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Abstract

Structural econometric studies on auctions have mainly focused
on the independent private value paradigm. In this paper, we are
interested in the “opposite” case : the common value model. More
precisely, we restrict our attention to a common value model defined
by two functions : the density of the true value of the auctioned good
and a unique function that appears in the definition of the conditional
densities of the signals. We establish that this common value model
is nonparametrically identified without any further restrictions. We
then propose a one-step nonparametric estimation method and prove
the consistency of our estimators. We apply our method on simulated
data and show that the technique we propose is adequate to recover
the distribution functions of interest.
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1 Introduction

Structural econometric approaches have been successfully applied during the
last decade to study auction data. The aim of such analyzes is to recover
the structural parameters of a theoretical model from the data using econo-
metric methods. In the case of auctions, the econometrician is interested
in estimating the distribution of the value of the good for each participant
from the observed bids. It relies on the equilibrium that defines how bids
depend on this distribution.

Previous studies mostly focused on the independent private value paradigm
(IPV) (Laffont et al. (1995), Donald and Paarsch (1996), Elyakime et al.
(1994, 1997), Guerre et al. (2000)). In these models, each bidder knows
his own private value for the auctioned good but ignores others’ valuations.
Furthermore, the valuations are independent from each other. Some recent
papers extend these analyzes for affiliated private values (Li et al. (2002))
and for asymmetric or risk-averse bidders ((Campo et al. (2003), Campo et
al. (2002)).

The “opposite” case is known as the common value paradigm (CV). In
this model, the value of the auctioned good is unknown but the same for
each bidder. The participants receive a signal correlated with this value.
It turns out that identification and estimation for CV models are more
complicated than for IPV models. The main reason behind these difficulties
comes from the nonparametric identification of the CV model from observed
bids (Laffont and Vuong (1996)). As a consequence, one has to impose some
further restrictions to obtain identification results. Paarsch (1992) proposes
a parametric approach, whereas Li et al. (2000) develop a nonparametric one
to analyze the CV model. In their paper, the authors assume a multiplicative
decomposition of the signals into a common component (the value of the
good) and an indiosyncratic one (a specific signal) for each bidder. Adding
some further restrictions, Li et al. show that the CV model is identifiable
and propose a two-step nonparametric procedure to estimate the densities
of both components.

In this paper, we analyze a CV model in which the knowledge of all
densities of the signals conditionally on the value of the good when this
value varies reduces to the knowledge of a unique function. In this context,
the CV model is defined by two functions only : the density of the true
value and the unique function that enters in the conditional density of the
signals. This model is a particular case of the CV models studied by Fevrier
(2006) in which he proves that these models are nonparametrically identified
without any further restrictions. Unfortunately, his proof does not allow us
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to derive an estimation method. Hence, we propose another way to prove
identification on which our nonparametric estimation method will be based.
Contrary to most of the studies, we show that it is possible to use directly
the observed bids instead of using a two-step method as in Guerre et al.
(2000). We prove the consistency of our one-step nonparametric estimator
and apply our method on simulated data. We show that our method is
feasible and recover correctly the distribution functions of interest.

The paper is organized as follows. Section 2 presents the CV model and
our nonparametric identification results. Section 3 describes the estima-
tion method we propose. Section 4 applies this method to simulated data.
Section 5 concludes.

2 The CV model and the Structural Approach

2.1 The CV model

In the Common Value model (Rothkopf (1969), Wilson (1977)), a single and
indivisible good is auctioned to n bidders. The value V of the good, unknown
to the bidders, is distributed following a distribution function FV (.) and a
density function fV (.) on the support [V , V ] with (V , V ) ∈ R+2

. Each bidder
i receives a private signal Si. The signals are conditionally independent given
the common value V . We note FS|V (.|.) the distribution function of the
signals given V and fS|V (.|.) the associated density function. Its support
is [SV , SV ] with (SV , SV ) ∈ R+2

. We suppose that fS|V (.|.) satisfies the
monotone likelihood ratio property.1 Each player knows his private signal
as well as the distribution functions. He does not know however the private
signals of the other bidders.

We study first auction auctions in which each bidder submits a bid. The
winner is the one who submits the highest bid. He obtains the object and
pay his bid.

A strategy for a player i is a function bi(.) that associates to each signal
Si the amount bi(Si) that player i wants to bid. As shown by Milgrom and
Weber (1982), a symmetric equilibrium exists in first price common value
auctions. To describe this equilibrium, it is useful to introduce the following
functions. We note Yi = maxj 6=i Sj and FYi|Si

(.|.) (resp. fYi|Si
(.|.)) the

associated distribution function (resp. density function) conditionally on
1The density fS|V has the monotone likelihood ratio property if for all s′ > s and

v′ > v, fS|V (s|v)/fS|V (s|v′) ≥ fS|V (s′|v)/fS|V (s′|v′).
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the signal Si of player i. We also introduce the function V (s, y) = E[V |Si =
s, Yi = y] that is the expected value of the good conditionally of the signal
Si of player i and the highest signal Yi of the other players.

Proposition 1. (Milgrom and Weber, 1982) In a common value first price
auction, a symmetric equilibrium strategy is given by:

b(s) = V (s, s)−
∫ s

S
L(α|s)dV (α, α)

where L(α|s) = exp[−
∫ s
α fYi|Si

(u|u)/FYi|Si
(u|u)du] and S is the mini-

mum value that a signal can take.

2.2 Nonparametric Identification

2.2.1 Our model

We consider a CV model with n ≥ 3 bidders where the density fV (.) of the
value V has a support [V , V ] and where the density of the signals condi-
tionally on the value V = v is distributed over [S(V ), S(v)] and takes the
form:

fS|V (.|v) =
h(.)

H(S(v))

where h(.) is the derivative of H(.) and H(S(V )) = 0.
Because fS|V (.|.) satisfies the monotone likelihood property, S(.) has to

be increasing. We will suppose that this function is even strictly increasing.
In this model, no restriction is imposed on the value V whereas the

distributions of the signals conditionally on the value V are supposed to
be representable by a unique function h(.). A natural example is a model
in which the value of the good is distributed uniformly on [V , V ] and the
signals are distributed uniformly on [V , 2v−V ] conditionally on V = v. This
is the case when h = 1 and S(v) = 2v − V . More generally, the function
h(.) and the interval [S(V ), S(v)] define the amount of information that the
signals carry over the value and play therefore a key role in the analysis.

It is important to study if this model is identified nonparametrically or
not i.e. to analyze if the observation of the bids determines uniquely the
functions FV (.), h(.) and S(.). Of course, what is observed is important and
we will suppose that, in every auction, all bids are available.

In the general case, Laffont and Vuong (1996) (see also Athey and Haile
(2002)) have shown that the CV model is not identifiable. Fevrier (2006)
proved however that the mineral rights model is identified if there are some
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variations in the bounds of the conditional distribution functions of the
signals. In our case, proposition 2 of Fevrier (2006) applies and we can
conclude that our model is nonparametrically identified.

Proposition 2. Fevrier (2006). The model is nonparametrically identified.

Unfortunately, Fevrier’s identification result does not help us to find
a tractable way to estimate the distributions functions. For this reason,
we propose another way to prove identification upon which our estimation
method will be based. We proceed in three steps.

• We first prove that for each s′ ∈ [S(V ), S(V )] and each s ∈ [S(V ), s′],
fS|V (s|S−1(s′)) is identified.

• We then show that for each s ∈ [S(V ), S(V )], (S−1)′(s)fV (S−1(s)) is
identified

• Finally, using the first order condition, we prove that S
−1(.) is identi-

fied over its support [S(V ), S(V )].

The identification of fV (.) and fS|V (.|.) is proved by combining these
results.

Identification of fS|V (.|S−1(.))

First, one has to remark that the model is defined up to a transformation
of the signals. Indeed, observing k(s) instead of s is equivalent to replace
H(.) by H ◦ k−1(.) that is defined over the segment [k ◦ S(V ), k ◦ S(V )]. A
natural normalization is b(s) = s which means that what we observe in the
data are the signals.

The density of s1 ≤ s2 ≤ s3 is thus identified and is given by

fS(s1, s2, s3) = h(s1)h(s2)h(s3)
∫ V

S
−1

(s3)

fV (v)
H3(S(v))

dv

Hence, for all (s, s′) ∈ [S(V ), S(V )]2, we identify

h(s)
h(s′)

=
fS(s′, s, s)
fS(s′, s′, s)

(1)

as well as the bounds S(V ) and S(V ).
The function h(.) can be recovered using equation (1) up to a constant

by fixing s′. Hence, for each s ∈ [S(V ), S(V )], fS|V (.|S−1(s)) = h(.)
H(s) is

identified over its support [S(V ), s].

5



Identification of (S−1)′(.)fV (S−1(.))

Similarly, the density of a signal s is given by

fS(s) = h(s)
∫ V

S
−1

(s)

fV (v)
H(S(v))

dv

Deriving this equation for s ∈ [S(V ), S(V )], one obtains

(S−1)′(s)fV (S−1(s)) =
h′(s)
h(s) fS(s)− f ′

S(s)
h(s)
H(s)

(2)

The right hand side of equation (2) is identified. Hence (S−1)′(.)fV (S−1(.))
also is.

Identification of S
−1(.)

We prove in appendix A that the first order condition can be rewritten for
all s ∈ [S(V ), S(V )] as

S
−1(s) =s +

1

(n− 1)fS|V (s|S−1(s))
(3)

−

[
n

n− 1
− h′(s)/h(s)

(n− 1)fS|V (s|S−1(s))

]
FY,S(s, s)

(S−1)′(s)fV (S−1(s))fS|V (s|S−1(s))

where FY,S(., .) is the joint density of the signal S of a player and the
highest signal Y of his opponents.

The functions that appear in the right hand side of equation (4) are all
identified either directly from the data or from the previous results. Hence,
S(.) also is.

Combining the three previous result, we can conclude that the distribu-
tion function of the values and the conditional distributions of the signals
are identified. This identification result is important and gives with Li et
al. (2000) another nonparametric identification result for CV auctions upon
which an estimation method can be based. Our result has also some nice
properties.

• First, our model is a simple and intuitive common value model that is
easy to interpret. The idea is to reduce the infinite number of density
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functions of the signals to a single function h(.). No other restriction
is needed and full nonparametric identification is achieved.

• Second, the way we prove the identification result allows us to derive
in the next subsection some new results about the link between the
pure Common Value model and the Conditionally Independent Private
Value model.

• Finally, the model we consider is overidentifies. It implies several re-
strictions on the distribution of the bids that are easy to determine
and test.

2.2.2 The conditionally independent private information model

Common Value auctions are part of a larger class of auctions ( conditionally
independent private information (CIPI) model) where the value of the good
for player i is a function U(., .) of the value V and the signal Si received by
the player. The common value model corresponds to U(v, si) = v. Another
special case is the conditionally independent private value (CIPV) model
where U(v, si) = si. Li et al. study the identification of this class of model.
They prove (see their proposition 1) that any CIPI model, in particular the
CV model, is observationally equivalent to a CIPV model. They mention
however that nothing is known about the converse.

The following proposition gives a condition under which the converse is
true for our CIPI model.

Proposition 3. Given our assumptions, any CIPI model (in particular any
CV model) is observationally equivalent to a CIPV model.

Given our assumptions, any CIPI model (in particular any CIPV model)
is observationally equivalent to a CV model if and only if the function S(.)
defined by (4) is increasing.

Proof See Appendix A.

This result shows that despite the similar probabilistic structure of CIPV
and CV models, they are not necessarily equivalent. To find a CIPV model
that generates data that are not “compatible” with a CV model, it is suffi-
cient to find two functions fV (.) and h(.) such that S(.) is not increasing.

As in Li et al. (2000), one can also be interested by the properties of
the CIPV model. It is well known that the joint distribution of the signals
is, in the CIPV model, nonparametrically identified (Li et al. (1999)). This
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distribution corresponds to the distribution of (ξ(b1, Gb), ..., ξ(bn, Gb)) where
Gb(.) is the distribution of the bids and ξ(b, Gb) = b + GB|b(b|b)

gB|b(b|b)
. GB|b(.|.)

(resp. gB|b(.|.)) is the distribution function (resp. density) of the highest bid
of the opponents of a player conditionally on the fact that this player bids
b. Applying the previous reasoning, we derive the properties of the CIPV
model.

Proposition 4. Given our assumptions, the CIPV model is nonparametri-
cally identified.

Proof See appendix A.

This result proves that full nonparametric identification is also achieved
for the CIPV model. The nonparametric estimation of this model follows
the same logic as the one we propose for the common value model in the
next section. It is however based on the transformation ξ(b, Gb) of the bids.

3 Estimation

The estimation method we propose is based on our identification result and
will follow the same logic. It consists in estimating some distribution func-
tions of the bids and to use them to construct estimates for fS|V (.|S−1(.)),

(S−1)′(.)fV (S−1(.)) and S
−1(.).

Let n be a given number of bidders. Let L be the number of auctions
indexed by l = 1, .., L. We note {sil; i = 1, ..., n; l = 1, ..., l} the observed
signals.

We note, for each k, fS(s1, ..., sk) the joint density of (s1, ..., sk), FS(s1, ..., sk)
the joint distribution function.

3.1 Estimation of fS|V (.|S−1
(.))

We first estimate nonparametrically fS(., ., .) by

f̂S(s1, s2, s3) =
1

Lh3
3

L∑
l=1

1
n(n− 1)(n− 2)

∑
1≤i6=j 6=k≤n

K

(
s1 − sil

h3

)
K

(
s2 − sjl

h3

)
K

(
s3 − skl

h3

)
where h3 is some bandwidth and K(.) a kernel.
Using this estimation and equation (1), we can estimate h(.) up to a

constant for different values of s′. We fix T values (s′1, ..., s
′
T ) for s′ and

combine these estimations to obtain:
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ĥ(s) =
1
T

T∑
i=1

ci
f̂S(s′i, s, s)

f̂S(s′i, s
′
i, s)

with ci = f̂S(s′i,s
′
i,s

′
1)

f̂S(s′i,s
′
1,s′i)

. The constants ci appear to normalize ĥ(s′1) to be

equal to 1.2 Using T values for s′i improves the estimation of h(.). Their
choice depends on the data and is discussed in the next section.

To estimate fS|V (.|S−1(.)), one also needs to estimate H(.). A natu-
ral solution is to integrate ĥ. However, it is better to estimate directly

this function using H(s) = h(s)
∂FS
∂s2

(s,s)

fS(s,s) . Hence, the estimator f̂S
S|V (.|.) of

fS|V (.|S − 1)(.) that we propose is

f̂S
S|V (s|s′) =

ĥ(s)f̂S(s′, s′)

ĥ(s′) ∂̂FS
∂s2

(s′, s′)

where

f̂S(s1, s2) =
1

Lh2
2

L∑
l=1

1
n(n− 1)

∑
1≤i6=j≤n

K

(
s1 − sil

h2

)
K

(
s2 − sjl

h2

)
and

∂̂FS

∂s2
(s1, s2) =

1
Lh1

L∑
l=1

1
n(n− 1)

∑
1≤i6=j≤n

1 (sil ≤ s1) K

(
s2 − sil

h1

)
It is possible to use different kernels for each estimation. However, to

simplify, we will always use the same kernel K(.). h1 and h2 are some
bandwidths for univariate and bivariate densities.

3.2 Estimation of (S
−1

)′(.)fV (S
−1

(.))

Equation (2) can be rewritten for s′ > s as

(S−1)′(s)fV (S−1(s)) =

∂fS
∂s2

(s,s′)

fS(s,s′) fS(s)− f ′
S(s)

fS|V (s|S−1(s))

2If n = 2, the identification is obtained by a similar reasoning on fS(s, s′). However,
one needs to distinguish the two cases s > s′ and s < s′.
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Using

f̂S(s) =
1

Lh1

L∑
l=1

1
n

∑
1≤i≤n

K

(
s1 − sil

h1

)

f̂ ′
S(s) =

1
Lh2

1

L∑
l=1

1
n

∑
1≤i≤n

k

(
s1 − sil

h1

)
where k(.) is the derivative of K(.), and

∂̂fS

∂s2
(s1, s2) =

1
Lh3

2

L∑
l=1

1
n(n− 1)

∑
1≤i6=j≤n

K

(
s1 − sil

h2

)
k

(
s2 − sjl

h2

)

we construct the following estimator for (S−1)′(.)fV (S−1(.)):

f̂S
V (s) =

1
M

∑M
i=1

∂̂fS
∂s

(s,s′i)

f̂S(s,s′i)
f̂S(s)− f̂ ′

S(s)

f̂S
S|V (s|s)

In this estimation, we estimate
∂fS
∂s2

(s,s′)

fS(s,s′) for M different values (s′1(s), ..., s
′
M (s))

of s′ greater than s. Using M signals improves the estimation of the density
fV (.). Their choice is discussed in the next part.

3.3 Estimation of S
−1

(.)

Introducing

F̂Y,S(s1, s2) =
1

Lh1

L∑
l=1

1
n

n∑
i=1

1 (yil ≤ s1) K

(
s2 − sil

h1

)
we can estimate S

−1(.) using equation (4):

Ŝ
−1(s) =s +

1

(n− 1)f̂S
S|V (s|s)

−

 n

n− 1
−

1
M

∑M
i=1

∂̂fS
∂s2

(s, s′i)

(n− 1)f̂S
S|V (s|s)

 F̂Y,S(s, s)

f̂S
V (s)f̂S

S|V (s|s)
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Finally, we estimate the distribution function of the values by

f̂V (v) = f̂S
V

((
Ŝ
−1
)−1

(v)

)

and the conditional distribution function of the signals by

f̂S|V (s|v) = f̂S
S|V

(
s|
(

Ŝ
−1
)−1

(v)

)

As in Guerre et al. (2000), our estimation method relies heavily on the
distributions of the bids that are observed in the data. However, most of
the structural papers that study auctions propose two-step approaches. This
is not the case here. Our method is a one step nonparametric estimation
method and is in that sense easier than the method proposed by Li et al.
(2000).

Under our assumptions, we can prove the convergence of our estimators.

Proposition 5. f̂V (.) and f̂S|V (.|.) are uniformly consistent estimators for
fV (.) and fS|V (.|.)

Proof See appendix A.

4 Simulations

The estimation method we proposed in the previous section requires the
estimation of several functions and may seem difficult to apply. In this
section, we simulate data using a particular model and apply our estimation
method to prove that this is indeed not the case.

More precisely, we suppose that the value of the good is uniformly dis-
tributed on [0, 2] and that the signals are uniformly distributed on [0, 2v]
conditionally on v. We simulate L = 1000 auctions with n = 3 bidders.

The equilibrium strategy is given by proposition (1) and simplifies in
this case to (see Appendix A):

b(s) = 4− 32
s

+
128
s2

ln
(
1 +

s

4

)
We thus observe bil for l = 1, ..., 1000 and i = 1, ..., 3.
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When normalizing our model by b(s) = s, we transform this model into
the following one: V is distributed uniformly on [0, 2]; the density of the
signals conditionally on V = v is fS|V (s|v) = 1

2v (b−1)′(s) defined on the
interval [0, b(2v)].

First, we need to address the choice of the kernel functions and of the
bandwidths. We choose a kernel that satisfies our hypotheses. This is the
case of the triweight kernel defined as

K(u) =
35
32

(1− u2)31(|u| ≤ 1)

We use the so-called rule of thumb (Scott, 1992) to define our band-
widths. In our data, we find h1 = 2.978 × 1.06σ̂S(nL)−1/5 = 0.24, h2 =
2.978 × 1.06σ̂S(nL)−1/6 = 0.31 and h3 = 2.978 × 1.06σ̂S(nL)−1/7 = 0.38.
The factor 2.978 follows from the use of a triweight kernel instead of the
gaussian kernel. σ̂S is the standard deviation of the signals.

Figure 1 represents the estimated density of the signals for the simulated
data and the theoretical density. It appears that fS(.) is well estimated
on the interval [h1, b(4) − h1]. This is due to the boundary effect in the
kernel estimation. Hence, to understand how precise our estimation method
is, we will restrict our analysis to this interval where the boundary effects
disappear.

Estimation of fS|V (.|S−1(.))

The estimation of fS|V (.|S−1(.)) depends on the signals (s′i). We take K = 7
and (s′1, ..., s

′
7) = (0.8, 0.5, 0.6, 0.7, 0.9, 1, 1.1). This choice is somehow arbi-

trary. We use several signals to improve the stability of the estimation and
use signals that appear frequently in the data in order to have good esti-

mations. Figures 2 and 3 show the functions fS|V (.|S−1(s′)) and f̂S
S|V (.|s′)

for s′ = 1.1 on the segment [h3, 1.1] as well as the function h(.) and its
estimation on the interval [h3, Smax − h3]. It appears that our estimations
are quite good .

Estimation of (S−1)′(.)fV (S−1(.))

We first have to define the signals (s′1(s), ..., s
′
M (s)). This choice is arbitrary

and several hypotheses can be made. Taking M = 4 and (s′1, ..., s
′
4) = (s +

(Smax−h3+s), s+(Smax−h3+s)/2, s+(Smax−h3+s)/4, s+(Smax−h3+s)/8),
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figure 4 shows that the estimated function f̂S
V (.) is close to the theoretical

one on the interval [h3, Smax − h3].

Estimation of S
−1(.)

Finally, the estimation of S
−1(.) and the true function are represented in

figure 5 whereas the estimations f̂V (.) and f̂S|V (.) are represented in figure
6.

It shows that our estimation method is easy to implement and that, in
this example, it allows us to recover the true densities.

5 Conclusion

In this paper, we studied a common value model defined by two functions:
the distribution function of the value of the good and a unique function
that enters in the definition of the conditional densities of the signals. We
proved that this model is nonparametrically identified without any further
restriction. We proposed a one-step nonparametric estimation method and
applied it to simulated data. We show that our method is easy to implement
and that our estimators predict correctly the true densities.

This paper gives with Li et al. (2000) a second class of common value
models that are identified and easy to estimate nonparametrically.
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Appendix A

Proof of proposition 5

To be completed

Derivation of equation (4)

Deriving the first order condition given in equation (1) and using b(s) = s,
we have

V (s, s) = s +
FY |S

fY |S

i.e.

(n− 1)h2(s)Hn−2(s)
∫ V

S
−1

(s)
v

fV (v)
Hn(S(v))

dv =(n− 1)sh2(s)Hn−2(s)
∫ V

S
−1

(s)

fV (v)
Hn(S(v))

dv

+ h(s)Hn−1(s)
∫ V

S
−1

(s)

fV (v)
Hn(S(v))

dv

or equivalently

[
s +

H(s)
(n− 1)h(s)

] ∫ V

S
−1

(s)

fV (v)
Hn(S(v))

dv =
∫ V

S
−1

(s)

fV (v)
Hn(S(v))

dv

Deriving this equation in s and rearranging the terms allow us to find
S
−1:

S
−1(s) =s +

1

(n− 1)fS|V (s|S−1(s))
(4)

−

[
n

n− 1
− h′(s)/h(s)

(n− 1)fS|V (s|S−1(s))

]
FY,S(s, s)

(S−1)′(s)fV (S−1(s))fS|V (s|S−1(s))

Proof of proposition 4

To be completed
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Derivation of the equilibrium strategy for the simulations

By proposition (1),

b(s) = V (s, s)−
∫ s

S
L(α|s)dV (α, α)

When V is uniformly distributed on [0, 2] and when the signals condition-
ally on V = v are uniformly distributed on [0, 2v], straightforward calculus
lead to

V (s, s) =

∫ 2
s/2 2v( 1

2v )2 s
2v

1
2dv∫ 2

s/2 2( 1
2v )2 s

2v
1
2dv

=
4s

4 + s

Similarly,

L(α, s) = exp

−∫ s

α

∫ 2
s/2 2( 1

2v )2 s
2v

1
2dv∫ 2

s/2 2 1
2v

(
s
2v

)2 1
2dv

ds


= exp

[
−
∫ s

α

2
s
ds

]
=
(α

s

)2

Combining both results, we have

b(s) =
∫ s

0

4α

4 + α

2α

s2
dα

= 4− 32
s

+
128
s2

ln
(
1 +

s

4

)
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Figure 1. The theoretical and estimated densities of the signals 
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Figure 2. The theoretical and estimated conditional densities ))1.1((. 1−Sf VS   
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Figure 3. The theoretical and estimated function h(.) 
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Figure 4. The theoretical and estimated function  (.))( 1−SfV
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Figure 5. The theoretical and estimated function  (.)1−S
 


