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Abstract

The major challenge posed by structural estimation in multi—unit auctions is the need to develop

predictive models of bidding. The goal of this paper is to estimate the distribution of bidders’

valuations for a high-tech product and the seller’s optimal reserve price using data collected

from repeated online auctions. We construct a model of search with discounting to estimate the

distribution of the bidders’ marginal valuations in repeated multi-unit auctions with multi-unit

demands. The model of search is used to predict the effect on bidding of imposing a stationary

reserve price. The estimated gain in revenue from imposing the optimal reserve price is about

25% for a subsample of the auctions in our data.

∗This is a revision of the second chapter of my dissertation “Need for Speed: Demand Estimation Using Auction
Data.” I thank Colin Campbell, Sandra Campo, Ronald Harstad, Roger Klein, Stanley Liebowitz, Martin K. Perry,
Michael Rothkopf, Alejandro Zentner and two anonymous referees for their comments and suggestions.
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1 Introduction

Multi-unit Internet auctions have gained increased popularity over the last decade. Internet auction

sites like ebay.com, ubid.com and overstock.com auction off daily volumes of goods in the tens of

millions of dollars. The number of listings on Internet auction sites appears to be increasing

exponentially over time. In the second quarter of 2005, the number of listings on e-bay alone

exceeded 440 million, a 32% year-to-year increase, while at the same time the quarterly volume

of sales increased by 36% to $10.9 billion (see [6]). Auction formats seem to differ somewhat by

auction site. However, many auctions share a common feature: they are repeated. A bidder who

did not win in an auction of a particular object knows that he can bid in subsequent auctions.

Thus, the trade-off between a sure surplus in today’s auction and a possibly larger, but uncertain

surplus in subsequent auctions will determine the bidders’ behavior. This type of behavior is no

different from the behavior of consumers who search for the best price in stores that post different—

indeed, random from the buyer’s perspective—prices. Optimal search behavior is characterized by a

reservation price property: buy only if the observed price is less than an endogenously determined

reservation price. We view the optimal bidder behavior in repeated auctions as characterized by a

reservation bid property. Therefore, a simple decision rule for a bidder in a sequence of repeated

auctions is to establish a reservation bid and to advance his bid in each auction up to his reservation

bid.

The main goal of the present paper is to estimate the distribution of bidders’ valuations for a

high-tech product and the seller’s optimal reserve price using data collected from repeated ascending

online auctions with multi-unit bidder demands. While our model and estimation procedure concern

a particular auction format (the so-called Yankee auction, an ascending auction form in which bids

consist of a single price-quantity pair), the model and the estimation procedure can be adapted to

other multi-unit auction formats. If, for instance, entire bidding schedules are observed in the data

(i.e., if bidding is not “lumpy” as in the Yankee auction), a bidder’s reservation bid schedule can

be obtained from his marginal valuation schedule using models and estimation procedures similar

to ours.

Much of the body of empirical literature that has focused recently on estimating product demand

seeks to provide a measure of the consumers’ value (e.g., demand elasticities) for a particular

product. Our methodology of computing the distribution of marginal valuations allows estimation

of average (per-bidder) demands and price elasticities for products with different combinations of
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characteristics.

The approach of this paper relies on the observation that the auctions that constitute our sample

are repeated. Unlike most of the previous empirical studies of auctions, which view auctions as

one-shot interactions between bidders, we model the decision problem of impatient bidders who

participate in repeated auctions. We show how the stop-out price (roughly speaking, the minimum

price that guarantees a win in an auction) plays an important role in the determination of the bids.

We use the terms “stop-out price” and “market-clearing price” interchangeably; a more precise

definition of the stop-out price is in the beginning of section 4. We endow our bidders with rational

expectations about the distribution of stop-out prices and view them as choosing their bids to

maximize expected surplus from bidding in a sequence of ascending auctions.

The auctioneer can affect—to some degree—the distribution of stop-out prices. Specifically, by

imposing a reserve price the auctioneer is able to change both the shape and the support of the

distribution of stop-out prices. In this paper we provide a measure of the extent to which control

over the distribution of transaction prices results in a higher expected revenue for the seller. Similar

to the case of one-shot single-unit auctions, imposing a reserve price in our setting involves a trade-

off between increased revenue in the event that the objects are sold and a lower likelihood of selling

the objects. The goal of most empirical studies of one-shot, single-unit auctions is to use the bid

function predicted by theory to obtain the distribution of the bidders’ valuations, which in turn

can be used to compute the optimal reserve price. Establishing such a theoretical relationship in

multi-unit settings is problematic. Indeed, our task of recovering valuations from the observed

bids is greatly hampered by the relative dearth in the literature of models that deliver predictive

relationships between bids and valuations in multi-object auctions with multi-unit demands. The

major challenge that structural estimation poses to the researcher in multi-unit settings is the need

to develop a theoretical model that delivers a relationship between valuations and bids that can be

taken to the data.

The theoretical model developed in this paper establishes a simple functional relationship that

can be taken to the data between the bidders’ valuation and their reservation bids. The ascending

nature of the auctions in our sample makes unobservable the actual reservation bids of the bidders.

However, reservation bids can be bracketed using the observed data. If the reservation bids were

observed (e.g., when the auction form is sealed-bid), our model can be taken directly to the data

to estimate the distribution of the bidders valuations and the seller’s optimal reserve price.
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We view both the number of bidders and the number of objects in each auction as random

and exogenous. The distributions of both variables can be estimated using our data. However, we

take a more direct approach and use the distribution of the stop-out price as the primitive for the

theoretical model and for the empirical specification.

We collected data from repeated auctions of personal computer processors, or central processing

units — CPUs. While it is likely that only few readers will have a particular interest in estimating

demand for CPUs, our analysis of repeated auctions adds more general value with the construction

of a simple model of search that may be applicable in a variety of settings involving repeated

auctions. Perhaps more importantly, the model developed in this paper can be used to assess the

effect on bidder behavior of imposing a reserve price.

Finding the relationship between reservation bids and the distribution of the stop-out price in

the presence of a reserve price is somewhat problematic.1 With a reserve price both the reservation

bids and the distribution of the stop-out price change relative to the no-reserve case. The key

observation that we make is that the imposition of a reserve price does not affect the ordering of

reservation bids and values. Accordingly, the minimum price that guarantees a win in an auction

is equal to the reserve if the stop-out bidder has a lower valuation, and equal to the bid of the

stop-out bidder if his valuation is higher than the reserve. We use the predictions of the search

model to compute the distribution of the stop-out valuations, and use that distribution to compute

the reservation bid function in a reserve price environment.

We collected data from auctions of CPUs because they were easily accessible online and to

minimize the effect of object heterogeneity on our estimates. We use CPU characteristics, all of

which are assumed to be observed, to infer the bidders’ valuations. Our approach can be viewed as

hedonic, although we do not assume a particular functional form for the bidders’ demand functions,

nor do we need to consider the bidders’ choice problem. The distribution of the bidders’ valuations

is found by inverting the monotonic reservation bid functions implied by our model.

The estimation procedure developed in the present paper makes use of the predicted one-to-one

relationship between bids and valuations to recover the distribution of bidders’ valuations and to

compute the optimal reserve price.

We turn now to provide a brief survey of the related literature and some background on theory

1We have some, well, reservations about terminology. However, to be consistent with the terms used in search
and auction theory and with the hope that this is not confusing to the reader, we use “reservation bid” to mean
the highest bid a bidder is willing to submit and “reserve price” to mean the lowest acceptable bid imposed by the
actioneer.
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and on estimation in multi-unit auctions.

2 Background and related literature

In general, bidders in an auction of K ≥ 1 identical and indivisible objects are characterized

by a K-tuple of marginal valuations of the form V = (V 1, ..., V K). Any equilibrium model of

bidding would specify, for each bidder, a bidding function that maps their vector of valuations

into bids (b1, b2, ..., bK). When auction rules require bidders to submit ‘lumpy’ bids2, as in our

CPU auctions, both the quantity demanded and the per-unit price are specified in equilibrium

as functions of the vector of marginal valuations V . Equilibrium bidding models provide results

mainly for the case K = 1. Obtaining tractable results in the general case when K > 1 appears to

be a formidably difficult analytical task. One can, in fact, find in the literature very few theoretical

results concerning multi-object auctions with multi-unit demands. We turn next to briefly survey

some of the available theoretical results.

Harris and Raviv [11] investigate optimal multi-object allocation mechanisms with two bidders

and a discrete, equidistant support of the bidders’ valuations and prove that, in the limit as the

distance between the points in the support of the distribution of valuations approaches zero, the

expected revenue from the uniform and discriminatory auction is the same. With more than

two bidders, a uniform distribution of valuations and unit demands, they prove expected revenue

equivalence in the risk-neutral case and establish the expected revenue ranking of the two auction

formats under risk aversion and risk neutrality. Maskin and Riley [17] show that revenue equivalence

with unit demands continues to hold for more general distributions of the bidders’ valuations when

bidders are risk neutral. In addition, they show that with downward sloping demands, the optimal

mechanism is the nonlinear pricing mechanism, modified to account for a fixed supply. Wilson’s

[26] seminal paper concerning auctions of shares gave rise to a new strain of literature that relies on

the good auctioned being perfectly divisible. In our case, however, the goods offered for sale are not

divisible and bidders may demand more than one object. A model that obtains bid functions for

both discriminatory and uniform auctions using the assumption that bidders are price-taking is by

Nautz [20]. Tenorio [25] investigates the revenue ranking of discriminatory and uniform auctions

using a simple two-bidder example. Engelbrecht-Wiggans and Khan [8] give a characterization

of the equilibria of an uniform auction in which bidders make two bids. In a more recent paper,

2That is, instead of submitting a quantity-price schedule, bidders are required to submit a price-quantity pair.
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Lebrun and Tremblay [16] provide closed-form solutions for the multi-object discriminatory auction

in the case of two bidders whose valuations are piecewise-constant.

The empirical body of literature that discusses private-values multi-unit auctions focuses in

general on the effect of changing a particular auction format (i.e., discriminatory or uniform)

on revenue. Tenorio [24], for instance, investigates revenue equivalence in the context of multi-

unit auctions using Zambian foreign exchange auction data. In an empirical analysis of bids to

supply electricity, Wolfram [27] investigates the bidders’ incentive to increase their bids at high

quantities in an uniform auction. Using a multi-unit, private-values auction model in which bidders

(electricity generators) have perfect information about costs, the author’s empirical results confirm

the theoretical prediction that bidders bid larger markups for units that are being produced at

higher marginal cost. Cantillon and Pesendorfer [3] analyze the issue of identification and estimation

in multi-unit auctions with synergies, with an application to auctions of bus routes. Their paper

focuses on estimating the welfare effects of package bidding and on evaluating the bidders’ cost

synergies.

The two papers that are closest to our approach are by Hortaçsu [12] and Heller and Lengwiler

[13] and concern Treasury auctions.

In an empirical analysis of the Turkish treasury market, Hortaçsu estimates the bidders’ mar-

ginal valuations and shows that the revenue difference between the actual discriminatory auction

employed by the Turkish Treasury and a counterfactual uniform auction is not statistically signifi-

cant. Unlike our ascending auctions with lumpy bids, Turkish treasury auctions are discriminatory

and bidders are required to submit an entire bidding schedule. In his paper, Hortaçsu uses resam-

pling techniques to estimate the distribution of the market clearing price; in contrast, our approach

uses semiparametric methods. The estimation method of Hortaçsu allows counterfactual compar-

isons between various auction formats. Since bidding rules in the Turkish treasury auctions allow

bidders to place bidding schedules consisting of different combinations of quantities and prices,

the bidders’ valuations are nonparametric identified. In our case, since we only observe a unique

combination of quantity and per-unit price for each bidder, the bidders’ marginal valuation sched-

ules are non-parametrically unidentified. To achieve identification we have to impose parametric

restrictions on the marginal valuations of bidders.

Heller and Lengwiler [13] look for the auction format that maximizes the revenue from the Swiss

treasury auctions. Their method uses models of bidding that are based on the assumption that
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bidders are price-taking and allows evaluation of the revenue performance of discriminatory and

uniform auctions.

As in this paper, the close relationship between repeated auctions and search is the underpinning

of Genesove’s [9] analysis of search at wholesale auto auctions. Instead of considering the search

behavior of sellers across auctions, we consider here the search behavior of buyers. Search theoretic

models have been used extensively in the context of labor markets (see e.g., McCall [18] and

Mortensen [19]; for a recent survey see Rogerson and Wright [21]).

The empirical part of this paper belongs to a large and growing body of literature that investi-

gates Internet auctions. For a survey of recent studies of Internet auctions see Bajari and Hortaçsu

[2].

Estimating the effect of bidder- and auction-specific variables on valuations is a difficult task

because available to the researcher are only the bids, and not the actual valuations of the bidders.

For isolated single-unit auctions, the (Bayesian-Nash) equilibrium relationship between bids and

valuations can be, in principle, easily derived. Establishing a similar theoretical relationship be-

tween valuations and bids in multi-object auctions with multi-unit demands, however, appears to

have been, to this point, beyond our abilities. We render unnecessary such a task by making use

of a search theoretic model.

Before presenting our theoretical model we give a short description of the auction and of the

data.

3 Description of the auction

We collected our data from auctions that took place in January and February 2001, during a time

interval of roughly 30 days. Data were collected from the U-bid.com site, an Internet business-

to-person auction house. U-bid employs a discriminatory auction in which bidders are required

to submit “lumpy” bids consisting of a per-unit price and a quantity demanded. The auction is

ascending because the price component of a bid can be increased in integer multiples of the minimum

bid increment. The quantity component of a bid, however, is set at the beginning. Bidders cannot

place two bids in the same auction (i.e., one cannot bid for more than one quantity). Bidding in all

auctions in our sample was open for 24 hours, but if there was any bidding activity in a 10 minute

time interval after the 24-hour period, the auction entered a “going-going-gone” stage that ended

as soon as no bid had been received for 10 minutes. Bidding starts at a low per-unit price ($9) and
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the auction is ascending. Recall that the stop-out (or market clearing) price is the lowest per-unit

price that guarantees a win. The smallest entry (or re-entry) bid is a minimum bid increment over

the standing stop-out price. Bids can be updated only in multiples of a given minimum increment

(usually $10). The order of precedence is price over quantity over time. That is, if the per-unit

bids are the same the bidder demanding the highest quantity has precedence, and if both the price

and quantity submitted are equal, the bidder whose first bid was placed earlier wins. The auction

is discriminatory, i.e., each winning bidder gets the number of objects demanded3 and pays her

last per-unit price multiplied by the number of objects that she wins. Presented below is a stylized

example of the typical auction, in which five bidders compete for three identical objects. The

minimum bid increment is $10 and the starting bid is $9.

Table I: Stylized example of an auction

Bidder Bid [$/unit] Quantity demanded Bidder winning (No. objects)
1 9 3 1(3)
2 19 2 2(2), 1(1)
3 299 1 3(1), 2(2)
4 359 1 4(1), 3(1), 2(1)
5 469 2 5(2), 4(1)
3 649 1 3(1), 5(2)

In our example, bidder 3 wins one object and pays $649 and bidder 5 wins two objects and pays

$469. About one third of the bids in our data are jump bids,4 a finding similar to that of Easley

and Tenorio [7]. In the example, all bids except bidder 2’s bid are jump bids.

Our data consist of the bidding histories for 89 auctions. By accessing on average once every

minute the information posted on the merchant’s website we collected data about the per-unit

price, the quantity demanded and the time at which bids were placed. In addition, we recorded

the number of objects for sale, as well as the characteristics of the CPUs (clock speed, cache size,

data bus speed and manufacturer). The only bidder-specific information available consisted of the

bidders’ initials, their city and state. The starting bid in all auctions is $9. We found some missing

bids in 9 out of the 89 auctions in the initial data set. Accordingly, we use data from 89 auctions

to estimate the distribution of the stop-out price and data from 80 auctions (with a total of 2302

3Since bids may be submitted for more than one unit, there may be quantity rationing at the last winning bid.
4A ratchet or pedestrian bidding strategy requires bidders to submit the minimum accepted bid whenever their

previous per-unit price is smaller than the bids placed by the current winners. Conversely, a jump bidding strategy
involves bidding multiples of the minimum bid increment above the lowest winning bid.
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bidders) to estimate the valuations.

The variables, their description and summary statistics are presented in Table II. The top part

presents processor characteristics, in the middle are bidder-related variables and the bottom part of

the table concerns auction-specific variables. All processors are new and are covered by a three-year

warranty.

Table II: Description of variables and summary statistics

Variable Description Mean St. dev Min Max

SPEED Processor clock frequency (MHz) 964.92 174.16 733 1400
SPD2 SPEED2/1000

CACHE Cache size (Kbytes) 296.73 141.01 128 512
CAC2 CACHE2/1000
INTEL Manufacturer dummy (Intel=1) 0.35
MEM Bundled memory dummy 0.06

BUSSPD Frequency of front size bus (MHz) 200.68 47.56 66 400
SERVER Processor for servers dummy .045
BUTLER Proxy bidding dummy 0.32

q Quantity demanded 2.39 5.27 1 57
WIN Winning dummy 0.27
BID Last recorded bid 143.71 85.69 9 788

NOBJ Number of objects in an auction 9.90 13.10 1 72
INCR Minimum bid increment 11.02 2.17 10 20

NBDRS Number of bidders in an auction 28.24 32.21 3 177

A brief discussion about the CPU characteristics is useful at this point. The speed of a CPU

(or the frequency of its internal clock) is a key determinant of the number of elementary arithmetic

or logic operations that can be performed by the processor in a given period of time. While CPU

speed is perceived by most users as the most important characteristic of a processor, the overall

performance of a system may be significantly affected by the speed of the data bus that connects

the central processing unit with the system memory, hard drive and peripherals. In general, bus

speeds are of an order of magnitude less than CPU speeds, so that for memory intensive processes

(large scale simulations, or even the use of Internet browsers and word processors) CPU speed is

less relevant than bus speed. To help deal with this issue, manufacturers place a relatively small

amount of high-speed “cache” memory on-the-chip to improve the overall performance of a system.

In principle, a computer’s perceived speed of operation is increasing in both processor speed and

cache size, but the amount of system memory and the architecture of the system are also very

important in determining a system’s overall performance.
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We present next our model of the economic environment and its predictions.

4 The model

We consider an infinite sequence of ascending multi-unit auctions indexed by i ≥ 1, with ki ∈
K = {1, ..., k̄} identical objects sold in each auction and with ni ∈ N = {2, ..., n̄} risk-neutral
bidders in each auction. We take both the number of bidders and the number of objects to be

exogenous and stochastic. Bidders draw the parameters of their marginal valuation schedules

before they participate in the sequence of auctions. The winning bidders in an auction either draw

new valuations in the next period, or they never return to participate in an auction. The following

assumptions summarize our view of the economic environment.

Assumption (CMV) For all i ≥ 1, bidder j0s (j ∈ {1, ..., ni}) marginal valuations are equal to
vj (i.e., constant) for a number qj ≥ 1 of objects, and zero otherwise. Thus, a bidder’s marginal
valuation schedule is characterized by the pair of numbers (vj , qj) .

Since our data consist of “lumpy” bids (i.e., pairs consisting of a per-unit price and a quantity

demanded), individual bidder marginal valuation schedules are non-parametrically unidentifiable.

A large fraction of bidders in our sample of auctions (about 70%) demand only one object, so for

these bidders the constant marginal valuation assumption will cause no harm. We believe that

most of the bidders who demand more than one unit buy CPUs to build computers with the intent

of sale. If this is the case, the marginal valuations of a multi-unit bidder for a fixed number of

objects interpreted as “capacity” are not likely to differ much.

Assumption (I) The pairs (vj , qj) are independent draws from a time-invariant distribution Fv,q :

[v, v̄]×K→ [0, 1], with 0 ≤ v < v̄ <∞. A bid is a pair (b, q∗) consisting of a per-unit price and a
quantity demanded.

Since we assume that bidders have constant marginal valuations, a bidder will submit a bid

whose quantity component q∗ is the minimum between q, his quantity demanded, and ki, the

supply of objects in auction i. To simplify the discussion, we assign bidder indices in decreasing

order of their valuations: vji ≥ vj+1,i for all j ∈ {1, ..., ni − 1}.
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Definition 1 The index ιi of the stop-out bidder in auction i satisfies

ιi = 1 +min

t ∈ {1, ..., ni}| tX
j=1

qji ≥ ki

 . (1)

We will assume, as it is the case in our data, that ιi is well-defined for all i. We define the

stop-out price as the highest non-winning bid in an auction. Since the supply in each auction is

fixed, the last winner’s quantity may be rationed; our definition of the stop-out price accounts for

this fact.

Assumption (RP) The behavior of bidders is governed by reservation price search, i.e., a bidder

with value v will advance her bid up to a value b(v) which we term that bidder’s reservation bid.

The bidders’ common inter-period discount factor is δ ∈ (0, 1). Bidding in each auction is costless.

Assumption (RP) implies that the last observed bid of the highest non-winning bidder (bidder

ιi) will be equal to his reservation bid. We therefore define the stop-out price si in auction i as the

reservation bid of the highest non-winning bidder: si = b(vιi).

Assumption (SO) The c.d.f. of stop-out prices Fs is continuous and strictly increasing on its

support [v, s̄]. Stop-out prices in each auction are independent draws from Fs. The bidders in our

sequence of auctions have rational expectations about the distribution of the stop-out price.

Assumption (SO) is made to simplify our theoretical model and to allow the design of a feasible

estimation strategy.5 Since bidders can only advance their bids in integer multiples of the minimum

bid increment, stop-out prices in our auctions have discrete support. However, since the minimum

bid increment is small relative to the sale price of a CPU, the assumption is fairly mild. We assume

that each period the new bidders draw their valuation parameters independently from the same

distribution Fv,q. In each particular auction the bidders’ valuations are i.i.d., so observing that the

stop-out value is an order statistic (of random rank) of the i.i.d. sample of valuations and that the

stop-out price is the reservation bid function evaluated at the stop-out value, stop-out prices over

auctions are independent draws.

5 It is possible to construct a model of search with stop-out prices that have discrete support. Moreover, estimation
of the dependence between the stop-out price and auction characteristics is also possible. However, since the number
of realizations of any particular stop-out price is relatively small in our data, the estimation of such a model of search
is problematic.
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Since the results of previously closed auctions were available online at the time our data were

collected, it is reasonable to assume that bidders know the distribution of the stop-out price. The

assumption that bidding is costless is justified by the observation that proxy (automatic) bidding

was available as an option to all bidders. We observe that a bidder will win if her reservation bid

is greater than the stop-out price in any particular auction.

The following proposition characterizes the relationship between a bidder’s reservation bid and

her value.

Proposition 1 The reservation bid function b(v) satisfies

v = b (v) +∆

Z b(v)

v
Fs (p) dp, (2)

where ∆ = δ
1−δ > 0.

Proof. A bidder chooses her reservation bid b to satisfy

v − b = δ

Z b

v
(v − s) dFs (s) + δ (v − b) (1− Fs (b)) ; (3)

note that the value of search (surplus per object) is equal to v − b. If the next period stop-out

price s is less than b, then the bidder will win in the auction and his per-unit expected payoff

is Es [v − s|s ≤ b] . If the next-period stop-out price is greater than b, the bidder will continue to

search. The expected surplus from continuing to search next period is equal to the right hand side

of (3). Integrating by parts and collecting terms yields (2).

Proposition 2 The function b(·) is strictly increasing, satisfies b (v) ≤ v (with strict inequality if

v > v), and it is strictly concave.

Proof. To show that b(·) is strictly increasing choose v1 > v2 ≥ v and suppose that b (v1) ≤ b (v2).

Since for b (v1) ≤ b (v2) ∆
R b(v1)
v Fs (p) dp ≤ ∆

R b(v2)
v Fs (p) dp, adding up the two inequalities yields

v2 ≥ v1, a contradiction, so b(·) is strictly increasing. Observe that b(v) = v (if not, the equality

in (2) is not satisfied). We wish to show next that b (v) < v whenever v > v. Choose v > v

and suppose b (v1) ≥ v1. It follows that
R b(v1)
v Fs (p) dp ≤ 0. Since Fs (·) satisfies Fs (p) = (>)0

when p = (>)v and since b (v1) > v,
R b(v1)
v Fs (p) dp > 0, a contradiction, so b (v) < v whenever

v > v. Note that b(·) is bounded and strictly increasing, so it is differentiable almost everywhere.
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Observing that

b0(v) = 1/(1 +∆Fs (b (v))), (4)

since both b(·) and Fs (·) are strictly increasing, b0(v2) > b0(v1) whenever v1 > v2, so b(·) is strictly
concave.

Since b(·) is strictly increasing, it is invertible and thus for x in the range of b(·), (2) implies
that

b−1 (x) = x+∆

Z x

v
Fs (p) dp. (5)

Since the last observed bid of the highest non-winning bidder is equal to his reservation bid, it

follows that Fs (x) = Pr [b (vιi) ≤ x] = Fvι
¡
b−1 (x)

¢
, where Fvι is the distribution of the stop-out

value that corresponds to the stop-out price. Since stop-out prices are observed and b(v) can be

computed using (2), Fvι can be estimated using our data. We turn next to investigate the effect

on bidding of imposing a reserve price.

4.1 Reserve prices

The auctions in our sample do not have a reserve price (minimum acceptable bid). While it is

true that the starting bid is $9 in all auctions, it is hard to believe that the starting bid could be

construed as a binding reserve price. The lowest sale price for any of the objects sold in our sample

is about seven times larger than the starting bid.

Nevertheless, the seller may have different reserve price policies. We focus here on the implica-

tion on bidding of imposing a stationary reserve price (i.e., a reserve price that does not depend on

the number of objects for sale or the number of bidders). We note that, in principle, the reserve

price could depend on the number of objects in an auction. The seller could also condition the

reserve price on the number of bidders, if it is known (e.g., in sealed-bid auctions with pre-qualified

bidders). In our auctions the seller cannot condition the reserve price on the number of bidders, for

the number of bidders is revealed with certainty only at the end of the auction. We maintain the

assumption that the number of objects for sale in each auction is exogenous and random. Hence,

it remains a possibility that the seller condition the reserve price on the realized number of objects

for sale in an auction. If so, one would need to impose (most likely not innocuous) assumptions

about the effect of imposing quantity-dependent reserve prices on the number of bidders in an auc-

tion. Rather than following this route, we analyze the effect of imposing a stationary reserve price,

13



without making any claim about the optimality of imposing quantity-invariant reserve prices. We

leave for future research the answer to the question of whether or not such a reserve price policy is

optimal.

To evaluate the effect of imposing a reserve price r on the bidders’ search strategy, note first that

both the distribution of the stop-out price and the function that maps valuations into reservation

bids become functions of r. In what follows, we denote by Fs (·, r) the distribution of the stop-out
price, by br (v) = b (v, r) the reservation bid function. We start by assuming that br(r) = r and that

br(·) is strictly increasing, so that b−1r (·) , its inverse with respect to v, is well defined. Imposing a
reserve price adds a mass point (at r) to the density of the stop-out prices. To see why, note that

if vι is greater than r, the stop-out price is equal to br (vι). If vι is lower than r, the stop out price

is equal to r. Thus, the density of stop-out prices will have a mass Fvι (r) at r, and the probability

that the stop-out price is less than some value p ≥ r, Fs (p, r), is equal to Fvι
¡
b−1r (p)

¢
.

According to the definition in the last section, the stop-out price is truncated, not censored.

However, the relevant question for a bidder is what is the minimum price that guarantees winning in

an auction. When vι < r, regardless of whether or not a trade occurs, that minimum price is equal

to r. Without a reserve price, that minimum price is equal to the stop-out price. With a reserve

price policy in effect, we use the term stop-out price to mean the lowest price that guarantees

winning in an auction. The following proposition characterizes the reservation bid function in a

reserve price environment.

Proposition 3 Let r ∈ (v, v̄). The reservation bid function br(v) satisfies

br(v) =

 r +
R v
r

dx
1+∆Fvι (x)

if v ≥ r

< r otherwise.
(6)

Proof. A bidder with value v ≥ r chooses her reservation bid br (v) so that

v − br (v) = δ

 E [(v − s) |s = r] Pr [s = r] +E [(v − s) |s ∈ (r, br (v)]] Pr [s ∈ (r, br (v)]
+ (v − br (v)) Pr [s > br (v)]


= δ

Ã
(v − r)Fvι (r) +

Z br(v)

r
(v − s) dFvι

¡
b−1r (s)

¢
+ (v − br (v)) (1− Fvι (v))

!

= δ

ÃZ br(v)

r
Fvι

¡
b−1r (s)

¢
ds+ (v − br (v))

!
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it follows that br(v) satisfies

v = br(v) +∆

Z br(v)

r
Fvι

¡
b−1r (s)

¢
ds. (7)

To find the reservation bid function, differentiate (7) with respect to v to yield

1 = b0r(v)
¡
1 +∆Fvι (v)

¢
; (8)

integrating with initial condition br (r) = r yields (6). Note that br (·) is strictly increasing, as
assumed.

The next proposition characterizes some properties of the reservation bid function br (·).

Proposition 4 For r ∈ (v, v̄) and v ≥ r, the following hold:

(i) br(v) > b (v) ,

(ii) ∂br(v)
∂r > 0 and

(iii) b0r(v) = b0 (v).

Proof. Fix r ∈ (v, v̄) and choose v ≥ r. Observe that br(v) − b (v) = r +
R v
r

dx
1+∆Fvι (x)

−R v
v

dx
1+∆Fvι (x)

= r − b(r), which is greater than zero by proposition 2. Thus, with a reserve price,

the reservation bid function is a vertical shift of the reservation bid function without a reserve

price, with the difference between the two functions independent of v. Since b (·) is concave and
strictly increasing, and since b (v) = v and b(v) < v for v > v (by proposition 2), r− b (r) is strictly

increasing in r, so (ii) follows. Since br(v)− b (v) is not a function of v, b0r(v) = b0 (v).

Note that the difference between the functions br(v) and b (v) is equal to the per-unit surplus of

a winner with value r in the no-reserve auction. Having computed the bid function with a reserve

price, we compute next the expected revenue in the auction with a reserve price r.

5 Estimation and results

Our estimation procedure consists of two steps. First, we estimate, using bidder- and auction-

specific covariates, the bidders’ reservation bids and quantities demanded. We do this by observing

that the non-winners’ reservation bids are less than the minimum bid increment over the stop-out
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price, while the winners’ reservation bids are greater than their last observed bids. Thus, for each

observation, we bracket the reservation bids using the observed stop-out price and the last observed

bids. A bidder’s quantity demanded may be censored, since the supply of objects in an auction is

fixed and that bidder’s “capacity” qj may be less than the number of objects supplied.

In the second step we use a distribution-free procedure to estimate the distribution of the stop-

out price. Since the discount factor is not known, we design a procedure to estimate the discount

factor.

We conclude this section by providing the estimation results.

5.1 Estimation of the reservation bids and quantities

The theoretical relationship between reservation bids and valuations established above is based on

the assumption that bidders are not constrained in their choice of per-unit prices and quantities.

The first step in estimating the valuations is to estimate the reservation bids and quantities de-

manded. Because of the ascending nature of the auction, winning bidders have reservation bids that

are greater than or equal to their last observed bid, whereas the reservation bids of non-winning

bidders can be up to at least one bid increment greater than their last recorded bid and less than

the sum between the stop-out price and the minimum bid increment.

We take the parametric relationships between the reservation bids b∗ and the covariates Zb

(containing bidder-, auction- and object-specific variables) to be of the form b∗ = �bg(Zb). Since

bids must be positive, a natural specification is to let g(Zb) = exp(Zbβb) and to assume that

the multiplicative error term �b is i.i.d. log-normal. Taking logs, the relationship between the

reservation bids and the vector of covariates Zb becomes ln b∗ = Zbβb + εb,where εb is i.i.d. normal

and independent of the regressors.

Some bidders may demand more than the number of objects offered for sale in any particular

auction. Therefore, bidders who have quantities demanded that are equal to the number of objects

in a given auction may wish to purchase more objects than what we observe in the data. We

assume that quantities demanded are governed by the latent variable q̂ = Zqβq + εq, where Zq

is a matrix of covariates and εq is i.i.d. normal and independent of Zq. In addition, quantities

demanded are q∗ = q if q̂ ∈ (q − 0.5, q + 0.5], for q > 1, and q∗ = 1 if q̂ ≤ q̂c = 1.5. By

employing this specification we are able to accommodate the large proportion — about 70% — of

observations with unit demands. Note that this specification sets the cutoff for unitary demands q̂c
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at 1.5 without loss of generality, and that observations from single-unit auctions (less than 100 data

points) do not provide any information about the “true” (or uncensored) quantities demanded. The

estimation method outlined above cannot jointly identify q̂c and of the constant in Zqβq; however,

our procedure requires that only their sum be identified.

It has been argued (see for instance Rothkopf and Harstad [22], Avery [1] and Daniel and

Hirshleifer [5]), that in ascending auctions bidders have an incentive to jump the bid to signal that

they are willing to pay a high price. Rothkopf and Harstad [22] show that pedestrian bidding (i.e.,

the strategy of advancing a competitor’s bid by the minimum bid increment) is an equilibrium

with two bidders. With affiliated values, Avery [1] shows that jump bids provide a possibility of an

ex-ante Pareto improvement for bidders over the outcome of the ascending auction with no jump

bidding. In the data collected from various Internet auctions by Easley and Tenorio [7], more than

one third of the bids are jump bids. We take into account jump bidding in our specification by

bracketing the reservation bid of a non-winning bidder between his last observed bid and the sum

between the stop-out price and the minimum bid increment. In the case of an observed winning

bid b, the corresponding reservation bid b∗ can be placed with certainty in the interval [b,∞). Our
estimation procedure takes into account the fact that values of the bid less than the starting bid

($9) are not possible.

Assuming that the error terms in the reduced-form bid and quantity equations are jointly

normally distributed with covariance matrix

Σ =

 σ2b ρσbσq

ρσbσq σ2q


the likelihood contribution of observation i, depending on whether the observed bid is winning and

whether the quantity observed is equal to the supply of objects (censored) can be summarized as

follows.

• Non-winning bid (wi = 0), non-censored quantity (ci = 0). Denoting by φ∗(x, y;Σ) the

density of a bivariate normal distribution centered in the origin, truncated to the left of

y = ln(9)−Zbβb and with correlation matrix Σ and by pi the stop-out price in auction i, the
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contribution to the likelihood of observation i is

Li
0,0 =

ln(pi+ιi)−β0bZbiZ
ln pi−β0bZbi

q̄i−β0qZqiZ
q
i
−β0qZqi

φ∗(x, y;Σ)dx dy.

• Non-winning bid (wi = 0), censored quantity (ci = 1)

Li
0,1 =

ln(pi+ιi)−β0bZbiZ
ln pi−β0bZbi

∞Z
q
i
−β0qZqi

φ∗(x, y;Σ)dx dy.

• Winning bid (wi = 1), censored quantity (ci = 1)

Li
0,1 =

∞Z
ln pi−β0bZbi

∞Z
q
i
−β0qZqi

φ∗(x, y;Σ)dx dy.

• Winning bid (wi = 1), non-censored quantity (ci = 0)

Li
0,1 =

∞Z
ln pi−β0bZbi

q̄i−β0qZqiZ
q
i
−β0qZqi

φ∗(x, y;Σ)dx dy,

where (q
i
, q̄i) = (qi − 0.5, qi + .5) if qi > 1 and (qi, q̄i) = (−∞, 1.5) if qi = 1.

The log-likelihood contribution of observation i is therefore:

lnLi = (1− wi)(1− ci) lnL
i
0,0 + (1− wi)ci lnL

i
0,1

+wici lnL
i
1,1 +wi(1− ci) lnL

i
1,0. (9)

The maximum likelihood estimates are below.6

6An alternative specification in which we placed the maximum bid of a non-winning bidder between his last
observed bid and the next bid on the grid has a considerably reduced goodness of fit. If quantities and bids are
estimated using separate equations involving a negative binomial specification for quantities (modified to account
for a large proportion of observations with unit demands) and a log-normal specification for bids, the results are
qualitatively similar, but the goodness of fit is diminished. The estimates in Table III are scaled by the standard
deviation of the error terms.
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Table III: Maximum likelihood estimates

Price Quantity
Parameter Estimate Std. dev. Estimate Std. dev.
Constant -78.4168 3.0202 25.7679 5.3566
NAUCT -0.1216 0.0119 0.0890 0.0319
NAUCT2 0.0023 0.0003 -0.0091 0.0014

log(SPEED) 39.9220 1.2085 -6.9527 2.0402
ln(CACHE) -0.9847 0.1483 -0.9814 0.1807

NOBJ 0.0037 0.0025
INTEL 3.5361 0.1561 1.0701 0.6038

BUTLER -0.5578 0.0624 -0.2472 0.1406
BUSSPD -0.0055 0.0008 0.0142 0.0054
INCR -0.0350 0.0237 0.0281 0.0787

σ 0.1520 0.0036 1.0290 0.0603

N = 2302 ρ = −0.3869 (0.0778) mean lnL : −1.9076
As expected, higher processor speeds generate—ceteris paribus—higher bids. Somewhat surpris-

ingly, the opposite is true about the size of a processor’s cache memory and about bus speed. Our

conjecture is that most bidders in our auctions purchase processors to build computers with the

intention of selling them. While both bus speed and cache size are important determinants of the

perceived speed of a computer, most computer buyers care only about processor speed. Moreover,

higher bus speeds call for higher speed memory that is considerably more expensive. The negative

sign on bus speed and cache size is an indication of a lower demand of bidders (and buyers of their

computers) for processors with higher bus speeds or larger cache sizes. Our results indicate that

bidders are willing to pay considerably more, all other things equal, for CPUs produced by one of

the manufacturers. The number of objects for sale does not appear to significantly affect bids —

a finding consistent with search behavior. The use of proxy bidding is associated on average with

lower bids and lower quantities demanded. The size of the bid increment does not appear to signif-

icantly affect the bids. Quantities demanded appear to be increasing, albeit at a decreasing rate,

in the number of auctions in our sample in which a bidder placed bids.7 Higher speeds correspond

on average to higher quantities demanded, and the opposite holds for the size of cache memory.

Finally, we note that the estimated correlation between the error terms in the price and quantity

7The available data concerning the bidders’ identities is their initials, city and state. We match — possibly with some
noise — the bidders across auctions using the information available and use the resulting number as an independent
variable in regression. The mean of variable NAUCT is 4.65, its standard deviation is 8.27, the minimum is 1 and
maximum is 43.
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equations is negative and significant.

We present next the estimation procedure and results for the distribution of the stop-out price.

5.2 The distribution of the stop-out price

The theoretical model developed in the previous section looks at the decision problem of a bidder

who participates in a sequence of auctions of identical objects. In principle, it is possible to estimate,

either semi- or non-parametrically, the discrete distribution of the stop-out price for any type of

CPU, but the number of observations for any particular type of CPU in our data is too small to

achieve any meaningful results. By pooling observations across different types of objects and by

assuming that the distribution of the stop-out price has continuous support we render feasible the

estimation of the reserve price. The relatively small size (compared to the stop-out price) of the

minimum bid increment suggests that the gains from using a continuous support — materialized in

a much cleaner formulation of the theoretical model and empirical strategy relative to the discrete

case — greatly outweigh any potential loss. The assumption is relatively innocuous: a minimum bid

increment of $10 (which is the increment in most of the auctions that we consider) represents about

1.5% of the price of a high speed processor. We use in estimation the following index assumption

that reduces substantially the number of data points necessary to reliably estimate the distribution

of the stop-out price.

Assumption (SIM) The vector of characteristics Zs affects the stop-out price through a linear

combination of the form Zsβs, where βs is a vector of parameters that need to be estimated.

The following discussion draws on Ichimura [14]. Suppose that the stop-out price s in auction

l is given by sl = ϕ(Zsl) + εsl, for all l = 1, L,where ϕ(·) is an unknown link function and εl are

zero mean i.i.d. disturbances distributed according to a distribution function Fε(·). Assumption
(SIM) implies that ϕ(Zsl) = ϕ(Zslβs) and in what follows we use the two members of the equality

interchangeably. We also assume that the error term and the characteristics Zs are orthogonal and

that the error term is homoscedastic.

Fixing βs, the expectation of the stop-out price conditional on the index Zsβs can be computed

using semi- or non-parametric methods (see for instance Silverman [23]). We denote by Ê [sl|Zsβs]

the semiparametric estimate of the expectation of the stop-out price conditional on the index Zsβs.
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With the conditional expectation of the stop-out price in hand, βs can be estimated as the

solution to the following “non-linear least squares” problem:

β̂s ∈ argmin
βs

LX
l=1

³
sl − Ê [sl|Zsβs]

´2
. (10)

The solution (unique under some mild conditions imposed on the conditional expectation)

enables the computation of an estimate of the mean shift ϕ(·). To see how, observe that

ϕ̂(Zsβ̂s) = Ê[s|Zsβ̂s]. (11)

The semiparametric least squares problem amounts to choosing the value of coefficients βs

so that a distance between the actual realizations of the stop-out price and their expectations is

minimized. The problem is solved sequentially: for given values of βs the conditional expectation

of the stop-out price can be computed using kernel methods, and the result is fed into a non-linear

least squares estimation procedure.

For an n-dimensional sample of i.i.d. random draws {Xi}i=1,n, the kernel estimator of the
density f is defined by:

f̂(x) =
1

nh

nX
l=1

K

µ
x−Xl

h

¶
, (12)

where K(·) is a kernel function. We use a normal kernel to compute the conditional expectations
with the “rule-of-thumb” bandwidth suggested by Silverman for an underlying normal distribution

(see [23], p. 45). We present the SLS estimates, up to an unknown scale (in our case, the coefficient

associated with the size of the CPU cache memory), in Table IV.

Table IV - SLS estimates

Parameter SLS estimate Std. dev.
SPEED 2.9508 0.8915
BUSSPD -1.7027 1.0214
INTEL 645.6596 185.1149
MEM -350.4327 232.7220

SERVER 394.2365 211.1889

Since the sign of the coefficient associated with the amount of cache memory should clearly

be positive, the true signs of the above coefficients are unchanged (note that the scale—and hence

the sign—of the coefficients is not identified in the SLS procedure). Notable is that the stop-out

21



price of an Intel processor is higher on average than the stop-out price of an AMD processor with

the same characteristics. As expected, the stop-out price increases, on average, with the speed of

the processor. Surprisingly, higher bus speeds, which are expected to improve considerably the

performance of a PC, give rise on average to lower stop-out prices. Since higher bus speeds require

more expensive high speed memory, the result may be indicate that consumers are mostly concerned

with the speed of the processor; we note, however, that the coefficient associated with bus speed is

only borderline significant at the 10% confidence level.

Figure 1 presents graphically the estimation results. We were concerned about the accuracy

of results obtained with this type of procedure when the sample size is relatively small, like in

our case. Results of Monte Carlo simulations (not reported here) suggests that the SLS method

provides good estimates of the mean-shifting function and of the distribution of the error term for

sample sizes comparable to ours (89 observations).

Figure 1: SLS estimation results.
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The stop-out price appears to be determined in two different regimes. For low values of the

index Zsβs, the mean stop-out price appears to increase linearly with a slope that is lower than the

slope at which it increases at higher values of the index. This finding suggests that mean stop-out

prices are proportionately higher for newer types of processors (i.e., processors with higher clock

frequencies or cache sizes) than for relatively older types.

With estimates of the distribution of ε and of the mean-shift function ϕ(·) available, the condi-
tional c.d.f. of stop-out prices can be computed using:

F̂s(b|Zs) = F̂ε

³
b− ϕ̂(Zsβ̂s)

´
. (13)

Note that, while the SLS procedure yields estimates of the parameters only up to an unknown

location and scale, the index Zsβs is identified.

5.3 Estimation of values and of the optimal reserve price

We are now ready to assemble the components needed to estimate the distribution of bidders’ values

and the optimal reserve price. We begin by making an observation about identification, then use

the results of the theoretical model to construct our estimates.

5.3.1 Identification

If the discount factor δ were known, equation (5) would provide a straightforward way to express a

bidder’s constant marginal valuation as a function of his bid. It is useful to note that an estimation

procedure that enables joint estimation of valuations and of the discount factor is not feasible. To

see why, observe that equation (2) implies that a bid b can be rationalized by any pairs (vi,∆i)i=1,2

that satisfy (v1 − b)/(v2 − b) = ∆1/∆2).

Unlike the models of Guerre, Perrigne and Vuong [10] in the case of single-unit auctions, or

Hortaçsu’s [12] for multi-unit, discriminatory auctions, which are non-parametrically identified,

our model is not. The fact that we only observe lumpy bids implies that, even though valuation

are assumed to be private and independent, identification cannot be achieved without making

additional assumptions about the functional form of the bidders’ marginal valuations schedules.

Our identification problem resembles the problem faced by Campo, Guerre, Perrigne and Vuong

[4] in jointly identifying the bidders’ von Neumann-Morgenstern utility functions and the distribu-

tion of their valuations in first-price auctions.
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We suggest next a way to get around the identification problem that concerns the discount

factor, then use the estimated discount factor to compute the bidders’ demand functions.

5.3.2 The discount factor

Since valuations and the discount factor are not identified, we produce an estimate of the discount

factor at the expense of assuming that the log-marginal valuations for a particular type of processor

are independently and identically normally distributed, with unknown mean µ and variance σ2.

The following is inspired by an observation of Klein and Sherman [15]. Since reservation bids are

increasing in valuation (see proposition 2), the ordering of the bidders’ marginal valuations and

reservation bids is preserved. It turns out that, by exploiting the assumed distribution of valuations,

the function that links reservation bids and values can be identified up to location and scale. The

model developed in the previous section implies that, for a fixed discount factor δ0 ∈ [0, 1), letting
∆0 =

δ0
1−δ0 , the log of the inverse reservation bid function M(b;∆0) is given by

lnM(b;∆0) = ln

µ
b+∆0

Z b

s
Fs(p)dp

¶
, (14)

where s is the lower boundary of the support of stop-out prices. Denoting by P(b) the empirical

distribution of the reservation bids, the log of the inverse reservation bid function b−1(v) can be

estimated (up to location and scale, i.e., up to µ and σ) by using:

ln b−1(b) = µ+ σΦ−1(P(b)), (15)

where Φ (·) is the standard normal c.d.f. It follows that, up to location and scale, the log of the
inverse reservation bid function can be estimated by

ln M̂ (b;∆0) = µ+ σΦ−1(P(b)). (16)

Note that (14) implies that M1(s;∆0) = 1 and that M(s;∆0) = s. We use these two ob-

servations to fix the location and scale of (16). To minimize the noise that may result from the

estimation of the distribution of the stop-out price we use observations that correspond to bids

in auctions of 950MHz AMD processors in which the number of auctioned objects is equal to 24

— a total of 87 observations. For each observation, we simulate the bids and the integral of the
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cumulative of the stop-out price using the parameter estimates computed above. We repeat the

simulation 1,000 times and smooth out (16) at s to fix the scale and location parameters. An

estimate of ∆0 is then computed by minimizing the distance between the left- and right-hand sides

of (16). The least squares point estimate is ∆̂ = 25.1101 and the corresponding discount factor is

δ̂ = 0.9617. The estimate does not change significantly when we use different types of processors

or different numbers of objects. We note that the estimated discount factor is significantly smaller

than expected. We can speculate that its value is affected by the bidders being uncertain about

when and whether an auction will be offered in the future, as well as by the bidders’ high rates

of time preference. The smooth of the bid function implied by the estimated discount factor is in

Figure 2 (values are on the horizontal axis and bids on the vertical axis).

Figure 2: Smooth of bid function — search model

We compute next average demands using a simulation exercise. Specifically, we simulate the

bids and the integral of the cumulative of the stop-out price using parameter estimates computed

in the previous sections. A number of 5,000 replications is used to compute average demands.

In Figure 3 we plot the average demand for an Athlon 950 MHz processor obtained using the

predictions of the search model. Note that demand elasticities of the actual demand and average

demand curves are the same. While we do not believe that auction markets of the kind studied here

are representative for the entire PC processor market, auctions of other types of goods (timber, for

instance) allocate a large fraction of supply; in that case, demands computed in a similar way as
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here could provide fairly accurate estimates of the price elasticity in the population.

Figure 3: Average demand

5.4 The optimal stationary reserve price

A reserve price will increase the reservation bids of all bidders whose values are above the reserve

price, but imposing a reserve price will decrease the likelihood that the objects are sold. To evaluate

the trade-off between higher revenue in the event in which the objects are sold and a lower likelihood

of selling the objects we use simulations. Specifically, we first use the data from our auctions and

the coefficients estimated in section 5.1 to simulate the bidders’ reservation bids. We use the data

concerning auctions of the AMD950 CPUs (a total of 1011 final observed bids from 10 auctions)

and replicate the process 1,000 times.

We then vary the reserve price r from $100 to $700 in increments of $1 and compute the

reservation bids in the auction with a reserve price r according to

b̂r(v) = b̂ (v) + r − b̂(r)

= b̂ (v) + ∆̂

Z b̂(r)

s
F̂s(p)dp,

so that

b̂r(v) = b̂ (v) + ∆̂

Z b̂(r)

s
F̂ε

³
p− ϕ̂(Zsβ̂s)

´
dp. (17)
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Computing the new reservation bids is extremely fast, since the only computation needed is

evaluating the integral in (17) once for any value of the reserve price.

Using the new reservation bids, we find the winners in each auction and the revenue that

corresponds to a particular reserve price. We ignore jump bidding by assuming that all winning

bidders pay the stop-out price; since jump bidding actually increases revenue, our simulations yield

a lower bound for expected revenue.

Figure 4 depicts the relationship between per-unit revenue and the reserve price. Expected rev-

enue is maximized by setting the reserve price approximately equal to $306. The dashed horizontal

line represents the per-unit revenue in the actual data (with no reserve price), equal to $146.99. The

per-unit revenue with reserve price dips below the horizontal line that represents revenue per unit

with no reserve because our simulations do not take into account the possibility of jump bidding.

According to our simulations the expected gain per-unit of supply from using the optimal

stationary reserve price is $37.78. Therefore, using the optimal stationary reserve price results in

an increase in per-unit revenue of about 25.7%. The increase in per-unit revenue due to the reserve

price is quite substantial; in fact, as a result of jump bidding, the actual increase in per-unit revenue

could be larger than 25%.

Figure 4: Reserve prices and per-unit revenue

While the number of bids in the data that underlie our simulations is relatively large, the

observed number of auctions (10) concerning this particular type of processor (AMD Athlon 950
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MHz) is relatively small. The small number of auctions in this sample captures the variation in

the number of objects for sale or in the number of bidders with some noise. We take the results of

the simulations as being indicative of significant revenue gains that could be achieved as a result of

imposing a reserve price. However, the simulated revenue gain of 25% seems somewhat high and

may, in part, be due to our data being a “lucky” draw from the sequence of number of bidders and

number of objects for sale.

6 Conclusions

Equilibrium models of bidding in multi-unit auctions with multi-unit demands are notoriously

difficult to obtain. In fact, equilibrium bid functions in multi-unit settings are only available for

highly specialized auction formats, e.g., when bidders demand only one unit. In this paper we

constructed a model of search that applies to bidding in ascending multi-unit auctions with multi-

unit demands. Together with a suitable estimation procedure, our model enables estimation of the

distribution of the bidders’ valuations for a high-tech product. More importantly, the model can

be used to evaluate the effect on revenue of imposing a stationary reserve price.

Our model relies on the assumption that bidders know the distribution of the stop-out price.

Given the institutional details of the auctions that we investigate, this is a fairly realistic assumption.

Since estimation results can be significantly affected by assuming a parametric distribution of the

stop-out price, we estimate the distribution of the stop-out price using a semi-parametric method.

The auctions that we investigate are ascending; therefore, in general, the bid data that are

available to the observer do not reveal the bidders’ reservation bids precisely. However, by setting

appropriate bounds that are based on the bidders’ last recorded bids, we estimate the statistical

relationship between bidder- and auction-specific characteristics and the bidders’ reservation bids.

In turn, this statistical relationship is used to evaluate the effect of imposing a reserve price on

expected revenue.

Our main goals are the recovery of the demand schedules implied by the bidders’ marginal

valuations, as well as the computation of the optimal stationary reservation price. The methodology

developed in the present paper may be applied to a variety of settings, e.g., repeated sealed-bid

auctions. With some changes, the theoretical model developed in this paper applies to auctions in

which bidders are allowed to place bids for more than one quantity.

The simulations in this paper show that by imposing a reserve price the auctioneer can increase
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the revenue per unit by 25%—a surprisingly large increase. Some part of this increase may be due

to our data not capturing enough variation in the number of objects for sale and in the number of

bidders.

Auction participants may constitute, in general, a non-randomly selected subset of CPU buyers.

In environments in which the assumption is justified that auction participants are representative

for the entire population of consumers, drawing from the estimated distribution of valuations could

enable the researcher to infer the market demand for an object with a particular set of character-

istics. Thus, questions related to the welfare effect of the introduction of new products or to the

positioning of new products in the space of characteristics could be answered. Even when the sam-

ple of online auction bidders is not representative for the population of consumers, our methodology

delivers empirical bid functions that can be useful for the design of multi-unit auctions.
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