, both a¤ecting the government�s reserve price

as well as the bidders�costs, 
 is a vector of unknown parameters in � � RK , and � is a vector

of unknown parameters in � � RK : We assume that u is independent of x, and has a distribution

W (�j�) with w(�j�) being the density function, where � is a vector of unknown parameter in � � Rm:

Conditional on both observed and unobserved heterogeneity x and u, we specify the reserve

price distribution and the cost distribution as exponential as follows

g`(rjx`; u`; 
) =
1

exp(x`
 + u`)
exp

�
�r

exp(x`
 + u`)

�
(4)

fj`(cjx`; u`; �j) =
1

exp(x`�j + u`)
exp

�
�c

exp(x`�j + u`)

�
j = 1; 2 (5)

where c 2 (0;1) and r 2 (0;1). By including the intercept in x, we normalize the unobserved

heterogeneity term u such that E[u] = 0: We assume that u � N(0; �2), where �2 is an unknown

parameter.
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6.2 Structural Equilibrium Solutions

Next we need to solve the theoretical auction model for equilibrium solutions with the above speci�ed

distributions. The Bayesian Nash equilibrium bidding strategy in the �rst round is given as follows,

which is a closed-form solution

�1(c) = c+
1

N � 1
exp(x`�1 + u`)

+
1

exp(x`
 + u`)

: (6)

The Bayesian Nash equilibrium bidding strategy in the second round, which is a solution to the

equation given below, does not have a closed form.

�2(c) = c+

R s�1
c [exp

� �z
exp(x`�2+u`)

�
]N�1[exp

� ��2(z)
exp(x`
+u`)

�
�exp

� �s�1
exp(x`
+u`)

�
]dz

[exp
� �c
exp(x`�2+u`)

�
]N�1[exp

� ��2(c)
exp(x`
+u`)

�
�exp

� �s�1
exp(x`
+u`)

�
]

(7)

6.3 Estimation and Testing for Changes of Private Cost Distributions

In our auction data, at round j; j = 1; 2, we observe reserve prices, number of potential bidders

and a set of auction heterogeneities (r`; N`; x`). We also observe bids in round 1 and round 2,

respectively. Our estimation of the structural parameters is based on the likelihood function of r

given in (4) and the moment conditions of bji` (j = 1; 2), where bji` denoted the i-th bid in the `-th

auction at the j-th round. Speci�cally, from (6) we obtain the moment condition

E[b1i`jN`; g`(�); x`; u`] � m1(b1i`; x`; u`; 
; �; �1) = E[cjN`; g`(�); x`; u`]

+
1

N` � 1
exp(x`�1 + u`)

+
1

exp(x`
 + u`)

= exp(x`�1 + u`) +
1

N`�1
exp(x`�1+u`)

+ 1
exp(x`
+u`)

(8)

for the equilibrium bids b1i` in the �rst auction round. Similarly, from (7) we can obtain

E[b2i`jc � s�1; N`; g`(�); x`; u`] � m2(b2i`; x`; u`; 
; �; �2) (9)

for the equilibrium bids b2i` in the second round, where m2(b2i`; x`; u`; 
; �; �2) does not have a

closed form because the second round bidding function does not have a closed form.
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Note (4), (8) and (9) are all conditional on u` which is not observed. For estimation, however,

we need to obtain conditions that depend only on observables. In order to derive such conditions,

we integrate u` out of (4), (8) and (9) and get the followings.

g`(rjx`; 
; �) =
Z 1

�1

1

exp(x`
 + u`)
exp

�
�r

exp(x`
 + u`)

�
� w(u`j�)du` (10)

E[b1i`jN`; g`(�); x`] �M1(b1i`; x`; 
; �; �1) =

Z 1

�1
m1(b1i`; x`; u`; 
; �; �1) � w(u`j�)du` (11)

E[b2i`jc � s�1; N`; g`(�); x`] �M2(b2i`; x`; 
; �; �2) =

Z 1

�1
m2(b2i`; x`; u`; 
; �; �2) � w(u`j�)du` (12)

The parameters of primary interests are 
; �1; �2 and �. We estimate them using (10), (11) and

(12).

6.3.1 A Two-Step Estimation Approach

We adopt a two-step estimation strategy. In the �rst step, we recover 
 and � using likelihood

function (10) to get b
 and b�. In the second step, we estimate �1 and �2 using moment conditions
(11) and (12) as well as the estimates b
 and b�.

Since we fully specify the distribution of the reserve price and we observe reserve prices, in

the �rst step, 
 and � can be e¢ ciently estimated by maximum likelihood (ML) approach. A

complication arises from the feature that there is no closed form likelihood function because of the

integration with respect to u`. Thus, we use a simulated maximum likelihood (SML) estimation

approach (Gourieroux and Monfort (1996)). Speci�cally, the SML estimator is de�ned by

(b
; b�)SML = argmax

;�

LX
`=1

log

"
1

S

SX
s=1

g`(r`jx`; us` ; 
)w(us` j�)
�(us`)

#
(13)

where L = L1+L2. As indicated in (13), we use the importance sampling technique in the numerical

integration. The importance density function is the standard normal �(�): We draw S of us`s from

�(�) in simulation, where S is su¢ ciently large compared to the sample size L: As S;L ! 1 and
p
L=S ! 0, the SML estimator is asymptotically equivalent to the ML estimator (Gourieroux and

Monfort (1996)).

In the second step, we separately estimate �1 and �2, using moment conditions (11) and (12),

respectively, and the estimates b
 and b� obtained in the �rst step. Again because of the presence of
the unobserved heterogeneity, we propose a method of simulated moments estimator (MSM). Let
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Yji`(�j) = bji` �Mj(bji`; x`; b
; b�; �j), j (= 1; 2). We need to simulate Mj(bji`; x`; b
; b�; �j), hence we
draw us` from w(�jb�) and de�ne ysji`(�j) = bji`�mj(bji`; x`; u

s
` ; b
; b�; �j). For each j (= 1; 2), a MSM

estimator can be de�ned by

b�jMSM = argmin
�j

0@ LjX
`=1

1

n`

nX̀
i=1

 
xj`
1

S

SX
s=1

ysji`(�j)

!1A0

0@ LjX
`=1

1

n`

nX̀
i=1

 
xj`
1

S

SX
s=1

ysji`(�j)

!1A (14)

where 
 is a K �K symmetric positive-de�nite weighting matrix.

Additional di¢ culty in computation arises from the fact that the simulated Mj(bji`; x`; b
; b�; �j)
involves the Bayesian-Nash equilibrium strategy, which is especially cumbersome for j = 2, because

it does not have a closed form solution. We follow Elyakime, La¤ont, Loisel and Vuong (1994)

to numerically recover the bidding function by a recursive procedure. Starting from the boundary

condition, the equilibrium bidding strategy can be numerically solved in a recursive manner. Note

that the resulting MSM estimator is consistent given that the �rst-step estimators b
 and b� are
consistent.

Noting the complexity involved in our two-step estimation procedure, we use bootstrap to obtain

variance-covariance matrices of the estimates. Because of the panel feature of the auction data, we

adopt a block bootstrap (e.g. Andrews (2002)) to obtain the standard errors for our two-stage MSM

estimator.

6.3.2 Testing for Cross-Stage Change of Private Cost Distributions

In the previous section, we develop a framework of estimating the structural model of multi-round

auctions separately round by round, allowing for the underlying cost distributions to change across

two rounds. It would be interesting to test whether the underlying cost distributions change or not

across stages. If it turns out that the distributions do not change, it means that bidders re-draw

their costs from the same distribution across stages. Moreover, in this case, we can more e¢ ciently

estimate the private cost distribution parameters by jointly estimating both auction rounds.

We propose a formal test following Andrews and Fair (1988), who extend the Chow test of

structural changes in classical linear models (Chow (1960)) to test structural changes in nonlinear

models. The null hypothesis here is H0 : �1 = �2, which is the case of testing for pure structural

change (see Andrews and Fair (1988)). The Wald test statistic is applicable to our MSM estimator,

which can be implemented as follows. First, the MSM in (14) is implemented as discussed previously.
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Let �1 = L1=L and �2 = L2=L. Then, the Wald test statistic is given by

W = L(b�1 � b�2)0(bV1=�1 + bV2=�2 � 2bV12=p�1�2)�(b�1 � b�2)
where bV1 and bV2 are the estimated asymptotic variances matrices of b�1 and b�2 respectively, bV12 is
the matrix of the estimated asymptotic covariances between b�1 and b�2: The general inverse (�)�
of covariance term in the middle equals the regular inverse (�)�1 with probability going to one as

L �! 1. W follows a �2 distribution with the dimension of the structural parameter vector � as

its degrees of freedom.

7 Results

In this section, we apply our structural econometric approach to analyze the data from the INDOT,

so as to uncover the underlying private cost and reserve price distributions. By concentrating on

a speci�c type of bridge work, we choose a set of observed covariates x = fdbe, time, np, steel,

length, interceptg. First we use the two-stage estimation to estimate the model under unobserved

auction heterogeneity. Then we test the cross-stage change of private cost distributions. Lastly, we

conduct a robustness check.

7.1 SML and MSM Estimates for the Structural Parameters and the Unob-

served Heterogeneity

The parameters of the reserve price distribution 
 and the parameter of the unobserved heterogeneity

� can be jointly estimated based on (13). We draw a large sample, namely S = 1000, of us`s from

N(0; 1), i:e:, �(u`); and adopt importance sampling to implement the SML. Furthermore, we gain

the standard errors through bootstrap. The results are reported in Table 8.

Next we estimate parameters in private cost distributions �j (for j = 1; 2) based on (14). To

gain the simulated moments, we recursively solve for equilibrium bids and calculate the numerical

integration. We simulate ul from N(0; b�2): Here the number of us`s that we draw is S = 100,

a number relatively smaller than the one we use in implementing SML, as an MSM estimator is

consistent for any �xed number of simulations (Gourieroux and Monfort (1996)). Furthermore, we

use the identity matrix as the weighting matrix. Using bootstrap, we obtain the standard errors

of the estimates. Moreover, as we need to incorporate the variation from the estimation of b
 and
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b�; we jointly resample the auction data including both reserve prices and bids and repeat the SML
estimation and MSM estimation simultaneously. The results of the estimation are reported in the

�rst four columns of Table 9.

The results indicate that all variables that we pick up have signi�cant e¤ects on private costs.

Evaluated at the sample mean of the observed and unobserved auction characteristics, the mean

private cost is about $641,000. Increases in the length of the bridges and the time needed to

accomplish the projects raise private costs, and in turn increase bids, as expected. Speci�cally,

holding all the other factors constant, increasing the length of the project by one meter (or 3.28

feet) will increase the mean private cost by 0.21% or about $1,350. One more working day needed

for a project will increase the mean private cost approximately by 0.42% or $2,700. Furthermore,

rising in the DBE percentage results in higher private cost. This is reasonable because higher

DBE percentage increases the primary contractor�s transaction cost in a project by �nding and

subcontracting partial work to a DBE �rm. More speci�cally, one unit increase in DBE will increase

the mean private cost by about 4% or slightly more than $25,700. An interesting pattern shows

di¤erent e¤ects of the number of projects (np) on the government�s reserve price and the bidders�

costs. Increasing the number of projects involved in one contract tends to raise the government�s

valuation of the work, but to lower the bidders�costs. This is because a bidder, while undertaking

the projects, will consider the economic scale of taking multi-projects on multi-sites in neighborhood

that reduces his cost. The government may not take the e¤ect of economic scale into account since

it does not assume the work anyway. This explains why we see a negative e¤ect of np on the

private costs, but a positive e¤ect on the reserve price. Moreover, one unit increase in the number

of projects can save the �rm�s private cost on average by about 3.9% which is slightly less than

$25,000. Bridges of a steel structure cause about $180,000 more than bridges of other structures

on the mean private cost. Furthermore, the estimate of the unobserved heterogeneity parameter is

strongly signi�cant, meaning that there exists unobserved auction heterogeneity in our data set.

7.2 Testing for Cross-Stage Change of Private Cost Distributions

To implement the test, we estimate the bidding equations separately round by round and obtain b�1
and b�2. We then compute the W statistic, which is 1.45. Thus the null hypothesis is not rejected

at a 5% signi�cance level. It implies that a bidder re-draws his private cost from the same cost

19



distribution across di¤erent auction rounds.

In this case, we re-estimate � in view of �1 = �2 = � by utilizing this restriction in the MSM

estimation to obtain a more e¢ cient estimate. The results are reported in the last two columns of

Table 9. In sections that follow we use these estimates for inference.

7.3 Robustness Check

We take the estimate of the parameter of the unobserved auction heterogeneity b� from the �rst-stage
estimation for granted in the second-stage, assuming that the unobserved auction heterogeneities

are from the same distribution for both the auctioneer and the bidders. Although this is mainly for

simplifying computation (particularly for those of the second round auctions), we can empirically

check its validity. We estimate the parameter of the unobserved heterogeneity in (14) jointly with

the parameters of the private cost distribution and obtain e�. We then compare b� and e�. It turns
out that b� and e� are very close (0.054 and 0.055), which validates the assumption.
8 Counterfactual Analysis

In this section we investigate welfare impacts of di¤erent reserve price release policies on the govern-

ment. Motivated by the INDOT data feature, our model has focused on the use of the secret reserve

price by the government. Alternatively, the government can make the engineer�s estimate public

and use it as a public reserve price. In this scenario, the government can �nd no bids submitted if

all bidders�private costs are above the public reserve price. If we maintain the random cost replace-

ment assumption, then the government can re-auction the project in the next round with the same

public reserve price. As a result, under the random cost replacement assumption, the multi-round

feature can be accommodated by both secret and public reserve prices. It would be interesting to

compare the welfare implications of these two mechanisms using a counterfactual analysis. Such

a comparison allows us to evaluate the INDOT�s auction mechanism and assess the e¢ ciency of

its current reserve price policy. Moreover, it o¤ers insight on why secret reserve prices are used in

auctions. Since we have uncovered the underlying structural elements, we can conduct simulations

under the two di¤erent reserve price release policies and compare the government�s payment under

the two di¤erent scenarios.
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We construct a representative auction by setting all observed characteristics at the sample

means of the corresponding covariates. The simulation results are reported in Table 10. The

expected procurement cost is $537,689 under the public reserve price, $524,048 under the secret

reserve price. The di¤erence is strongly signi�cant. The INDOT on average can save $13,641, or

2.5% of the project value, on a typical bridge work auction by adopting a secret reserve price,

thereby saving millions of dollars of budgets on all highway projects yearly. On the other hand, the

di¤erence in the probability of no sale is 10%. The INDOT undergoes a no sale risk of 10% greater

by adopting a secret reserve price. However, it comes with a large standard error and therefore

statistically insigni�cant. Moreover, in practice the highway contracts are often sold out within

two rounds, the cost saved by adopting the secret reserve price outweighs the no sale risk caused.

Hence our �ndings indicate that the use of secret reserve price may be a good policy in practice in

procurement auctions.12

9 Conclusion

In this paper, we study multi-round auctions with secret reserve prices. Our model yields some

predictions that can be empirically tested, such as that the equilibrium bids decline uniformly

over various stages. Also, our simulation study of the model demonstrates that depending on

the speci�cations of the underlying distributions, the auctioneer may be better o¤ by keeping the

reserve price secret, which is the case in our data that motivates our study. Thus our model has

the potential to be used to explain why, in some real world auctions, secret reserve prices are used.

We develop a structural approach to analyze the INDOT data. The structural approach re-

covered the distributions of the reserve prices and the private cost. The estimates for structural

parameters allow us to conduct counterfactual analyses. We �nd that the INDOT could have sig-

ni�cantly saved budgets by adopting a secret reserve price rather than using a public reserve price.

Our paper o¤ers insight on the use of secret reserve prices in multi-round auctions and the strategic

changes in bidders�bidding strategies. It is worth noting, on the other hand, that our model is a

static model with non-forward looking bidders. We make this assumption to simplify the analysis

and to accommodate the �exibility of allowing for changes of bidders� private cost distributions

12McAfee and McMillan (1992) have argued that secret reserve prices can be used for preventing collusions.
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across stages. Alternatively, one can introduce dynamic features into the model by assuming that

bidders are forward looking and their private cost distributions do not change across stages. Ji and

Li (2006) propose a dynamic model of multi-round auctions with secret reserve prices and develop

a structural approach.
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Appendix
1. Lemma 1 In the �rst stage, bidder i0s probability of winning is [1� F (ci1)]N�1[1�G(bi1)];

while in the j-th stage, bidder i0s probability of winning is
[1� Fj(cij)]N�1[G(s�j�1)�G(bi1)]

G(s�j�1)
:

Proof bidder i wins the auction if his bid is less than the other N � 1 bids as well as the

reserve price. The probability of winning can be described by occurrence of the following

event, Pr(bi1 < min
k 6=i
(bk1) and bi1 < r0), which is a joint probability. Because the pair wise

independence of agents, it is a product of Pr(bi1 < r0) and Pr(bi1 < bk1);8k 6= i: At equilibrium

if the bidders play the symmetric bidding strategy, then �(ci1) < �(ck1) implies ci1 < ck1:

Hence it follows that Pr(ci1 < ck1) = 1�Pr(ck1 > ci1) = 1�F1(ci1), Pr(bi1 < r0) = 1�Pr(r0 <

bi1) = 1�G(bi1):

In the j-th stage, the information from previous auction rounds enables the bidders to form a

Bayesian updated belief of r0: Therefore the probability that bij is less than r0 is contingent

on the past information set �j�1, i.e., Pr(bij < r0j�j�1), where s�j�1 is the lowest bid from the

previous auction round. Henceforth r0 < s�j�1; is the information set �j�1: bidders bid as if

they saw r0 drawn from a truncated distribution G(rjr < s�j�1): It then leads to the following

result. Pr(bij < r0j�j�1) = 1 � Pr(r0 < bij jr0 < s�j�1) = 1 � G(bij)

G(s�j�1)
=
G(s�j�1)�G(bij)

G(s�j�1)
:

Similarly, the probability of winning is based on Pr(bij < min
k 6=i
(bkj) and bij < r0); a joint

probability. Thus the result immediately follows.

2. Proof of Proposition 1 De�ne �(�) as the symmetric increasing Bayesian-Nash equilibrium

bidding strategy. Since it is the same function for each bidder, we could suppress the subscript

i: We index the strategy in j-th stage by �j : We solve the game stage by stage to obtain the

separate equilibrium. In the �rst stage, the bidder chooses b1 to maximize his expected payo¤

�1 = (b1 � c1)[1� F1(��11 (b1))]N�1[1�G(b1)].

Max
b1
(b1 � c1)[1� F1(��11 (b1))]N�1[1�G(b1)]

Note that the probability depends upon b1 through both F1(�) and G(�) because it is b1
not c that determines the probability of winning the auction. So we should treat c in F1(�)

endogenously through the inverse function c = ��11 (b1). The �rst order condition is as follows.

[1� F1(��11 (b1))]N�1[1�G(b1)]� (b1 � c)[1� F1(�
�1
1 (b1))]

N�1g(b1)
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�(b1 � c)[1�G(b1)](N � 1)[1� F1(��11 (b1))]N�2f1(�
�1
1 (b1))

1

�0(��11 (b1))
= 0

Where b1 = �1(c) and c = ��11 (b1): After we replace b1 with the function of c, we get the

di¤erential equation for �1:

[1� F1(c)]N�1[1�G(�1)]�01(c)� (�1 � c)[1� F1(c)]N�1g(�1)�01(c)

�(�1(c)� c)[1�G(�1(c))](N � 1)[1� F1(c)]N�2f1(c) = 0

Further algebraic manipulation turns the di¤erential equation into

d

dc
f�1(c)[1� F1(c)]N�1[1�G(�1(c))]g = c

d

dc
f[1� F1(c)]N�1[1�G(�1(c))]g

The boundary condition is �1(c) = c: The probability of winning for the bidder with c is zero

because obviously c is the highest possible cost a bidder may have. As F1(�) is a well de�ned

cumulative probability distribution function, F1(c) = 1: Bidding more than c de�nitely loses

the auction , while bidding less than c can incur strictly negative payo¤. Therefore �1(c) = c

is weakly dominant strategy. Integrate it over [c; c], using the boundary condition, we get

�1(c) = c+

R c
c (1� F1(x))

N�1[1�G(�1(x))]dx
[1� F1(c)]N�1[1�G(�1(c))]

�1(c) is increasing, under regular conditions, second order condition satis�ed, �1 (c) is the op-

timal bidding strategy. This implies that given all bidders bid following this bidding function,

no one can be better o¤ by deviation. Therefore it is a Bayesian Nash equilibrium.

In any j-th reauction stage, the bidder maximize his expected payo¤ in the j-th round, as

follows.

Max
bj
(bj � cj)

[1� Fj(��1j (bj))]N�1[G(s�j�1)�G(bj)]
G(s�j�1)

the �rst order condition for maximizing �j is

[1� Fj(��1j (bj))]
N�1 [G(s

�
j�1)�G(bj)]
G(s�j�1)

� (bj � c)[1� Fj(��1j (bj))]
N�1g(bj)

1

G(s�j�1)

�(bj � c)
[G(s�j�1)�G(bj)]

G(s�j�1)
(N � 1)[1� Fj(��1j (bj))]

N�2fj(�
�1
j (bj))

1

s0(��1j (bj))
= 0

In equilibrium, we obtain the di¤erential equation for �j

[1� Fj(c)]N�1[G(s�j�1)�G(�j)]�0j(c)� (�j � c)[1� Fj(c)]N�1g(�j)�0j(c)
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�(�j(c)� c)[G(s�j�1)�G(�j(c))](N � 1)[1� Fj(c)]N�2fj(c) = 0

Then it can be written as

d

dc
f�j(c)[1� Fj(c)]N�1[G(s�j�1)�G(�j)]g = c

d

dc
f[1� Fj(c)]N�1[G(s�j�1)�G(�j)]g

The boundary condition is di¤erent here. It involves participation decision of the bidder.

Entry to the j-th round auction occurs only if a bidder�s private cost in j-th round is less

than s�j�1. Hence the above strategy is conditional on that the private cost is less than

s�j�1. With the same argument as in the �rst stage, we can establish the boundary condition

�j(s
�
j�1) = s

�
j�1 for this stage. Integrate over [c; s

�
j�1], using the boundary condition, to get

the following.

�j(c) = c+

R s�j�1
c [1� Fj(x)]N�1[G(s�j�1)�G(�j(x))]dx
[1� Fj(c)]N�1[G(s�j�1)�G(�j(c))]

�j(c) is increasing, under regular conditions, second order condition satis�ed, �j (c) is a

Bayesian Nash equilibrium.

3. Proof of Proposition 2 By the uniqueness of symmetric Bayesian Nash equilibrium solution

of (1) and (2), we have

1

G�j�2
(�j�1 � c)[1� Fj�1(c)]N�1[G�j�2 �G(�j�1)]

� 1

G�j�2
(�j � c)[1� Fj�1(c)]N�1[G�j�2 �G(�j)]

where G�j�2 is short for G(s
�
j�2); and

1

G�j�1
(�j � c)[1� Fj(c)]N�1[G�j�1 �G(�j)]

� 1

G�j�1
(�j�1 � c)[1� Fj(c)]N�1[G�j�1 �G(�j�1)]

Since s�j�1 < s
�
j�2 < c; it immediately follows that

(�j�1 � c)[G�j�2 �G(�j�1)] � (�j � c)[G�j�2 �G(�j)]

(�j � c)[G�j�1 �G(�j)] � (�j�1 � c)[G�j�1 �G(�j�1)]

Furthermore, from the �rst inequality above we can get

(�j�1 � c)[G�j�2 +G�j�1 �G�j�1 �G(�j�1)] � (�j � c)[G�j�2 +G�j�1 �G�j�1 �G(�j)]
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and that is

(�j�1 � c)[G�j�1 �G(�j�1)] + (�j�1 � c)(G�j�2 �G�j�1)

� (�j � c)[G�j�1 �G(�j)] + (�j � c)(G�j�2 �G�j�1)

for which to hold, it must be that

(�j�1 � c)(G�j�2 �G�j�1) � (�j � c)(G�j�2 �G�j�1)

Therefore it must be �j(c) � �j�1(c):

4. Derivation of the Structural Equilibrium Bidding Function For the exponential distri-

bution, F (c) = 1 � exp(�c= exp(x� + u)); G(r) = 1 � exp(�r= exp(x
 + u)); 1 � F (c) =

exp(�c= exp(x� + u)); 1�G(r) = exp(�r= exp(x
 + u)); substitute them into equation (1).

�1(c) = c+

R1
c [exp(�x= exp(x� + u))]

N�1 exp(��1(x)= exp(x
 + u))dx
exp[�c= exp(x� + u))]N�1 exp(��1(c)= exp(x
 + u))

= c+

R1
c exp(�[(N � 1)x= exp(x� + u) + �1(x)= exp(x
 + u)])dx
exp(�[(N � 1)c= exp(x� + u) + �1(c)= exp(x
 + u)])

We use contraction mapping to solve it. We start with a conjecture of �1(c), say �
0
1(c), which

is the left hand side function. Then we substitute it into the right hand side to compute.

This yields the right hand side function �11(c). If our conjecture is right, then �
0
1(c) = �

1
1(c):

Otherwise replace our conjecture with �11(c) and start iteration until the left hand side function

equals the right hand side function, say �i1(c) = �
i+1
1 (c): Start with �01(c) = c; calculate right

hand side function as

�11(c) = c+

R1
c exp(�[(N � 1)x= exp(x� + u) + x= exp(x
 + u)])dx
exp(�[(N � 1)c= exp(x� + u) + c= exp(x
 + u)])

= c� 1

(N � 1)=
 + 1=�
exp(�[(N � 1)x= exp(x� + u) + x= exp(x
 + u)])
exp(�[(N � 1)c= exp(x� + u) + c= exp(x
 + u)]) j

1
c

= c+
1

(N � 1)= exp(x� + u) + 1= exp(x
 + u)

The last equality obtained when we use the boundary condition of �1(c) = c, particularly

in limit in this case lim
c!1

(�1(c) � c) = 0: This is a weakly dominant strategy for the bidder

with upper bound cost. Hence it guarantees that the solution is unique. Then with �11(c), we

compute �21(c). It follows that �
2
1(c) = �

1
1(c):

�21(c) = c+
1

(N � 1)= exp(x� + u) + 1= exp(x
 + u)
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Therefore the solution is given by �21(c), i.e.

�1(c) = c+
1

(N � 1)= exp(x� + u) + 1= exp(x
 + u)
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Table 1 Variables and Number of Observations

number of lets with one round 243

number of lets with two round 30

Variable Description NOBS

characteristics of lets

dbe DBE percentage goal 273

time number of working days needed 273

np number of projects 273

steel whether the bridge is of steel structure 273

length length of the bridge(s), meter 273

prices

rp government�s engineer estimate 273

bid1 for lets with one round 1261

bid1&2 for lets with two round (both rounds) 167

bid1-2 bid in the �rst round auction that is unsold 102

bid2-2 bid in the second round 65

participation

nb number of potential bidders 273

nb2 number of bidders in 2nd round 30
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Table 2 Summary Statistics

variable mean std.dev. min max

dbe 7.52 3.16 0 15

time 137.53 65.76 20 451

np 1.18 0.60 1 5

steel 0.38 0.49 0 1

length 79.21 82.27 3.22 607.31

rp 855614.8 895489.2 70671.35 6742284

bid1 839506 869855.5 65325.78 6684512

bid1&2 619485.5 398895.8 94853 2230051

bid1-2 (�rst round) 638917.3 427400.6 94853 2230051

bid2-2 (second round) 588992.4 350553.3 97637.2 1505183

nb 4.99 1.98 1 10

nb2 2.23 1.01 1 5
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Table 3 Results of Simulation Study

F (c) G(r) N public rp secret rp

exp (1) exp (1) 4 0.0388 0.0341

exp (1) exp (1) 7 0.024 0.0228

exp (1) exp (1) 10 0.0174 0.0172

exp(2) exp (1) 10 0.0306 0.0281

exp(0.5) exp (1) 10 0.0092 0.0096

exp(0.3) exp (1) 10 0.0056 0.0062

exp(0.3) exp(1) 7 0.0082 0.0086

unif [0,1] unif [0,1] 4 0.2911 0.2662

unif [0,1] unif [0,1] 7 0.2032 0.1958

unif [0,1] unif [0,1] 10 0.1554 0.1543

unif [0,0.3] unif [0,1] 10 0.0519 0.0586

unif [0,0.5] unif [0,1] 10 0.0838 0.0886

unif [0,0.7] unif [0,1] 10 0.1138 0.1174

exp: exponential distribution, mean in parentheses

unif: uniform distribution, bounds in brackets
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Table 4-1 Poisson Regression Model of NB

nb (Dept. Var.) Coef. Std. Err.

dbe 0.0161 0.01

time 5.07e-04 4.31e-04

np -0.0505 0.0513

steel 0.042 0.0608

length 3.59e-04 3.82e-04

_cons 1.42* 0.104

Observations: 273 Log likelihood: -567.24

restricted log likelihood -573.42

chi2(d.f.=5) = 12.37 p-value = 0.03

left truncated data, at nb=0

*: signi�cant at 5%

Table 4-2 Negative Binomial Model of NB

nb (Dept. Var.) Coef. Std. Err.

dbe 0.016 0.01

time 5.08e-04 5.21e-04

np -0.0504 0.0653

steel 0.042 0.073

length 3.59e-04 3.37e-04

_cons 1.42* 0.13

Observations: 273 Log likelihood: -567.24

left truncated data, at nb=0

*: signi�cant at 5%
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Table 5 OLS Estimates of Regression of Reserve Prices

log(rp) (Dept. Var.) Coef. Std. Err.

nb -0.011 0.011

round-two -0.12 0.12

dbe 0.045* 0.011

time 0.005* 0.0005

np 0.204* 0.060

steel 0.273* 0.073

length 0.0024* 0.0004

_cons 11.84* 0.149

Number of Observations: 273 R2 = :52

*: signi�cant at 5%
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Table 6 OLS Estimates of Regression of Bids

log(bid) (Dept. Var.) Coef. Std. Err.

round-two -0.826* 0.4113

nb -0.020* 0.0068

dbe 0.037* 0.0053

time 0.0048* 0.0002

np 0.191* 0.0387

steel 0.272* 0.0337

length 0.0024* 0.0002

nb*round-two 0.0504 0.0481

dbe*round-two 0.006 0.0197

time*round-two -0.001 0.0016

np*round-two 0.681* 0.1560

steel*round-two -0.340 0.2276

length*round-two 0.0005 0.0005

_cons 11.927* 0.0809

marginal e¤ect (b2 � b1) -5.3e+04* 3.1e+03

Number of Observations: 1428 R2 = 0:51

*: signi�cant at 5%
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Table 7 Random E¤ect Analysis of Bids

log(bid) (Dept. Var.) Coef. Std. Err.

nb -0.0214 0.016

dbe 0.039* 0.011

time 0.0047* 0.0005

np 0.201* 0.060

steel 0.265* 0.073

length 0.0024* 0.0005

_cons 11.91* 0.14

�2u = 0:5346 �2" = 0:1179

� = 0:9536 (fraction of variance due to u`)

Number of Groups: 273

Model: log(bidi`) = xi`� + u` + "i`

*: signi�cant at 5%

36



Table 8 SML Estimates of Reserve Prices Distribution and Unobserved Heterogeneity

Variable Coef. Std. Err.

dbe 0.0514* 0.0018

time 0.0052* 0.0002

np 0.299* 0.0082

steel 0.300* 0.0106

length 0.00212* 0.0001

_cons 11.469* 0.0923

�2 0.054* 0.0016

*: signi�cant at 5%

Table 9 MSM Estimates of Private Distribution

Variable Separate Estimates More E¢ cient Estimates

�1 Std. Err �2 Std. Err � Std. Err

dbe* 0.0398 0.0010 0.0393 0.0037 0.0401 0.0009

time* 0.0044 0.0001 0.0041 0.0005 0.0042 0.0001

np* -0.0343 0.0008 -0.0394 0.0077 -0.0388 0.0009

steel* 0.2947 0.0098 0.2440 0.0529 0.2809 0.0071

length* 0.0021 0.0001 0.0019 0.0002 0.0021 0.0001

_cons* 12.1394 0.0336 16.8904 2.2696 12.2670 0.0654

�2(robustness check): 0.0548

*: signi�cant at 5%

Table 10 The Comparison of Policies by Simulations

di¤erence in di¤erence in

government�s payment Std. Err probability of no sale Std. Err

(public� secret) (public� secret)

13641* 5876 �0.1 0.06
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Figure 1-1 Bidding Functions of the First Two Stages in Multi-Round Auctions with 
Secret Reserve Prices: Uniform Distributions 

 
Note: The contractors’ private cost and the governmental reserve price are uniformly 
distributed. In each subplot, b refers to contractor, g refers to government, N refers to 
number of contractors and S* refers to the lowest bid in the first round of an unsold 
contract. We maintain the convention of notations throughout the figure set 1. 
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Figure 1-2 Bidding Functions of the First Two Stages in Multi-Round Auctions with 

Secret Reserve Prices: Exponential Distributions 
 
Note: The contractors’ private cost and the governmental reserve price are exponentially 
distributed. 
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Figure 1-3 Bidding Functions of the First Two Stages in Multi-Round Auctions with 

Secret Reserve Prices: Mixed Distributions 
 
Note: Weib refers to weibull distribution; Beta refers to Beta distribution; logn refers to 
log normal distribution. In each subplot, the contractor’s distribution is put in the first 
place. 
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Figure 2-1 The Comparison of Governmental Expenditures under Uniform Cost 

Distributions 
 
 
Note: solid lines represent (ex post) governmental expenditures under public reserve 
prices, dash lines are under secret reserve prices. 
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Figure 2-2 The Comparison of Governmental Expenditures under Exponential Cost 

Distributions 
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