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Abstract
This paper develops a tractable model of relational contract with imperfect public mon-

itoring where the agent has limited liability. In the optimal relational contractort, both
monetary reward for good performance and punishment for bad performance through ter-
mination are used. Both are postponed as much as possible yet termination always occurs
with positive probability.

The optimal relational contract sheds light on a number of important patterns of employ-
ment dynamics. First, employment relationship sometimes starts with a probation phase,
after which the agent either receives permanent employment or is terminated. Second, the
sensitivity of wages to performance increases with experience and wages are backloaded.
Third, turnover rates can be inverse-U shaped with seniority. Fourth, earlier successes are
more important for future wage growth.

The tractability of the model also allows us to carry out several comparative statics that
are typically di¢ cult to obtain in discrete-time dynamic incentive models. Our technique of
obtaining comparative statics uses properties of functional operators and may be of indepen-
dent interest. Some of the comparative statics results shed new light on important policy
issues. For example, minimum wage may harm workers who are already employed because
they are more likely to be terminated.
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1 Introduction

There are three salient features of the labor market. First, employment relationships involve

repeated interactions. Hall (1982) �nds that the average tenure of U.S. workers is 8 years and

a quarter of the workforce has jobs that last more than 20 years. Beaudry and DiNardo (1992)

show that long-term contracts better describe the labor market than spot markets. Second,

e¤orts of the workers can be hard to monitor, and it is often important to provide incentive to

induce e¤orts from the workers. Moral hazard problems have been extensively studied in the

literature; see for example Holmstrom and Hart (1987), Gibbons (1997), Gibbons and Wald-

man (1999) and Prendergast (1999) for reviews. Third, worker has limited liability: worker is

liquidity-constrained and in general cannot pay the �rm more than what he owns. There can

be many forms of the limited liability constraint: �rms cannot take money out of the worker�s

pocket; minimum wage laws can set a wage �oor; institutional reasons can attach wages to jobs;

psychological costs of the workers can prevent �rms from setting (nominal) wages that are lower

than previous years.1

These three features are the key elements underlying the famous e¢ ciency-wage model of

Shapiro and Stiglitz (1984). Moral hazard together with limited liability of the workers generates

rents in jobs. Repeated interactions between �rms and workers imply that future rents can be

used as an incentive device to induce e¤ort from the workers. In the Shapiro and Stiglitz

(1984) model, wages paid to the workers are assumed to be constant over time. It has been

recognized, however, that constant-wage is not the optimal: �rms can improve their payo¤s

through alternative contractual arrangements; see for example Akerlof and Katz (1989).2

In this paper, we study the optimal contract for the �rms in an in�nitely repeated principal-

agent model where the agent has limited liability. In particular, we focus on an environment in

which a) output is stochastic in agent�s e¤ort and b) output is observable but not contractible.

The �rst assumption implies that low output can occur even if the agent puts in e¤ort. This

feature allows us to study turnover dynamics that has been missing in existing e¢ ciency wage

models.3

The second assumption implies that there is no explicit contract in this model. Instead, we

study relational contracts. Relational contracts are contracts enforced not by the rule of the court

but by the concerns of the parties for their future interests. Each relational contract in this model
1For incentive models with limited liability; see for example Sappington (1983); Innes (1990), and Jewitt,

Kadan, Swinkels (forthcoming).
2Carmichael (1985) shows that if the worker does not have limited liability and the �rm can be trusted to act

honestly, then the optimal wage contract is to have the worker post a bond and forfeit it if caught shirking. When
there is no limited liability and the �rm cannot be trusted, then Levin (2003) implies that the optimal contract
can be implemented by a sequence of stationary contracts.

3 If the output is the principal�s private information, Fuchs (2007) shows that turnover will occur. However,
the equilibrium contract in that case is su¢ ciently complicated that little is known about the turnover dynamics.
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corresponds to a Public Perfect Equilibrium (PPE), which is the standard solution concept in

this setting. The existing literature on e¢ ciency wages in general assume that �rms will behave

honestly (be able to commit to a contract) and justify it by invoking the argument that they

care about the future. Our setup illustrates the conditions under which this argument is valid.

We also characterize the optimal contract when �rms can commit and study its implications on

wage dynamics in Section 5.

The optimal relational contract sheds light on a number of important patterns of employment

dynamics. First and foremost, the beginning of the employment relationship is characterized by

a �probation phase�during which the agent receives constant wage. Depending on the output

sequence, the worker is either terminated or receives permanent employment. Probation is

an important feature for many professions, and its existence is typically attributed to worker

selection; see for example Bull and Tedeschi (1989), Sadanand et al. (1989), Weiss and Wang

(1990), and Wang and Weiss (1998). Here, we show that the probation phase can also serve as

an incentive device.

Second, the sensitivity of wages to performance increases with experience and wages are

backloaded. It is well-known that backloaded wage payment can induce e¤ort from the workers;

see for example Becker and Stigler (1974), Lazear (1981), and Akerlof and Katz (1989). This

model extends previous models to stochastic production, and it predicts that not only wage

increases with time, but also that wage becomes more responsive to performance over time.

This prediction appears to �t the incentive structure of some occupations; see for example Lin

(2005) and Coughlan et al (2005).

Third, this model generates a variety of turnover patterns. In particular, turnover rates can

be inverse-U shaped with years on the job. This is the celebrated prediction of Jovanovic (1979)

model of learning and matching, which has been a workhorse model guiding empirical research;

see for example Farber (1999). Moreover, when the probability of high output is small, the

optimal contract implies that there will be a �xed date such that the worker will be terminated

if he does not receive permanent employment prior to it. Such up-or-out turnover pattern is a

distinctive feature in professional service �rms.

Finally, there will be path-dependency in both wage and turnover dynamics: earlier successes

are more important for both job security and future wage growth. This prediction on wage

dynamics is related with the idea of "fast track" in the internal labor market literature, which

states that workers who experience high wage growth in the past are more likely to have high

rates of wage growth in the future; see for example Baker, Gibbs, Holmstrom (1994a, b) and

Treble et al (2001).

The employment dynamics above are direct consequences of the optimal relational contract,

which e¢ ciently utilizes the rent in the job to induce e¤ort from the worker. In particular, for a
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worker to exert e¤ort, he must be rewarded for high outputs. The principal can provide the agent

the incentives to exert e¤ort either by a carrot, i.e., bonus or a stick, i.e., positive probability

of termination. Relying exclusively on the bonus can guarantee e¢ ciency but when the agent

has limited liability, doing so requires the principal to o¤er the agent a high continuation payo¤

right at the beginning of the game. The high payo¤ to the agent is partly re�ected by the

fact that even if he shirks forever, he will never be terminated. Alternatively, the principal can

take away some of the agent�s continuation payo¤ by terminating him after a long streak of

failure and rewarding him with permanent employment only after multiple periods of success.

Under the new scheme, the agent is motivated by the bene�t of permanent employment and the

fear of termination, so the principal does not have to pay any bonus until the agent earns his

permanent employment status. Since termination can be pushed back to a distant future if the

principal only takes away a small amount of the agent�s payo¤, it is optimal for the principal to

at least allow for some possibility of (postponed) termination even when e¢ cient production is

sustainable as an equilibrium outcome.

One distinguishing feature of this model is its tractability. Models of dynamic moral hazard

are typically complicated.4 Here, we show that for a wide range of parameters, the Pareto

frontier of the PPE payo¤ set is completely determined by a functional equation, and we develop

an algorithm for �nding it. The tractability of the model also allows us to carry out several

comparative statics that are di¢ cult to obtain in discrete-time dynamic incentive models. Our

technique of obtaining comparative statics by using properties of functional operators may be

of independent interest. Moreover, some of the comparative statics results shed new light on

important policy issues. For example, while most of the debates on minimum wages focus on the

employment margin, our analysis indicates that minimum wage may also harm workers who are

already employed through an increase in the probability of involuntary turnovers in the future.

Moreover, we obtain closed-form solutions for the Pareto frontier of the relational contract

payo¤s for some parameter values. These close-form solutions are not only facilitates the calcu-

lation of the Pareto frontier, but also illustrate important theoretical properties. For example,

we show that the Pareto frontier is in general not di¤erentiable.5 More interestingly, we provide

an example where the number of non-di¤erentiable points is in�nite, and these points converge

to a point which is di¤erentiable.

In addition to the e¢ ciency wage literature, this paper is related to three literatures. First,

this paper belongs to a growing literature that focuses on dynamics of the relational contracts. In

4The analytical di¢ culty of dynamic moral hazard in the discrete-time setting has been an important moti-
vation for continuous-time models; see for example DeMarzo and Sannikov (2006). In continuous-time models,
however, additional assumptions (either di¤erence in discount rates or bounds on the bonus) are needed to guar-
antee the existence of the optimal contract.

5Thomas and Worrall (1994) is the �rst to point out that the Pareto frontier may not be di¤erentiable.
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the classical models of relational contracts, such as Bull (1987), MacLeod and Malcomson (1988),

Baker, Gibbons and Murphy (1994), and Levin (2003), the optimal relational contracts can be

implemented by stationary contracts. Recently, a few interesting papers bring dynamics into

relational contracts. The most related paper is Thomas and Worrall (2007). They investigate a

dynamic relational contract between two partners under limited liability. Their model is more

general by having a continuum of e¤ort choices and outputs. Consequently, Thomas and Worrall

(2007) generate interesting distortions on the e¤ort side: in particular it is possible for e¤orts to

be overprovided. The key di¤erence between our model and that of Thomas and Worrall (2007)

is that monitoring is imperfect in our model, and this allows us to analyze turnover dynamics

while turnover does not occur in their setting.6

There are also several papers that generate interesting dynamics in relational contracts of by

incorporating additional features of the labor market. Yang (2005) studies relational contracts

where workers are heterogeneous and their types are private information. In equilibrium, low

types leave the relationship over time and wage is increasing in tenure. Chassang (2008) studies

relational contracts with experimentation. The agent can experiment on new technologies but

is not always successful. His model helps explain why there is signi�cant amount of dispersion

in productivity in otherwise similar �rms/plants. Fuchs (2007) studies relational contracts in

which the output is the principal�s private information. He shows that the optimal contract can

be implemented by termination contracts. Halac (2008) studies relational contracts where the

principal�s outside option is his private information. In equilibrium, principals with high outside

option may renege on bonus payments and terminate the relationship.

Second, this paper is related to the vibrant literature of dynamic moral hazard with limited

liability when the principal can fully commit. This literature takes the optimal contracting

view and studies its implications in diverse economic situations. In �nance, Biais et al (2007),

DeMarzo and Fishman (2007), and DeMarzo and Sannikov (2006) study the implication of

optimal contract on the use of debt, equity and credit line in standard �nancial contracts. In

industrial organization, Clementi and Hopenhayn (2006) show that the optimal contracting view

gives rise to realistic patterns �rm dynamics. In the political economy context, Myerson (2008)

examines how the optimal contract of a prince a¤ects the career of the governors serving him.

In the search context, Lewis (2009) and Lewis and Ottaviani (2008) characterize the optimal

dynamic contract when the moral hazard problem is related to the agent�s search intensity.

This paper adds to this literature by studying the implication of optimal contracts on employ-

ment dynamics. Di¤erent from these papers, we consider both full-commitment and relational

contracts, and we are able to explore how the lack of commitment a¤ects the optimal contract.

6Another di¤erence is that Thomas and Worrall (2007) is a model of partners and the moral hazard is two-sided.
Here, we study an employment relationship and there is one-sided moral hazard.
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We show that when the surplus in the relationship is large, lack of commitment imposes no

cost on the principal and does not a¤ect the employment dynamics. On the other hand, when

the surplus of the relationship is small, the principal is hurt by the lack of commitment and

there will be signi�cant di¤erences in some aspects of the employment dynamics. For example,

the agent receives permanent employment with positive probability when �rms can commit,

and with relational contract, the relationship terminates with probability 1. We explore these

di¤erences in Section 5.3.

Finally, this paper contributes to the literature of formal models that explain multiple em-

ployment patterns in labor markets; see for example Harris and Holmstrom (1982); Bernhardt

(1995); and Gibbons and Waldman (1998). The existing models assume that workers di¤er by

their types, which can be learned by the employer over time. In other words, worker hetero-

geneity is important for generating multiple employment patterns in these models. Our model

complement the models above by showing that even with homogeneous workers, it is possible to

simultaneously explain features of employment dynamics, including probation phase, deferred

compensation, tenure, and fast track through concerns for dynamic incentives.

The rest of the paper is organized as follows. We set up the model in Section 2. We analyze

the model in Section 3. Properties of the optimal relational contract are derived in Section 4.

Section 5 analyzes the model under alternative assumptions. Section 6 concludes.

2 Setup

Time is discrete and indexed by t 2 f1; 2; :::;1g:

2.1 Players

There is one principal and one agent. Both are risk neutral, in�nitely lived, and have a common

discount factor of �: The agent�s per period outside option is u; the principal�s per period outside

option is v:

2.2 Production

If the principal and the agent engages in production together, the agent will be asked to perform

a task. The agent can choose either to work or shirk. If the agent works, the outcome of the

task Y is y with probability p 2 (0; 1) and 0 with probability 1 � p: If the agent shirks, the
outcome is y with probability q < p: If he chooses to work, the agent incurs an e¤ort cost of c:
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We assume that it is e¢ cient for the agent to work. Moreover, the value of the relationship

is less than the outside options if the outside options if the agent choose to shirk.

py � c > u+ v � v > qy:

These are standard assumptions in the literature. The production technology here is a special

case of Levin (2003) and is identical to Fuchs (2007).

2.3 Time line and Information

We follow the timing in Levin (2003) with one change that simpli�es the exposition. At the

beginning of each period t, the principal decides whether to o¤er a contract to the agent,

dPt 2 f0; 1g. If the principal chooses not to o¤er the contract (dPt = 0); then the two parties

receive their outside options in this period. If the contract is o¤ered, it speci�es a wage wt;

which can be legally enforced. We assume that

wt � w;

where w is an exogenously given wage �oor.

The agent chooses dAt 2 f0; 1g; and if he rejects the contract (dAt = 0); the two parties receive
their outside options. Otherwise, the relationship starts. The principal pays out the wage. The

agent chooses e¤ort et 2 f0; 1g, and the output Yt is realized. Finally, we assume that there is
a public randomization device, so that a random variable xt 2 [0; 1] will be drawn at the end
of the period. This is a standard assumption in the literature made to ensure that the set of

perfect public equilibrium payo¤s are convex; see for example Fuchs (2007).

t t + 1

Principal offers
contract (wt)

Agent
accepts/rejects

contract

Agent
chooses

effort

Output is realized
& observed by

both

Figure 1: Timeline

Agent
accepts/rejects

contract

Principal offers
contract (wt+1)

Principal
pays wage/not
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We assume that the e¤ort is the agent�s private information. The output is publicly observed

by the principal and the agent, but it cannot be contracted upon. The non-contractbility of the

output makes the contract relational. To induce e¤ort from the agent, it is often modelled that

there is a (non-contractible) performance bonus paid out at the end of a period.7 This modelling

choice is very helpful in illustrating the connection between explicit and relational contracts; see

for example Levin (2003).

In our model, we do not have a performance bonus at the end of period. Instead, the

"performance bonus" is paid out at the beginning of the following period. In other words, the

agents are incentivized through "e¢ ciency wage" as opposed to "bonus pay". Since all the

outputs and bonuses are publicly observed, it is well-known in the literature (see for example

Macleod and Malcomson (1988)) that these two setups give rise to the same equilibrium payo¤

set.8 We choose our setup to to highlight the e¤ect of limited liability in the e¢ ciency wage

literature.

Finally, We refer to the constraint wt � w as the limited liability constraint, and there are
several ways in interpreting it. When w = 0; this constraint can be literally thought of as the

limited liability constraint so that the principal cannot take money out of the agent�s pocket.

When w is equal to the minimum wage, this constraint specify that the wage o¤ered has to

exceed the minimum wage. In cases where wages are often tied to jobs, this constraint speci�es

that there are lower bounds of wages associated with jobs.9 The limited liability constraint, in

the sense that there is a limit to how much one can punish the agent for bad performance, is

inherent in many important e¢ ciency wage models of labor market; see for example Shapiro

and Stiglitz (1984) and Akerlof and Katz (1989).

2.4 Strategy and Equilibrium Concept

2.4.1 History

We denote ht = fdPt ; wt; dAt ; yt; xtg as the public events that happen in period t: Denote ht =
fhngt�1n=0 as a public history path at the beginning of period t; and h

1 = ?: Let Ht = fhtg be
the set of public history paths till time t, and de�ne H = [tHt as the set of public histories.

2.4.2 Strategy

We restrict ourselves to public strategies. This means that the actions of a player will be

contingent only on events that are publicly observable. In particular, in period t; the action of
7 It is possible that the bonus is negative in those models, and in such case, the agent has a discretion to make

payments to the principal.
8MacLeod and and Malcomson (1998) shows that e¢ ciency wage is more likely to arise than pay-for-

performance when there are fewer workers than �rms.
9Since there is only one job in this model, this constraint should be interpreted as the lower bound for this

particular job. Prendergast (1993) gives one reason why �rms want to tie wages to jobs.

7



the principal is to choose DPt from Ht to f0; 1g and Wt from Ht to [w;1): The public strategy
of the principal is fDPt ;Wtg1t=1:

In period t; the agent chooses DAt from Ht [fwtg to f0; 1g and Et from Ht [fwtg to f0; 1g:
And the strategy of the agent is fDAt ; Etg1t=1:

We allow the players to play mixed strategies in this game. Denote �A to be the mixed

public strategy of the agent and �P to be the mixed public strategy of the principal. They can

be de�ned in the standard way, so we omit their precise de�nitions here.

2.4.3 Public Perfect Equilibrium

We analyze the public perfect equilibrium (PPE) of the game. A strategy pro�le is a PPE if a)

the players use public strategies, and b) following every public history, the strategy is a Nash

equilibrium. PPE is the standard equilibrium concept in repeated games of imperfect public

monitoring. Moreover, this model is a game of imperfect monitoring with "product structure",

in the sense that the output depends on the agent�s e¤ort alone. It follows that our restriction

to PPEs is without loss of generality; see Fudenberg and Levine (1994).

To check whether a strategy pro�le is PPE in this model, it su¢ ces to check one-stage

deviation. In particular, a mixed strategy pro�le � is a PPE if and only if

� following any history ht; any (dPt ; wt) in the support of �P is the best response for the
principal; holding all of the rest of the strategy �xed.

� following any history ht [ fdPt ; wtg; (dAt ; et) in the support of �A is the best response for
the agent, holding all of the rest of the strategy �xed.

3 Analysis

We solve the model in this section. In Subsection 3.1, we show that the PPE payo¤ set is com-

pletely determined by its Pareto frontier. In Subsection 3.2, we characterize the Pareto frontier.

In Subsection 3.3, we show that the optimal relational contract is ine¢ cient. In Subsection 3.4,

we provide closed-form expressions for the Pareto frontier for a range of parameters.

3.1 Reduction to Pareto Frontier

Abreu, Pierce, Stacchetti (1990) (APS hereafter) develop a powerful technique to characterize

the PPE set. The basic idea of APS is that instead of focusing on the set of strategies, more

information can be obtained by looking at PPE payo¤ sets. Under the assumptions that there

are �nite number of actions for the players and that there is a public randomization device, APS
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show that the PPE payo¤ set E is convex and compact. Moreover, APS develop an algorithm

in �nding the PPE payo¤ set E: Since E is a multidimensional set, its characterization is in

general di¢ cult.

In this model, two features of the relational contract setup help simplify the characterization

of the PPE payo¤ set. First, both the principal and the agent can choose to take their outside

option, so any PPE payo¤must give the principal at least v and the agent at least u: Moreover,

taking their outside options (u; v) is a PPE payo¤, supported by the belief that the principal

will not o¤er contract to the agent in the future and the agent will always shirk.

Second, the principal can make transfers to the agent. This implies that, if (u; v) is a PPE

payo¤, then by asking the principal to transfer extra money to the agent at the beginning of

period 1 and keep the rest of the strategies �xed can produce another PPE payo¤ (u0; v0) with

u0 + v0 = u+ v; u0 > u; and v0 � v: In particular, (u+ v � v; v) is a PPE payo¤.

These two features imply that any payo¤ that a) gives the agent at least u; b) gives the

principal at least v; and c) lies below the Pareto frontier of the PPE payo¤ set, is again a PPE

payo¤. In other words, the PPE payo¤ set is completely characterized by its Pareto frontier.

We denote f(u) as the maximum PPE payo¤ of the principal if the agent�s payo¤ is u: From

APS, we know that f is well-de�ned because the PPE set is compact. The lemma below states

the result above formally.

Lemma 0: Let umax be the maximum PPE payo¤ of the agent. Then the PPE payo¤ set E

is given by

E = f(u; v) : u 2 [u; umax]; v 2 [v; f(u)]g

Proof. First, note that the payo¤ pair (u; v) (meaning that the agent�s normalized expected
payo¤ is u and the principal�s normalized payo¤ is v) is in the PPE payo¤ set. This payo¤ is

supported by an equilibrium in which on the equilibrium path, the principal and the agent does

not start a relationship, and o¤ the equilibrium path, the agent never puts in e¤ort and both

the principal and the agent do the start the relationship in the future.

Second, it follows by convexity of the PPE payo¤ set that any payo¤ on the line segment

between (u; v) and (u; f(u)) can be supported as a PPE payo¤, and this is the left boundary

of the PPE payo¤ set. Third, because there is no limit in the amount of transfer the principal

can make to the agent at the beginning of period 1, it is easily seen that the lower boundary of

the PPE set is given by the horizontal line at v: Finally, convexity implies that any equilibrium

payo¤ between (u; v) and (u; f(u)) can be obtained.
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3.2 Characterizing the Pareto Frontier

In this subsection, we characterize the Pareto frontier f: We show that the Pareto frontier

can be classi�ed into three regions. To the left of a low threshold, the relationship terminates

immediately with positive probability, and the Pareto frontier is a straight line with a positive

slope that starts out at (u; v). To the right of a high threshold, the Pareto frontier is a straight

line with a slope of -1. In this region,the relational contract attains the unconstrained Pareto

e¢ ciency and termination never occurs. Between the two thresholds, the Pareto frontier satis�es

a functional equation. There is a unique solution to the functional equation, and we show that

it can be found using a two-step procedure where each step involves solving a �xed point of a

contraction mapping.

In Subsection 3.2.1, we list the necessary incentive constraints to induce e¤ort. In Subsection

3.2.2, we characterize and compare the Pareto frontiers of the PPE payo¤s both with and without

limited liability. In Subsection 3.2.3, we provide an algorithm of �nding the Pareto frontier. In

Subsection 3.2.4, we show that the optimal relational contract is ine¢ cient. With the exception

of Proposition 1, all of the proofs are collected in the Appendix.

In this section, we analyze the model by assuming that a) the surplus in the relationship is

high and b) wage �oor is high. These two assumptions makes the analysis particularly tractable

and help us highlight the di¤erence of relational contract with and without limited liability. We

analyze the model under alternative assumptions in Section 5. The main features of the Pareto

frontier remain the same.

Assumption 1:

py � [1� �(1� p)]c
�(p� q) � v + w:

This assumption guarantees that there will be a stationary PPE in which the worker puts in e¤ort

every period and the relationship is e¢ cient outcome. The main purpose for this assumption is

expositional. In particular, the existence of this equilibrium helps us compare how the Pareto

frontier of the PPE set with limited liability di¤ers from one that does not have limited liability.

Assumption 2:
w � u:

This assumption states that the wage �oor is higher than the outside option of the agent.

A common special case of this assumption is one in which both the wage �oor and the outside

option of the agent are normalized to zero. Since w is the lowest possible wage the agent can

receive, this assumption implies that there will be substantial amount of rent in the relationship

for the agent.
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This assumption therefore perhaps better describe jobs that attract many applicants and are

hard to get. In addition, this assumption is more likely to be satis�ed if the matching process

of the labor market is ine¢ cient. In this case, Assumption 2 means that it will take a worker a

substantial amount of time to �nd a new employer when the previous employment relationship

ends. For example, many people queue up for minimum-wage jobs during recession times.

There are also many economic environments in which this assumption does not �t. These

cases are technically more challenging and are analyzed in Section 5. In this section, we use

Assumption 2 because it leads to a simple characterization of the optimal relational contract,

which allows us to highlight the key mechanism of how to induce incentive in a dynamic setting

when rent is present in a job: termination should be used in the earlier stage of the relationship

and bonus payment should be delayed as much as possible. This mechanism remains valid when

the wage �oor is lower than is assumed in this section.

3.2.1 Incentive Constraints

In the e¢ cient outcome of the game, the agent chooses to work in each period. For the agent

to have incentive to work in any period, we must have

(1� �)(w � c) + �((1� p)uL + puH) � (1� �)w + �((1� q)uL + quH);

where uH corresponds to the agent�s continuation payo¤ after a good outcome (Y = y) and uL
corresponds to the agent�s continuation payo¤ after a bad outcome (Y = 0). We can rewrite

expression above can be rewritten as

uH � uL �
(1� �)c
�(p� q) � k:

Here, the k is the minimum reward for high output to sustain e¤ort. In other words, to

induce the agent to put in e¤ort, the continuation payo¤s following good and bad outcomes

should di¤er by at least k:

In this model, the principal�s IC for willing to stay in the relationship at the beginning of

period t is simply

vt � v;

where vt is the principal�s expected payo¤ at the beginning of period t (following some public

history ht).

Note that in models where the bonus is paid out at the end of a period, the IC constraint of
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the principal (often called the non-reneging constraint) is given by

(1� �)(�bt�1) + �v0t � �v;

where bt�1 is the bonus paid to the agent in period t � 1 and v0t is the principal�s payo¤ at
the beginning of period t after the bonus is paid out. Note that these two IC constraints are

identical. In our model, we have

vt = v
0
t �

(1� �)
�

bt�1;

accounting for the fact that the bonus is paid out at the beginning of period t.

3.2.2 Comparing PPE with and without Limited Liability

In this subsection, we investigate the shape of the Pareto frontier with limited liability. First,

we show that the Pareto frontier of the relational contract with free transfers (Levin (2003))

is a negative 45 degree line. Then we show that the limited liability constraint truncates the

negative 45 degree line and turn it into three regions.

When the transfer is free, we can use the transfer at the beginning of the �rst period to

reallocate the payo¤s between the principal and agent (and keep the rest of the strategies �xed),

as long as the resulting payo¤s are both greater than or equal to their outside options. More

formally, if (u; v) is a PPE payo¤, then all the payo¤s in the set

f(u0; v0)ju0 + v0 = u+ v; u0 � u; v0 � vg

are again PPE payo¤s.

This implies that every PPE payo¤ generates a �45 degree line segment such that all points
on the line segment are again PPE payo¤s. In particular, if we take the PPE that maximizes

the joint surplus,10 then every point on the �45 degree line segment generated by this PPE are
again PPE payo¤s. Moreover, these points are on the Pareto frontier because by de�nition they

maximize the joint surplus and any payo¤ to the upper-right of the line segment gives higher

joint surplus and thus cannot be a PPE payo¤.

Assumption 1 implies that the e¢ cient outcome can be sustained as a PPE. Consequently,

the Pareto frontier in the case of free transfer is given by

f(u; v)ju+ v = py � c; u � u; v � vg
10There can be many PPE payo¤s that maximize the joint surplus. The compactness of the PPE payo¤ set

guarantees that we have at least one.
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It follows that the PPE payo¤ vector that gives the principal the highest payo¤ is (u; py�c�u):
Levin (2003) shows that the optimal relational contract can be sustained by stationary contracts.

In the case of no limited liability, payo¤ vector can be supported by the following. The principal

pays the agent a base wage ws; and in case of a good outcome, a bonus of k will be paid out at

the beginning of next period. In other words, the next period wage of the agent is ws in case of

a bad outcome and ws + k in case of a good outcome. The bonus induces the agent to put in

e¤ort in each period. It can be checked that when the base wage satis�es

ws = u+ c�
�pk

1� � = u�
q

p� q c;

the agent�s expected payo¤ is u; and this leads to a PPE payo¤ of (u; py� c�u): Figure 2 below
illustrates the Pareto frontier of PPE payo¤ with free transfers.

vv

uu

Levin (2003)

u

v (u, py –c –u)uu uu

Figure 2: Pareto Frontier, w/o Limited Liability

Note that

ws < u � w;

so the above PPE with free transfer violates the limited liability constraint in Assumption 2.

In this case, the Pareto frontier is no longer a �45 degree line. Instead, it has three regions,
divided by the two thresholds u0 and ue:We provide below the basic intuitions of why the Pareto

frontier taking this form, a rigorous derivation can be found in the appendix.
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vv

uu

f(umax) = vf(umax) = v

umaxue ue + k

f(u)

u

v

u0

Figure 3: Possible Pareto Frontier, w/ Limited Liability

First, to the right of a threshold (ue) the Pareto frontier is again a �45 degree line. Here,
ue is the unique payo¤ of the agent such that

ue = (1� �)(w � c) + �(ue + pk): (1)

In particular, the agent receives a payo¤ of ue when he is paid a base wage w , puts in e¤ort,

and receives a bonus k (to be paid out at the beginning of the next period) if the outcome is

good. It can be shown that this can be supported as an equilibrium that results a payo¤ of ue
for the agent and py � c� ue for the principal. Moreover, this equilibrium maximizes the joint

surplus of the two parties, so the Pareto frontier is a �45 degree line for u > ue: And this can be
achieved by making additional �rst period transfer from the principal to the agent and keeping

the remaining strategies intact.

At ue; the base wage of the agent is w, so the limited liability constraint binds. Therefore, for

u < ue; the Pareto frontier can no longer lie on the �45 degree line because this would require
the agent receive wage lower than w and thus violates the limited liability constraint.

To the left of ue; the Pareto frontier can be classi�ed into two regions. In particular, de�ne

u0 such that

u0 = (1� �)(w � c) + �(u+ pk): (2)

The expression states that if the agent receives a base wage of w; puts in e¤ort, and receives

a continuation payo¤ of u for a bad outcome and u + k for a good outcome, then the agent�s

current expected payo¤ is u0: Since the agent cannot receive a payo¤ less than u; this implies

that u0 is the lowest expected payo¤ required for the agent to exert e¤ort.
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Therefore, for u < u0; pure strategies cannot induce the agent to exert e¤ort. The Pareto

frontier for u < u0 is obtained by a randomization between (u; v) and (u0; f(u0)); where recall

that f(u0) is the highest PPE payo¤ for the principal when the agent receives u0: The random-

ization implies that the Pareto frontier is a straight line. In other words, for u < ue; there is some

positive probability that the relationship will be terminated. And the termination probability

corresponds to the weight of (u; v) in the randomization.

For u 2 [u0; ue]; we note that at the Pareto frontier ((u; f(u))), the wage of the agent in the
�rst period must equal to w: Otherwise, the principal can lower his �rst period transfer by some

small amount, so the slope of the Pareto frontier (f) at u is at most �1: This cannot be possible
because a) the PPE payo¤ set is convex so f is concave and b) the slope of f is strictly less than

�1 for u < ue:

Since the agent is paid wage w in period 1, we introduce the following linear operator. De�ne

L as the unique linear operator such that

u = (1� �)(w � c) + �[(1� p)L(u) + p(L(u) + k)]: (3)

In other words, L(u) corresponds the to the agent�s continuation payo¤ next period if he is paid

w this period, puts in e¤ort, but the outcome is Y = 0.

When the agent�s continuation payo¤ is L(u); a payo¤ pair (L(u); v) can be supported

as a PPE payo¤ as long as the principal�s payo¤ v 2 [v; f(L(u))]: Similarly, any payo¤ pair
(L(u)+k; v0) can be supported as a PPE payo¤ as long as v0 2 [v; f(L(u)+k)]: Now if ((u; f(u)))
is on the Pareto frontier, this implies that the continuation payo¤s must lie on the Pareto frontier

as well. In other words, the continuation payo¤s corresponding to the good and bad outcomes

must be (L(u) + k; f(L(u) + k)) and (L(u); f(L(u))): This gives rise to the following functional

equation that the Pareto frontier must satisfy:

f(u) = (1� �)(py � w) + �[pf(L(u) + k) + (1� p)f(L(u))]: (4)

To summarize, we see that the Pareto frontier of the PPE payo¤ satis�es

f(u) =

8><>:
v + u�u

u0�u(f(u0)� v) if u 2 [u; u0]
(1� �)(py � w) + �[pf(L(u) + k) + (1� p)f(L(u))] if u 2 [u0; ue]
f(ue) + ue � u if u 2 [ue; ue + f(ue)� v];

(5)

where ue = (w�c)+ �pk
(1��) ; f(ue) = py�c�((w�c)+

�pk
(1��)); and u0 = (1��)(w�c)+�(u+pk):

In the next section, we show that there is a unique solution that satis�es the functional

equation and how we can �nd the solution. In Subsection 3.3, we constructed an explicit
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solution for some cases. Readers who are more interested in the applications of the model can

directly jump to Section 4.

3.2.3 Algorithm for Finding the Pareto Frontier

In this subsection, we describe how one can �nd an f that satis�es (5). The key is to note that

the right hand side of the middle equation in (5) can be thought of as a contraction mapping on

f; and the middle equation essentially states that f is a �xed point to this contraction mapping.

This contraction mapping, however, depends on the value of f to the left of u0:

The key is to note that f(u0) is determined both by the top equation in (5) that governs

the region to the left of u0 and by the contraction mapping in the middle equation. To �nd the

value of f(u0); we �rst take a guess that f(u0) = Z; which will give value to f(u) to the left of

u0; and this de�nes the contraction mapping in the middle region, which we call TZ . We can

�nd the unique �xed point to TZ , and this will give a value of f(u0jZ): We compare this value
to Z; and adjusts Z upwards if f(u0jZ) is bigger than Z and adjust Z downwards if f(u0jZ) is
smaller. We �nds a solution to (5) if Z = f(u0jZ):

Formally, we take the following two-step procedure. In the �rst step, we de�ne an operator

TZ on the space of bounded functions on [u0;ue] as:

TZg(u) =

8>>>><>>>>:
(1� �)(py � w) + �(pg(L(u) + k) + (1� p)g(L(u)) u0 � L(u) < ue � k
(1� �)(py � w) + �(pg(L(u) + k) + (1� p)(v + L(u)�u

u0�u (Z � v))) L(u) < minfue � k; u0g
(1� �)(py � w) + �(pf(L(u) + k) + (1� p)g(L(u)) L(u) > maxfue � k; u0g
(1� �)(py � w) + �(pf(L(u) + k) + (1� p)(v + L(u)�u

u0�u (Z � v))) u0 > L(u) � ue � k

;

(6)

where note that when L(u) + k � ue; f(L(u) + k) = py � c� (L(u) + k).

Note that if Z = f(u0); then f restricted to [u0; ue] is a �xed point of TZ :

TZf(u) = (1� �)(py � w) + �(pf(L(u) + k) + (1� p)f(L(u))

= f(u):

But we can also de�ne TZ for arbitrary Z: It can be checked that TZ is a contraction mapping

in the sense that, if we take any two bounded functions g1 and g2 on [u0; ue]; we have

jjTZg1 � TZg2jj � �jjg1 � g2jj;

where jjgjj = supu2[u0;ue] jg(u)j: Standard �xed point theorem imply that for each TZ ; there

exists a unique gZ such that

TZgZ = gZ :
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In other words, take any Z; we can de�ne TZ and �nd gZ :

The second step involves how to �nd Z� such that Z� = f(u0): Now for each Z; the �rst

step induces a �xed point gZ: And in particular, this gives a value of gZ(u0): In the appendix,

we show that

0 �dgZ(u0)
dZ

< 1 :

In other words, the function from Z to gZ(u0) is again a contraction mapping. And it has a

unique solution such that

Z� = gZ�(u0) = f(u0) = gf(u0)(u0): (7)

And in particular, the contraction mapping above is monotone, so Z� can be found using stan-

dard numerical procedures.

In summary, f(u0) can be found as follows. First, for each Z; we map Z into gZ(u0) through

�nding gZ as a �xed point of the contraction mapping Tz (de�ned in (6)). Second, we �nd f(u0)

by noting that it is the �xed point of the contraction mapping from Z into gZ(u0): We call this

procedure "�nding a double �xed point".

Theorem 1: When py � [1��(1�p)]c
�(p�q) � v + w and w � u; the Pareto frontier of the PPE

payo¤ is the unique function that satis�es

f(u) =

8><>:
v + u�u

u0�u(f(u0)� v) if u 2 [u; u0]
TZ�f(u) if u 2 [u0; ue]
f(ue) + ue � u if u 2 [ue; ue + f(ue)� v];

where ue = (w�c)+ �pk
(1��) ; f(ue) = py�c�((w�c)+

�pk
(1��)); and u0 = (1��)(w�c)+�(u+pk):

Finally, f(u0) = Z�; where Z� satis�es Z� = gZ�(u0) and gZ is the �xed point of the operator

de�ned in (6):

3.2.4 Ine¢ ciency in Optimal Relational Contract

In this subsection, we show that the optimal relational contract under limited liability is in-

e¢ cient. The optimal relational contract is the PPE that maximizes the principal�s payo¤.

While this is a theoretical point, this ine¢ ciency result also helps characterize the employment

dynamics in the next section.

Before proving the ine¢ ciency, we �rst state a corollary of Theorem 1.

Corollary 1: For almost all u 2 [u0; ue];

f 0(u) = pf 0(L(u) + k) + (1� p)f 0(L(u)): (8)

17



Proof. Because f is concave, the left derivative is equal to the right derivative almost every-
where. (Royden, Chapter 5). The equation follows directly Lemma 6.

Proposition 1: There exists u < ue such that

f(u) > f(ue):

Proof. Take u00 < ue such that f(u
0
0) is di¤erentiable and L(u

0
0) + k > ue. If f

0(u00) < 0; then

we are done, because

f(u00)� f(ue) = �
Z ue

u00

f 0(u)du;

where this is a Lebesgue integral, and we have f 0(u) < 0 almost everywhere due to the concavity

of f:

Otherwise, we take eu1 such that L(eu1) = u00: According to (8) and the fact that u00 < ue <
u00 + k, within the interval of [eu1; eu1 + ue); we can �nd u01 such that

f 0(u01) � �p+ (1� p)f 0(u00):

This procedure can continue forever, i.e., we can �nd u0n+1 2 (u0n; ue) such that

f 0(u0n+1) � �p+ (1� p)f 0(u0n)

It is then clear that there exists an N such that f 0(u0N ) < 0; and we are done.

In Theorem 1, we know that the right derivative of f(ue) is �1: Proposition 1 essentially
shows that the left derivative of f(ue) is also �1; even if f has in�nitely many kinks in any open
neighborhood of ue: Since ue is de�ned as the smallest payo¤ of the agent that maximizes the

joint surplus, Proposition 1 implies that the optimal contract cannot be e¢ cient.

The characterization implies that the optimal relational contract, the PPE that maximizes

the principal�s payo¤, is ine¢ cient in the sense that termination occurs with a positive prob-

ability. This is because when there is limited liability, there is rent in the relationship for the

agent. Consequently, the principal can use the threat of termination to induce e¤ort. Since

output depends both on e¤ort and luck in this model, termination can occur even if the agent

always put in e¤ort. Of course, termination is costly to the principal as well. It is not clear that

the principal will prefer using termination over giving bonus to provide incentive at the margin.

In fact, when high output is unlikely and we restrict our attention to stationary contracts, the

optimal relational contract in this class involves no termination.

The more e¢ cient way to provide incentive is to backload the reward of the agent. When

a good outcome appears, the agent can be rewarded either by a performance bonus or an
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increased chance/probability of permanent employment. By rewarding the latter, the principal

not only saves the wage bill, but also reduces the probability of termination, which is costly to

the principal. Therefore, the principal strictly prefers rewarding the agent with the increased

probability of permanent employment, and this implies that no performance bonus will be paid

out until the agent receives permanent employment.

Under this e¢ cient way of incentive provision, the marginal cost for the principal of using

termination to provided approaches zero when no termination is used. This is because when the

probability of termination is very small, termination tends to happen very late in the relationship.

By then, agent has internalized most of the cost of termination (because the principal does not

pay the agent any bonus before termination occurs even if the outputs are good). This point is

illustrated more clearly in the example in the next subsection.

3.3 Pareto Frontier with Countable Number of Kinks

In Subsection 3.2, we show that f can be found by solving for a double �xed point problem. In

this subsection, we show that, for some parameters, it is possible to calculate f explicitly.

The condition for the closed-form expression for f is that

u+ k = L(u0) + k � ue = (w � c) +
�pk

(1� �) :

Or equivalently,

u+
(1� � � �q)
�(p� q) c � w: (9)

This condition states that the expected payo¤ of the agent is greater than or equal to

ue following any good outcomes. And the condition is more likely to be satis�ed when the

probability of success (p) is small and when the discount factor (�) is small.

Now applying Corollary 1 here, we have that for u 2 [u0; ue]

f 0(u) = �p+ (1� p)f 0(L(u)):

This formula enables us to partition the interval of [u0; ue] into countable number of sub-intervals

and then calculate the value of f 0(u) sub-interval by sub-interval.

In particular, de�ne u1 such that

L(u1) = u0:

In other words, u1 is the agent�s payo¤ such that his low continuation payo¤ falls to u0: It is

clear that

L(u) 2 [u; u0] for all u 2 [u0; u1]:
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Some algebra gives that

u1 � u0 = �(u0 � u) = �((1� �)(w � c� u) + �pk):

Next de�ne un+1 such that

L(un+1) = un:

In other words, if the agent�s expected payo¤ is un+1; his continuation payo¤ following a bad

outcome is un: This construction implies that, for an agent with expected payo¤ un; he is

guaranteed to stay in the relationship for at least n more periods.

It can be checked that

L(u) 2 [un�1; un] for all u 2 [un; un+1]:

un+1 � un = �n+1(u0 � u):

Moreover, we can show that

lim
n!1

un = ue:

In other words, if the agent has an expected payo¤ exceeding ue; he is guaranteed that he will

never be terminated.

This partition of the agent�s payo¤ into countable number of intervals helps illustrates that

why the optimal relationship contract is necessarily ine¢ cient. Note that if the principal de-

creases the agent�s payo¤ ue by "; we that ue� " 2 (uN("); uN(")+1] for some N("): As " goes to
0; N(") approaches in�nity. In other words, by moving away a bit from the e¢ cient equilibrium,

termination can only occur in the very distant future. In particular, the e¢ ciency loss of the

relationship is bounded by �N("); which goes to zero in an exponential speed: As " goes to 0;

it can be shown that the ratio of �N(") to " goes to zero: This implies that when the principal

decreases the agent�s payo¤ to ue � "; the principal�s payo¤ increases to f(ue) + ": Therefore,
the e¢ cient contract cannot be optimal.

The next corollary shows that the Pareto frontier is formed by a sequence of line segments,

where each line segment joining (un; f(un)) and (un+1; f(un+1)) for some n: The proof of this

result can be found in the appendix.
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Figure 4: Pareto Frontier w/ Countable Number of Kinks

u0 u1 u2 … … . u∞ = ue
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Corollary 2: If Assumption 1 and 2 holds, and also u+ (1����q)
�(p�q) c � w; then

f(u) =

8>><>>:
v + s0(u� u) if u 2 [u; u0]
v + (u0�u)

1��(1�p)(s0 �
p�(1��n+1)

1�� � �n+1sn(1� p)) + sn+1(u� un) if u 2 [un; un+1]
f(ue) + ue � u if u 2 [ue; ue + f(ue)� v];

where u0 = (1 � �)(w � c) + �(u + pk); s0 = (1��)(py�w)+�((1�p)v+p(py�c�(u+k)))�v
(1��)(w�c)+�(u+pk)�u ; un = u0 +

�(1��n)
1�� (u0 � u); sn = s0 � (1 + s0)(p + (1 � (1 � p)n+1)); ue = (w � c) + �pk

(1��) ; f(ue) =

py � c� ((w � c) + �pk
(1��)):

Corollary 2 implies that the graph of f has a kink at each of the un: Therefore, f is not

di¤erentiable at each point. Interestingly, contrary to most examples in the literature where

the PPE payo¤ set typically has �nite or a continuum of extremal points, we have a countable

number of extremal points here, and they converge to ue:

4 Empirical Implications

In this section, we derive some properties of the optimal relational contract using the charac-

terization of the PPE frontier in the previous section. In Subsection 4.1, we characterize the

employment dynamics of the relationship. In Subsection 4.2, we derive comparative static re-

sults on how the outside options and the minimum wage a¤ects the principal, agent�s payo¤s

and the overall e¢ ciency. All these implications are derived under Assumption 1 and 2, and we

discuss in the next section how the predictions change under more general conditions.
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4.1 Patterns of Employment Dynamics

In this subsection, we derive the empirical implications of optimal relational contract. In Sub-

section 4.1.1, we show that the optimal relational contract speci�es a probation phase. In

Subsection 4.1.2, we show that the employee�s compensation is deferred in the sense that his

expected compensation increases over time even if his expected productivity remains constant.

In Subsection 4.1.3, we explore the turnover dynamics. We show that the optimal relational

contract can generate "tenure": there is a �xed time in which the employee will be terminated

if no permanent employment is obtained prior to that. Subsection 4.1.4 shows show that earlier

successes matter more for receiving permanent employment.

4.1.1 Probation

The next proposition characterizes the employment dynamics of the optimal relational contract.

While the optimal relational contract with limited liability is not stationary, it is still relatively

simple. Essentially, the agent�s employment dynamics can be categorized into three phases.

The agent starts with Phase 1, in which he is paid the wage �oor w per period: Depending

on the outcomes, the agent either moves into Phase 2, in which the relationship is terminated

and the two parties receive outside option (u; v) forever. Or the agent enters Phase 3, in which

the relationship is never terminated. In this phase, the remaining relational contract can be

implemented stationarily: the agent receives a �xed base wage, and he receives a bonus (to be

paid out at the beginning of next period in our setting) every time the output is high. Moreover,

Phase 2 and Phase 3 are absorbing in the sense that, as the time goes to in�nity, the agent will

either be in one of the two phases with probability 1, and once the agent is in that phase, he

stays there forever.

Proposition 2: In the optimal relational contract, the set of histories can be partitioned
into H = H1 [H2 [H3; such that

(i): (H1is the probation phase): When ht 2 H1; w(ht) = w:
(ii): (H2 is the termination phase): When ht 2 H2; both the principal and the agent receive

their outside options (u; v):

(iii): (H3 is the permanent employment phase. Optimal relational contract in H3 may be

stationary): When ht 2 H3; the optimal relational contract can be implemented in the following
way:

w(ht+1) = w if yt = 0;

= w + k if yt = y:

(iv): (Once the agent is in Phase 2 or 3, he stays there forever): If ht 2 Hi; for i = 2; 3;

then ht+k 2 Hi if ht+kjt = ht:
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(v): (Employment starts with the probabtion phase)

h1 2 H1:

(vi): (Phase 2 and 3 are absorbing)

lim
t!1

Pr(ht 2 H2 [H3) = 1:

Proof. De�ne H3 as the set of histories such that the agent�s continuation payo¤u � ue: De�ne
H2 as the set of histories such that the agent�s continuation payo¤ u = u: By Theorem 1, it is

clear H2 \H3 = �: De�ne H1 = Hn(H2 [H3):
By Proposition 1, we know that the game starts in H1; so (v) is proved. Theorem 1 also

directly gives (i). Since (u; v) is the unique PPE payo¤ in which the agent�s payo¤ is u and it is

supported by taking outside option forever, (ii) is proved. Now if u � ue; then f(u)+u = py�c;
so the continuation payo¤ must be py � c as well. Moreover, (u; f(u)) can be implemented
by paying the agent w + u�ue

1�� ; in this period, and uses (ue; f(ue)) and (ue + k; f(ue) � k) as
continuation payo¤s forever. This proves (iii) and (iv). (vi) follows because take any u; there

exists an N such that with a �xed probability bounded away from 0, the agent either have

continuation payo¤ (u; v) or u � ue: Then (vi) follows from standard statistics arguments.

The three phases in the employment dynamics correspond to the three regions in the PPE

payo¤ set. Proposition 1 implies that the optimal relational contract is in the middle region, and

the continuation payo¤s bounce around according to the outcomes. If the outcome is good, the

continuation payo¤ moves to the right. Otherwise, it moves to the left. When the continuation

payo¤ moves across the right threshold (ue) the agent receives permanent employment, and the

remaining optimal contract can be implemented in a sequence of stationary contracts (cf Levin

(2003)). When the continuation payo¤ cross the left threshold (u0); then termination occurs

with some probability.

Phase 1 of the employment resembles the probation period in employment contracts, which

are often de�ned as the period during which the employee can be �red without cause. The

probation phase is an important feature for many occupations, including lawyers, doctors, pro-

fessors, and government o¢ cials. The probation periods have received some attention from labor

economists; including Bull and Tedeschi (1989), Sadanand et al. (1989), Weiss and Wang (1990),

and Wang and Weiss (1998). Most of these models assume that workers di¤er by their types

and the probation period is used as a sorting device to screen out the bad types. And no doubt

that this is an important function of the probation period; see for example Loh (1994).

Our analysis suggests that the probation period can also serve as an incentive device and

may arise even when agents are homogeneous. Workers exert e¤ort in the probation phase in
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hope of receiving permanent employment as reward. Riphahn and Thalmaier (1999) �nd signif-

icant responses of white collar employees and public sector workers to probation periods: once

employment probation is completed and individuals enter into regular employment contracts,

the probability of work absences takes discrete jumps and is signi�cantly above previous levels.11

In addition, the previous theoretical literature implies that there is a �xed duration for the

probation period, and our analysis suggests that the probation period can be random. Casual

empiricism suggests that while the probation periods in many employment contracts have a �xed

duration, the employer often reserve the right to change the probation duration, and in some

jobs, the probation duration is not explicitly written down.

4.1.2 Deferred Compensation

The employment structure in Proposition 2 immediately implies that the compensations of

the workers are backloaded. In addition, the expected pro�t of the employer on the employee

decreases over time.

Corollary 3: If the optimal relational contract is implemented by a sequence of stationary
contracts once the worker receives permanent employment, then

(i): The expected wage of the agent within the employment relationship is nondecreasing over

time.

(ii): The expected payo¤ of the principal is nonincreasing over time.

Proof. (i) is immeidate. For (ii), the principal�s expected payo¤ is a constant when she�s in
Phase 2 or Phase 3. When in Phase 1, the principal is always getting py �w per period, which
is higher than her normalized payo¤.

Backloaded compensation has receives much attention from economists; see for example

Salop and Salop (1979) for a screening argument, Lazear (1981) for an incentive argument, and

Harris and Holmstrom (1982) for a learning and insurance argument.

Perhaps closest to the current paper is Akerlof and Katz (1989), who characterize the optimal

dynamic moral hazard under limited liability in an e¢ ciency wage framework. They show that

the optimal contract takes the form of a trust fund, which represents the agent�s loss if caught

shirking. When worker cannot post a bond, which is one form of limited liability, Akerlof and

Katz (1989) shows that rent in the relationship for the agent is necessary to induce e¤ort for all

periods.

11Of course, our model does not predict this phenomenon since the e¤ort level in our model is binary. Riphahn
and Thalamier (1999)�s result suggests that e¤orts are higher during the probation phase.
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Two important assumptions in Akerlof and Katz (1989) are a) there is perfect monitoring for

the worker when he puts in e¤ort, i.e. a worker who puts in e¤ort will never be caught shirking

(corresponding to p = 1 in this model, and b) the �rm can commit to wage payments. In many

economic situations, it may be argued that e¤orts can be di¢ cult to evaluate and �rms may

�nd it di¢ cult to contract on outputs.

This model can be thought of as an extension of the Akerlof and Katz (1989) model by a)

allowing for imperfect monitoring of e¤ort and b) assuming that the �rm cannot contract on

outputs (and thus cannot commit). This extension preserves the basic feature of wage dynamics

in Akerlof and Katz (1989) in the sense that compensation is deferred. Moreover, it enriches

Akerlof and Katz (1989) by highlighting the optimal use of termination and bonus as incentive

device and thus generates turnover dynamics (and the associated ine¢ ciency) in the relationship.

Finally, the lack of commitment power of the �rm adds restrictions to the optimal wage pro�les:

for example, the �rm cannot postpone the bonus payment to the worker inde�nitely.12

In addition to the backloaded compensation, the model gives more speci�c prediction on the

composition of compensation: the bonus to total compensation ratio increases over employment

duration as well. This prediction appears to �t the incentive structure of some occupations. In

sales job in particular, it is well-known that the commission rate increases with seniority, see

for example Lin (2005) and Coughlan et al (2005). It will be interesting to test this prediction

more broadly across occupations using large datasets.

The �ip side of the backloaded compensation is that the pro�tability of the principal over the

agent decreases over time. Of course, this prediction can be reversed if we assume that the worker

can accumulate �rm-speci�c human capital over time. Nevertheless, it is not impossible that

�rms may make less money on their more senior employees. For example, Circuit City studied the

pro�tability of their salesforce and discovered that their more experienced salespersons actually

delivered lower pro�t.

It should be emphasized that the dynamic incentive studied here implies that "�ring workers

with the lowest marginal productivity/wage ratio" may not be the optimal �ring policy. Firing

more senior (and more expensive) workers may be interpreted as a violation of the implicit

contract, and anticipation of such action may result in lower e¤orts from the workers. This

appears to be what has happened in Circuit City. Philp Schoonover, who resigned as CEO in

Sept 2008, has been criticized for his blunder in �ring the more experienced workers:

"Schoonover was slammed for his cost-cutting decision in early 2007 to �re 3,400

of Circuit City�s most experienced employees. The company said at the time that

12While there are still some uncertainty in the wage dynamics when the surplus is large, the uncertainty
diminishes as the surplus decreases and disappears completely for the parameters studied in Section 5.1.
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they were earning too much money and could be replaced with cheaper workers. But

analysts said the move devastated morale and led to a decline in service." Business

Week, Sept 22, 2008

4.1.3 Turnover Dynamics and Tenure

Due to the uncertainty in output, this model provides rich turnover dynamics. In particular, the

turnover rate may not be monotone with respect to the employment duration. In some cases,

the optimal relational contract implies a turnover pattern that has features of "tenure": there is

a �xed time in which the employee will be terminated if no permanent employment is obtained

prior to that.

Corollary 4: When u+ (1����q)
�(p�q) c � w; there exists T

� such that the turnover rate is 0 for

t < T � and is again 0 for t > T � + 1: Generically, turnover happens only in T �:

Proof. When u + k � (w � c) + �pk
(1��) ; Corollary 2 gives an explicit formula of f: There are

two cases to consider. In case 1, there�s a unique un that maximizes f(u): In this case, if any

of the output in the �rst n + 2 periods is positive, the agent receives permanent employment.

Otherwise, the agent�s continuation payo¤ moves to un+1�t in period t; and is terminated at

time t = n+ 2:

In case 2, there exists n such that f(u) is maximized in [un�1; un]: In this case, if no positive

outcome has been generated, the agent�s continuation will be in [un�t; un+1�t] in time t: And

the agent will be terminated either in time t = n+ 1 or t = n+ 2:

In this example, the condition for the parameters is exactly that in Corollary 2. Therefore,

the Pareto frontier has countable number of extremal points in this example. The optimal

relational contract corresponds to one of the kinks (un for some n). One success moves the

agent to permanent employment. And one failure moves the continuation payo¤ to the kink

adjacent to the left until (u0; f(u0)): And termination occurs when failures occurs at (u0; f(u0)):

Note that the condition in the example is more likely to be satis�ed when the probability

of success is small. One labor market that �ts this assumption and also has tenure as its key

feature is the academia: writing a few home-run papers can bring an assistant professor over the

tenure hurdle, and failure to do so before a �xed date leads to termination of the employment

contract.

The turnover pattern from the tenure system is an example of (degenerate) inverse-U shaped

turnover patterns with respect to employment duration. The inverse-U shaped turnover pattern

appears to be hard to generate theoretically but empirically relevant, see Jovanovic (1979) for
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a model and Farber (1994) for an empirical investigation. It will be interesting to investigate

the turnover patterns for other parameter values of this model. One possibility is to look at the

continuos time limit of this discrete time model, and then the turnover pattern may be obtained

through simulation or even analytically.

It should be pointed out that while this model generates rich turnover patterns, there is

still a commonality among all possible turnover patterns. The model predicts that, as time

goes to in�nity, the turnover rate goes to zero. This is because as time goes to in�nity, for a

worker remaining in the employment relationship, the probability that he has received permanent

employment has approached 1.

Finally, we should note that termination is not renegotiation proof in the sense that both

parties would rather keep the relationship (and start anew for example) when termination occurs.

However, termination is useful ex ante to generate higher pro�ts for the principal. In the case

of tenure, in particular, this model provides a rationale for up-or-out contracts.

4.1.4 Path Dependency

We �nish this subsection by noting that earlier successes bene�t the agent more. In particular,

the agent prefers having a high output followed by a low output than the other order. Earlier

success is more important both in terms of increasing future expected compensation and in terms

of reducing the probability of termination. We state the result formally in the next corollary.

Corollary 5: For an agent with expected payo¤ u 2 [u0(u); ue]; de�ne Uh(u) as his

continuation payo¤ following a high output. Also de�ne Uhl(u) and Ulh(u) similarly. If

Uh(u) 2 [u0(u); ue]; then
Uhl(u) � Ulh(u):

Proof. Direct calculation.

The path dependency results from the way the incentive is structured. Since the reward

for success in the probation phase in this model is deferred, this implies that the agent will

receive a bigger "interest payment" for earlier success. The interest payment takes the form of

a higher probability of higher future expected payo¤s, and in particular, a lower probability of

termination.

This prediction is related to the idea of "fast track" in the internal labor market literature,

which states that workers who experience high wage growth in the past are more likely to have

high rates of wage growth in the future. More formally, changes of wages are positively serially

correlated; see for example Baker, Gibbs, Holmstrom (1994a, b). To explain this phenomenon,
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the existing literature has relied on heterogeneity in individual abilities; see for example Meyer

(1991), Bernhardt (1995), and Gibbons and Waldman (1998).

In this model, while there is no fast track result for wages because there are multiple wage

paths consistent with the optimal relational contract once the worker receives permanent em-

ployment, Corollary 5 implies a fast track result concerning turnover. In particular, termination

is less likely for workers who have good performances earlier than those whose success come later.

It will be interesting to test this prediction if data on performance evaluations and turnover rates

are available. The academic labor market is an example in which this prediction may be tested.

4.2 Outside Options, Wage Floor, and E¢ ciency

In this subsection, we study how the optimal relational contract is a¤ected by the outside options

of the players and by the wage �oor. We show that �rst, as the agent�s outside option improves,

the principal�s expected payo¤ decreases, the agent�s expected payo¤ decreases, and the overall

e¢ ciency increases. Second, as the principal�s outside option improves, the principal�s expected

payo¤ increases, the agent�s expected payo¤ decreases, and the overall e¢ ciency decreases.

Moreover, the aggregate turnover rate of the agent increases. Finally, as the wage �oor increases,

the principal�s payo¤ decreases, but the change in agent�s payo¤ is ambiguous.

While most of the results of our comparative statics are intuitive, our proof method may be

of independent interest. We prove our results by exploiting certain monotonicity properties of

functional operators. Di¢ culties in obtaining explicit comparative statics results on dynamic

incentive problems in discrete time setting is one motivation for studying continuous time models;

see for example DeMarzo and Sannikov (2007). Here, comparative statics results can be obtained

without knowing the exact value of the optimal PPE payo¤. Moreover, some of the comparative

statics results shed new light on important policy issues. For example, while most of the debate

on minimum wages focus on the total number of employment. Our analysis indicates that

minimum wage may harm workers who are already employed through an in increase in the

probability of �ring.

We collect our proofs in the appendix. We give detailed proofs on the e¤ects of the agent�s

outside option on the payo¤s of the players and the e¢ ciency, and we sketch out the proofs of

the e¤ects of the principal�s outside option and the wage �oor because the proofs are similar.

We �rst examine the e¤ect of the agent�s outside option. De�ne F (u; u; v; w) as the Pareto

frontier of the PPE payo¤ when the agent�s value is u, his outside option is u; the principal�s

outside option is v; and the wage �oor is w: For notational simplicity, we omit (v; w) and

de�ne u0(u) as the agent�s payo¤ such that L(u0(u)) = u: De�ne uP (u; v; w) as the maximum
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equilibrium payo¤ of the principal when the agent�s outside option is u: De�ne uA(u; v; w) as

the associated payo¤ of the agent. We have the following results.

Proposition 3: If maxufF (u; u; v; w)g > F (u0(u); u; v; w); then

@uP (u; v; w)

@u
< 0;

@uA(u; v; w)

@u
> 0;

@(uP (u; v; w) + uA(u; v; w))

@u
> 0:

Proposition 3 shows that as the agent�s outside option increases, his equilibrium payo¤ in-

creases, the principal�s payo¤ increases, and the overall e¢ ciency increases. The intuition for

these results is as follows. When the agent�s outside option increases, the rent in the relationship

for the agent is smaller so the threat of termination becomes a less e¤ective way for the prin-

cipal to induce e¤ort. Therefore, the principal will use bonus more as incentives. Since bonus

gives rents to the agent, the principal�s payo¤ decreases, and this establish the �rst inequality.

When the optimal relational contract results in less terminations, it follows directly that the

overall e¢ ciency increases, which is the third inequality. Finally, in this change, the agent�s

expected payo¤ increases both because he�s less likely to be terminated and because even if he�s

terminated, his expected payo¤ is higher, and thus establishes the second inequality above.

A similar reasoning explains these comparative statics e¤ects are reversed when the princi-

pal�s outside option increases. In this case, the principal �nds the threat of termination becomes

more cost e¤ective. Therefore, the principal will use termination more often, and the e¢ ciency

of the relationship decreases even if the payo¤ of the principal increases. Finally, the agent�s

payo¤ decreases because he�s more likely to be terminated. Proposition 4 states these results

formally.

Proposition 4: If maxufF (u; u; v; w)g > F (u0(u); u; v; w); then

@uP (u; v; w)

@v
> 0;

@uA(u; v; w)

@v
< 0;

@(uP (u; v; w) + uA(u; v; w))

@v
< 0:

A direct consequence of Proposition 4 is that the overall turnover rate increases with the

principal�s outside option. While the principal�s option is treated as an abstract parameter,
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both local market conditions or the prestige of the employer may be used as proxies. It will be

interesting to test this prediction empirically.

Corollary 6: The aggregate turnover probability increases with v:

Proof. This follows from that u0 does not change with v and the agent�s payo¤ decreases, so a

standard coupling argument works.

Finally, we examine the e¤ect of the wage �oor. We show that the wage �oor decreases the

principal�s payo¤ and the overall e¢ ciency.

Proposition 5: If maxufF (u; u; v; w)g > F (u0(u); u; v; w); then

@uP (u; v; w)

@w
< 0

@(uP (u; v; w) + uA(u; v; w))

@w
< 0:

The intuition that the wage �oor hurts the principal�s payo¤ is straightforward because more

rents need to go to the agent�s pocket. It follows that termination becomes a relatively more

attractive method of inducing incentives because termination is now relatively less costly for

the principal. Therefore, the principal will use more of termination as an incentive device, and

termination is more likely to occur. This lowers the e¢ ciency of the relationship.

The e¤ect of wage �oor on the agent�s expected payo¤ is ambiguous because there are two

forces at work. On the one hand, wage �oor raises the base wage of the agent, and this helps

raises his expected payo¤. On the other hand, the agent is more likely to be terminated and

this damages his welfare. We suspect that if the relationship is less likely to be terminated, then

the wage �oor may increase the agent�s welfare. On the other hand, if termination is frequent,

then wage �oor may actually decrease the agent�s payo¤.

Finally, we note the following caveat. We derive the welfare property of the wage �oor by

holding the principal and the agent�s outside options �xed. In general, the wage �oor may a¤ect

the outside options of the players as well. To the extent that higher wage �oor may increase the

agent�s outside option, then it may be welfare enhancing. We think that multiple equilibrium is

possible and it will be interesting to explore this important issue further.

5 Alternative Assumptions

In this section, we study the properties of our model under alternative assumptions. Section

5.1 studies the properties of the optimal relational contract when the amount of surplus is too
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low to sustain full e¢ ciency. Section 5.2 studies the case where the wage �oor is lower than the

outside option of the agent. Section 5.3 discuss how the results of the paper change when the

outputs can be contracted on and the principal can commit.

5.1 Low Surplus

In this subsection, we study the property of the optimal relational contract when there is in-

su¢ cient amount of surplus in the relationship so that the e¢ cient outcome (the agent puts in

e¤ort in each period) cannot be supported as a PPE. In other words, Assumption 1 fails here

so that

py � [1� �(1� p)]c
�(p� q) < v + w:

When there is insu¢ cient surplus, the analysis remains similar to the case with su¢ cient

surplus and the resulting Pareto frontier is also similar. In particular, the Pareto frontier contin-

ues to have three regions, where a) termination happens stochastically to the left of a threshold,

b) bonus is paid out to the right of another threshold, and c) no bonus is paid out and no

termination occurs between the two thresholds. Moreover, the value of the left threshold re-

mains unchanged in this case. Formally, among the lemmas that determine the Pareto frontier

in Section 3, Lemma 1 and Lemmas 3-7 continue to hold.

On the other hand, the value of the right threshold will be di¤erent in this case. In particular,

since the e¢ cient output is not possible in this case, the formula for right threshold ue in the

su¢ cient surplus case (Lemma 2) is no longer valid. There is no closed-form solution for the

value of ue: However, we have the following lemma that relates ue and f(ue).

Lemma 10: Suppose py � [1��(1�p)]c
�(p�q) < v + w; then

f(L(ue) + k) = v:

Proof. Recall that ue is the minimum payo¤ the agent obtains among the constrained e¢ cient

PPEs. We know that the slope of f for u > ue is �1 and the agent is paid w in period 1.

Moreover, when py � [1��(1�p)]c
�(p�q) ; we must have

L(ue) < ue;

because otherwise we would have an e¢ cient PPE.

Let umax be the maximum payo¤ of the agent such that f(umax) = v: It is clear that

L(ue) + k � umax:
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If L(ue)+ k < umax; then consider the equilibrium pro�le (ue+ "; f(ue+ ")): The discussion

above implies that

f(ue + ") = f(ue)� ":

On the other hand,

f(ue + ") � (1� �)(py � w) + �((1� p)f(L(ue + ")) + pf(L(ue + ") + k)):

Now for small enough "; we have L(ue + ") < ue: Now since f 0(u) > �1 for u < ue; the above
implies that f 0(ue + ") > �1 for small enough ": Therefore, we have

f(ue + ") > f(ue)� ";

and this is a contradiction.

Lemma 10 shows that the value of f(ue) is completely given by the value of ue: This allows us

to characterize the Pareto frontier completely. As in Section 3, we know that the two thresholds

(u0 and ue) divide the Pareto frontier into three regions, where both the left and right regions

are line segments, and the middle region is determined by the functional equation in Lemma

6. Essentially, the Pareto frontier is solved if we know the value of the two thresholds and the

associated equilibrium payo¤s for the principal.

As in Section 3, we know the value of u0 but not that of f(u0): Since the value of f(u0) is

determined both by the left region (as the end of a line segment) and the middle region (as the

solution of a functional equation), we solve for f(u0) by equating the value of the two, just as

in Section 3. Di¤erent from Section 3, we don�t know the value of ue: But Lemma 10 shows

that f(ue) is determined once ue is chosen. In addition, the value of f(ue) is determined by

solving the functional equation in Lemma 6. It turns out that the value of f(ue) can be solved

by equating these two value.

Numerically, this can be done in a three step procedure. First, we choose a candidate

ue = Z
0; with the initial value being possibly the one in Section 3. We then perform the two-step

procedure in Section 3 by �nding f(u0jZ 0) whose value satisfy both the equation that governs
the left region and the functional equation in Lemma 6 that governs the middle region. This

two-step procedure generates a value of f(uejZ 0), given by the functional equation in Lemma 6.
If the value of f(uejZ 0) is smaller than the value of f(ue) given by Lemma 10, we move our next
guess of ue to be less than Z 0, and otherwise we make a guess larger than Z 0: Similar argument

as in Lemma 7 shows that this is a contraction mapping, and we can �nd a unique Z� such that

ue = Z
� leads to unique solution to the functions governing the Pareto Frontier.

We summarize our discussion in the following theorem:
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Theorem 2: When py � [1��(1�p)]c
�(p�q) < v + w; and w � u; the Pareto frontier of the PPE

payo¤ is the unique function that solves the following equation

f(u) =

8><>:
v + u�u

u0�u(f(u0)� v) if u 2 [u; u0]
(1� �)(py � w) + �[pf(L(u) + k) + (1� p)f(L(u))] if u 2 [u0; ue]
f(ue) + ue � u if u 2 [ue; ue + f(ue)� v];

(10)

where f(L(ue) + k) = v; and u0 = (1� �)(w � c) + �(u+ pk):

The discussion above shows that the main features of the Pareto frontier remain the same,

but the technical aspects of �nding the Pareto frontier become more challenging. The basic logic

is again that the optimal relational contract will involve an e¢ cient combination of termination

and bonus to provide incentive. And in particular, the optimal relational contract starts with a

"probation phase," and bonus will be paid out only if the agent�s continuation payo¤ exceeds a

threshold.

While the shape of the Pareto frontier remains the same, there are also di¤erences. The

most important di¤erence is that there will no longer be permanent employment as part of the

optimal relational contract in this case. The reason is that, when future surplus is low, it is not

possible to sustain an e¢ cient equilibrium (in which the agent puts in e¤ort each period) because

the bonus required to reward good output exceeds the total future surplus of the relationship.

It follows that when the surplus is small, in order to induce e¤ort from the agent it is always

necessary to punish the agent with some probability of termination.

It should be emphasized that such termination may not be carried out immediately, but

instead take the form that "if many low outputs occur in a row, then there will be positive

probability of termination at some point". Nevertheless, even if there may be zero probability

immediate termination for some periods, termination will be carried out eventually as the next

proposition shows.

Proposition 6: If py � [1��(1�p)]c
�(p�q) < v + w; then as t!1; the relationship dissolves with

probability 1:

Proof. It can be seen that (u; v) is the only absorbing state of the stochastic process given by
(u; f(u)); so the result follows from standard arguments in stochastic process.

The second signi�cant change is in the dynamics of wages. When there is su¢ cient surplus

in the relationship, recall that we show that the optimal relationship can be implemented by a

sequence of stationary contracts once the agent receives permanent employment. On the other

hand, there can be non-stationary contracts (in the stage of permanent employment) that are
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optimal. And this indeterminacy of wage dynamics increases as the surplus in the relationship

increases.

When the surplus is low, there is no �exibility of moving compensations around because

acceleration or deferral of the bonuses will make the principal�s reneging constraint harder to

sustain. The following proposition gives an exact expression for the wage of the agent.

Proposition 7: If py � [1��(1�p)]c
�(p�q) < v + w; then the wage at the beginning of period t for

an agent with expected payo¤ ut is given by

wt = w +maxfut � ue; 0g;

where ue is determined in Theorem 2 by (10).

5.2 Low Wage Floor

In this subsection, we explore how the PPE payo¤ set changes when the wage �oor w decreases

and falls below u so that the limited liability constraint is less binding than the case studied in

Section 3.

The analysis here becomes more complicated because the Pareto frontier may look qualita-

tively di¤erent from the one in Section 3. On the one hand, it remains true that the slope of

the Pareto frontier is �1 to the right of a threshold ue; determined by Lemma 2. On the other
hand, it is no longer true that the Pareto frontier to the left of u0 is a line segment joining (u; v)

and (u0; f(u0)):

In particular, there are three cases to consider. First, when w is su¢ ciently low so that

w � c+ pk � u;

the limited liability has no bite because the principal can o¤er a base wage su¢ ciently low to

extract all of the rand we can use stationary contract to provide incentive just as in Levin (2003).

In this case, f(u) = py � c� u 6= v:

Second, when the wage �oor is not so small so that

u

�
� u0 = (1� �)(w � c) + �(u+ pk);

we can show that f remains a straight line segment in [u; u0]; and we have

f(u) = maxfv; uf(u0)
u0

g:
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In this case, the basic structure of the PPE set remains and the basic structure of the employment

dynamics remains.

Third, when w is in the intermediate range, we can no longer show that f is a straight line

between u and u0; and the analysis becomes considerably more di¢ cult. It will be interesting

to explore the property of the optimal relational contract for this range of wage �oor.

While we cannot characterize the Pareto frontier to the left of u0 for some ranges of w;

we can show that the functional equation that governs the region between the two thresholds

(u0 and ue) is again the one in Lemma 6. In other words, as long as w � c + pk > u so that

the wage �oor has a bite in the sense that the principal cannot lower the base wage enough to

extract all of the surplus, we again have the basic intuition that the most e¢ cient way to induce

e¤ort is to use the threat of termination before paying out bonus as reward. It follows that the

optimal relational contract is also ine¢ cient in this case. Moreover, the structure of employment

relationship is similar to that in Section 3 in the sense that the agent starts the employment

relationship in a probation phase and receives no bonus until his continuation payo¤ exceeds ue:

5.3 Full Commitment

We have assumed in our model that the outputs are not contractible. In this subsection, we as-

sume instead that the output is contractible and the principal is able to commit to the long-term

contract o¤ered.13 The purpose of studying this case is to understand the role of commitment

in a¤ecting the e¢ ciency of the employment relationship and the resulting wage dynamics.

Theorem 3 characterizes the Pareto frontier of the long-term contracts under full commit-

ment.

Theorem 3: When �rms can commit to long-term contract, he Pareto frontier is given by

the unique function that solves the following equation

f(u) =

8><>:
v + u�u

u0�u(f(u0)� v) if u 2 [u; u0]
(1� �)(py � w) + �[pf(L(u) + k) + (1� p)f(L(u))] if u 2 [u0; ue]
f(ue) + ue � u if u 2 [ue; ue + f(ue)� v];

(11)

where ue = (w�c)+ �pk
(1��) ; f(ue) = py�c�((w�c)+

�pk
(1��)); and u0 = (1��)(w�c)+�(u+pk):

Proof. When the agent�s expected payo¤ is ue; the long-term contract cannot do better than

py � c� ue: The rest of the theorem is proved in exactly the same way as Theorem 1.

13 In other words, we do not require the contract to be renegotiation-proof. Moreover, the full-commitment here
is one-sided: the principal can commit to the contract, and the agent may leave the relationship at any time.
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Theorem 3 shows that when there is su¢ cient surplus in the relationship (so Assumption

1 holds), the Pareto frontier of long-term contracts with commitment is identical to that of

relational contracts . In particular, this implies that the optimal long-term contract and the

optimal relational contract is equally e¢ cient. The literature on e¢ ciency wages have often

assumed that the �rms can commit and justify this assumption by the reputation concern of

the �rms. This result con�rms this intuition that when the surplus in the relationship is large

enough, one may assume that �rms can commit.

It follows that the results for optimal relational contract carry through for the optimal

long-term contract under full commitment. In particular, workers start in the employment

relationship in a probation phase, and depending on the outputs, he will either receive permanent

employment or is terminated. One caveat is that even if the e¢ ciency and the structure of the

optimal contract with and without full commitment are the same here, there can be some

di¤erences in wage dynamics.

Speci�cally, once the agent receives permanent employment, there is little control over the

ways the wages are paid out. For example, there is no limit on how much the principal can push

back the payment to the agent, as long as the discounted expected payment remains the same.

Such schemes may not be possible under relational contracts because the amount of bonus paid

out by the principal cannot exceed that of the future surplus in the relationship.

This di¤erence takes an more explicit form when the surplus of the relationship is small

(so Assumption 1 fails). In this case, turnover dynamics is di¤erent as well. When surplus is

small, Subsection 5.1 indicates that the optimal relational contract eventually terminates with

probability 1. Moreover, the wage is completely determined. In contrast, Theorem 3 indicates

that under the optimal contract with full commitment, there is positive probability that the

agent receives permanent employment. And once permanent employment is obtained, there is

again little control on how wages are paid out.

This di¤erence in employment dynamics arises because under the optimal long-term contract

with commitment, the principal in fact incurs a loss by staying in the relationship once the agent

receives permanent employment. This cannot be part of the equilibrium in relational contracts.

On the other hand, this ability to commit to such losses increases the ex ante payo¤ of the

principal.

In�nitely-repeated principal agent problem as been studied by Spear and Srivastava (1987)

(hereafter SS). SS implicitly assume that the optimal contract is renegotiation-proof, so the

Pareto frontier is downward sloping. In addition, SS considers a more general environment in

which the agent is risk averse and has a continuous level of e¤orts. The risk aversion of the agent

creates a need for smoothing of wage across periods, and this makes the analysis signi�cantly

more di¢ cult.
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6 Conclusion and Discussion

This paper develops a tractable model of relational contracts of imperfect public monitoring

with limited liability. The optimal relational contract highlights key features of the e¢ cient

use of termination and bonus to induce e¤ort when a job has rent: bonus payment should be

postponed as much as possible and termination always occurs with positive probability. The

optimal relational contract generates a number of patterns of employment dynamics. First, the

worker sometimes starts the employment relationship in a probation period. Second, wage is

more sensitive to performance over time and compensation is deferred. Third, turnover rate may

be inverse-U shaped with employment duration. Fourth, earlier successes lead to more favorable

wage and turnover dynamics for the agent.

The tractability of the model enables us to study how the welfare of the �rm, the worker,

and the overall relationship is a¤ected by exogenous conditions. While most of the comparative

statics results are intuitive, our technique of deriving these results are of independent interest.

Moreover, some of the comparative statics results shed new light on important policy issues. For

example, while most of the debate on minimum wages focus on the total number of employment,

our analysis indicates that minimum wage may harm workers who are already employed through

an increase in involuntary turnover.

The tractability of the model also implies that some interesting margins of adjustment are

not explored in this model. For example, if the agent can put in multiple levels of e¤ort, then

one may study how the agent�s e¤ort choice is a¤ected by the history of outputs. With multiple

e¤ort levels, the basic lesson that bonus should be postponed as much as possible and that

termination will occur with positive probability still remains valid. But it appears di¢ cult to

state something general about how e¤ort changes.14

Another obvious extension of the model is to allow for multiple projects. Two results are

obtained here. First, as in the static framework, limited liability may induce the principal to

assign "safer" but less e¢ cient projects to the agent. Second, multiple projects can generate

richer employment dynamics depending on the properties of available projects. For example,

if there is a safe project which is more e¢ cient than the outside option but less e¢ cient than

a risky project, then the punishment to the agent may not be to terminate the relationship,

but instead to be assigned to the safe project forever. This helps explain, for example, why the

promotion probability of a worker decreases the longer he�s at a job, yet he is not necessarily

�red or demoted; see for example, Baker, Gibbs, Holmstrom (1994).

Finally, it may be interesting to embed this model into a general equilibrium framework,

so that the outside options of the workers and �rms are endogenized. Di¤erent from existing
14 In models where the principal can commit, e¤ort level may be nonmonotone in the agent�s continuation value;

see for example Spear and Srivastava (1987) and Clementi and Hopenhayn (2006).
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e¢ ciency wage models, �rms and workers can separate on the equilibrium path. It follows

that the equilibrium unemployment rate will depend on the stochastic nature of the production

function (and thus the rate of involuntary turnover). In a related paper, Fong and Li (2008)

examine a model in which the principal is able to replace the current worker immediately after

he is �red. It is shown that the possibility of replacement preserves the basic structure and

intuition of this model.
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7 Appendix

The appendix has two parts. The �rst part characterizes the Pareto frontier. The second part

collects the proofs for comparative statics.

7.1 Characterize the Pareto Frontier

We follow six steps. First, we show that there exists a threshold ue such that f has a slope of

�1 to the right of ue (Lemma 1). Second, we determine the exact value of ue and f(ue) (Lemma
2): Third, we show that there exists a threshold u0 (to be de�ned below) such that to the left

of u0; f is a straight line between (u; v) and (u0; f(u0)) (Lemma 4). Fourth, we determine the

value of u0 (Lemma 5). Fifth, we show that the value of f between u0 and ue is the �xed point

of a contraction mapping indexed by the value of f(u0) (Lemma 6). Finally, we show that f(u0)

can be found as a �xed point to a monotone contraction mapping.

Denote ue as the smallest PPE payo¤ of the agent that maximizes the sum of the payo¤ of

the principal and agent. First, we show that the Pareto frontier of the PPE past ue has a slope

of �1:

Lemma 1: For u 2 [ue; ue + f(ue)� v];

f(u) = f(ue) + ue � u:
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Proof. Suppose in the PPE that achieves (ue; f(ue)); the principal o¤ers w1 in period 1. Now
consider a di¤erent strategy that follows the previous equilibrium except in period 1 the principal

o¤ers w1 + u � ue: If the agent rejects the o¤er in period 1 (or the principal fails to make this
o¤er in period 1), the principal and the agent will believe that and no e¤ort will be put in. It

is then easy to check that this strategy pro�le is a PPE. Moreover, this PPE achieves a payo¤

of (u; f(ue) + ue � u): Therefore, f(u) � f(ue) + ue � u:
On the other hand, if f(u) > f(ue)+ue�u; this violates the the de�nition that ue maximizes

the sum of the principal and the agent�s payo¤.

We next determine the exact value of (ue; f(ue)). In the e¢ cient outcome of the game, e¤ort

is put in each period. For the agent to have incentive to put in e¤ort in any period, we must

have

(1� �)(�c) + �((1� p)uL + puH) � �((1� q)uL + quH);

where uH corresponds to the agent�s continuation payo¤ after a good outcome and uL corre-

sponds to the agent�s continuation payo¤ after a bad outcome.

The next lemma shows that the smallest agent�s payo¤ in an e¢ cient equilibrium satis�es

ue = L(ue):

Lemma 2:
ue= (w�c)+

�pk

(1� �)= L(ue):

Proof. Consider the following strategy: on the equilibrium path: the principal o¤ers the

agent w in period 1: The agent accepts and puts in e¤ort. In all future periods, the principal

o¤ers the agent w + k if the previous outcome is Y = y and o¤ers w otherwise. O¤ the

equilibrium path: the agent never puts in e¤ort and the agent never o¤ers a contract to the

agent. By Assumption1, this strategy can be shown to be a PPE, and it achieves a payo¤ of

((w � c) + �pk
(1��) ; py � c� ((w � c) +

�pk
(1��))): Therefore, ue � (w � c) +

�pk
(1��) :

Now if ue < (w � c) + �pk
(1��) ; this implies that L(ue) < ue: Since f(ue) + ue = py � c;

this implies that L(ue) + f(L(ue) = py � c as well. But by the de�nition of ue; we know that
L(ue) + f(L(ue) < ue + f(ue) = py � c; so this is a contradiction.

Next, we characterize f to the left of ue: The key observation is that the PPE payo¤ is convex,

so f must be concave. This leads to the next lemma, which shows that in any PPE payo¤ that

obtains the Pareto frontier with u 2 (u; ue); the �rst period wage must be the minimum wage.

Lemma 3: For any PPE that reaches (u; f(u)) with u 2 (u; ue); the �rst period wage of the
agent must be w1 = w:
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Proof. If u = ue; then the only equilibrium is that both parties take their outside options and

there is nothing to prove.

Now let u < ue: Take u 2 (u; ue): Suppose in a PPE pro�le that obtains (u; f(u)); the �rst
period wage w1 > w: Now adapt the equilibrium by lowering the �rst period wage to w: It

remains an equilibrium that the agent accepts the period 1 wage and continue the play with

the previous equilibrium. (If the agent rejects the period 1 wage, the principal never o¤ers the

contract again). This new PPE achieves a payo¤ of (u� (1��)(w1�w); f(u)+(1��)(w1�w)).
Therefore, we have

f(u� (1� �)(w1 � w)) � f(u) + (1� �)(w1 � w):

But this says that the slope of f at u is weakly smaller than �1; yet the slope of f at ue is �1:
Now if the slope of f at u is strictly smaller than �1; this violates the concavity of f: If the
slope of f at u is equal to �1; this implies that u + f(u) = ue + f(ue); and since u < ue; this
contradicts the de�nition of ue:

Now de�ne u0 as the smallest u in which (u; f(u)) is obtained by requiring the agent to put

in e¤ort in period 1. The next lemma shows that f(u) = v and f is a straight line between (u; v)

and (u0; f(u0)):

Lemma 4: For u 2 [u; u0];

f(u) = v +
u� u
u0 � u

(f(u0)� v):

Proof. It is clear that (u; v) is a PPE payo¤, where on the equilibrium path the principal never

o¤ers the agent a contract, and o¤ the equilibrium path, the agent never puts in e¤ort. By

Assumption 2, we have w � u; and the assumption that qy < v implies that we must have

v = f(u):

The convexity of PPE payo¤ immediately imply that f(u) � v + u�u
u0�uf(u0): Now suppose

the inequality is strict, there are two cases to consider. First, suppose the equilibrium payo¤

(u; f(u)) is reached by a combination of (u; v) and (u0; f(u0)) for some u0 � u0: In this case, the
weak concavity of f implies that (u; f(u)) cannot lie strictly above the segment formed by (u; v)

and (u0; f(u0)):

In the second case, the equilibrium payo¤ is reached by a pure play. Now let u be the largest

payo¤ for the agent such that f(u) > v+ u�u
u0�uf(u0):

15 From Lemma 3 and the de�nition of u0,

we know that the �rst period play payo¤ is given by either (u; v) or (w; qy): In either case, it is

clear that (u0; f(u0)) lies strictly below the linear combination of (u; f(u)) and its continuation

payo¤. This is a contradiction.
15 If no such points exist, take one close enough to the limsup.
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The next lemma gives the exactly value of u0: In particular, we have

L(u0) = u:

Lemma 5:
u0= (1 � �)(w�c) + �(u+pk)

Proof. It is clear L(u0) � u; which is the agent�s maxmin payo¤. Now if L(u0) > u; we argue
that there exists a PPE payo¤ that gives the agent the payo¤ of u0�" and the principal a payo¤
that lies on the line segment between (u; v) and (u0; f(u0)); and this violates the de�nition of

u0: In particular, let s be the slope between (u; v) and (u0; f(u0)): Then by the weak concavity

of f; we know that both (L(u0) � "; f(L(u0)) � s") and (L(u0) + k � "; f(L(u0) + k) � s") are
PPE payo¤s. And strategy pro�le that pays the agent w1 = w; requires the agent to put in

e¤ort in period 1, and promise the agent with the above two continuation payo¤s (given the

output as y or 0), will be an equilibrium that gives payo¤ of (u0 � "; f(u0) � s"): This proves
that L(u0) = u:

Note that we have determined the shape of f to the left of u0 and to the right of u0; we

are ready to determine the value of f between these two points. The next lemma gives such a

functional equation.

Lemma 6: For u 2 [u0; ue];

f(u) = (1� �)(py � w) + �[pf(L(u) + k) + (1� p)f(L(u))]: (12)

Proof. This follows in two steps. The �rst step shows that for u 2 [u0; ue]; (u; f(u)) can be
obtained by an equilibrium pro�le in which the �rst period play requires e¤ort. Now suppose

the contrary. Let ul be the largest point such that (ul; f(ul)) lies on the line given by (u; v) and

(u0; f(u0)): Suppose u 2 [ul; ue]: There are two cases to consider.
In the �rst case, (u; f(u)) can be reached by a pure play in period 1. In this case, by Lemma

3, the �rst period play payo¤ is given by either (u; v) or (w; qy): In either case, the slope between

(u; f(u)) and its continuation payo¤ will exceed the slope between (u; v) and (u0; f(u0)): This

violates the concavity of f:

In the second case, the (u; f(u)) is reached through a mix. Since (u; f(u)) lives in a two

dimension space and f is concave, we may assume

(u; f(u)) = p1((u1; f(u1)) + (1� p1)((u2; f(u2))

for some p1; u1;and u2; where (u1; f(u1)) and (u2; f(u2)) are reached through pure play in period

1. If (ui; f(ui)), i = 1; 2 has �rst period play that doesn�t require e¤ort, the previous paragraph
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implies that ui =2 [ul; ue]: But then the concavity of f implies that (u; f(u)) can be obtained by
linear combination of points with the agent�s payo¤ belonging to [ul; ue]:

To �nish the �rst step, if u 2 (u0; ul); then (u; f(u)) can be achieved by mixing (u0; f(u0))
and (ul; f(ul)): And since both (u0; f(u0)) and (ul; f(ul)) can be achieved by requiring e¤ort in

period 1, so can (u; f(u)):

In the second step, we note that the equation follows because to achieve the maximum payo¤

for the principal, a) the continuation payo¤must lie on the Pareto frontier, and b) the distance of

payo¤ between the good and bad outcomes for the agent needs not to exceed k by the concavity

of f:

Lemma 6 motivates us to de�ne the following operator. Let g be a bounded function on

[u0; ue]: We de�ne TZ as follows:

TZg(u) = (1� �)(py � w)

+ �p(1fL(u)+k<uegg(L(u) + k) + 1fL(u)+k�ueg(py � c� (L(u) + k))

+ �(1� p)(1fL(u)<u0g(v +
L(u)� u
u0 � u

(Z � v) + 1fL(u)�u0gg(L(u))):

Lemma 7:

0 �dgZ(u0)
dZ

< 1 :

Proof. There are two cases to consider. First, suppose L(u0) + k � ue: In this case, the result
is immediate because

gZ(u0) = (1� �)(py � w) + �((1� p)v + pf(L(u0) + k))

And since when L(u0) + k � ue; f(L(u0) + k) is independent of Z; we have

dgZ(u0)

dZ
= 0:

Now suppose L(u0) + k � ue: Take the unique �xed point of Tz; gZ , and note that

TZ+"(gZ + ") � TZgZ + �" � TZgZ + " = gZ + ":

Since T is monotone (i.e. Tg1 � Tg2 if g1 � g2 where g1 � g2 i¤ g1(u) � g2(u) for all u) , we
have

T 2Z+"(gZ + ") � T 1Z+" (gZ + ") ,
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and more generally

TnZ+"(gZ + ") � Tn�1Z+" (gZ + ") � ::: � gZ + ":

Since gZ+" = limn!1 TnZ+"(gZ + "), we have

gZ+" � gZ + ":

In particular, this implies that

gZ+"(L(u0) + k) � gZ(L(u0) + k) + ":

Finally, we have

gZ(u0) = (1� �)py + �((1� p)x+ pgZ(L(u0) + k):

gZ+"(u0) = (1� �)py + �((1� p)x+ pgZ+"(L(u0) + k):

Therefore,

gZ+"(u0)� gZ(u0) = �p [gZ+"(L(u0) + k)� gZ(L(u0) + k)] � �p"

and thus
dgZ(u0)

dZ
= lim
"!1

gZ+"(u0)� gZ(u0)
"

� �p < 1:

On the other hand, it can be checked that

TZ+"(gZ) � gZ ;

so a similar reasoning as above gives that

dgZ(u0)

dZ
� 0:

Lemma 7 immediately implies that there will be at most one value f(u0) that satis�es (7).

The existence of such value is guaranteed by the fact that f is properly de�ned and it must

satisfy (7).

An more direct approach to prove the existence is as follows. In the proof of Lemma 7, we

know that gZ is weakly increasing in Z. In addition, it can be shown that the gZ induced by

TZ is nonexpansive in the sense that

jjgZ+" � gZ jj � ":

It can also be shown that a weakly increasing non-expansive map has a unique �xed point
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(see the proof of Lemma 9 for a formal proof), so there is a unique point Z� such that

Z� = gZ�(u0):

And we have

f(u0) = Z
�:

Corollary 2: If u+ (1����q)
�(p�q) c � w; then

f(u) =

8>><>>:
v + s0(u� u) if u 2 [u; u0]
v + (u0�u)

1��(1�p)(s0 �
p�(1��n+1)

1�� � �n+1sn(1� p)) + sn+1(u� un) if u 2 [un; un+1]
f(ue) + ue � u if u 2 [ue; ue + f(ue)� v];

where u0 = (1 � �)(w � c) + �(u + pk); s0 = (1��)(py�w)+�((1�p)v+p(py�c�(u+k)))�v
(1��)(w�c)+�(u+pk)�u ; un = u0 +

�(1��n)
1�� (u0 � u); sn = s0 � (1 + s0)(p + (1 � (1 � p)n+1)); ue = (w � c) + �pk

(1��) ; f(ue) =

py � c� ((w � c) + �pk
(1��)):

Proof. First, de�ne

s0 =
f(u0)� v
u0 � u

:

Then by the equation on the derivative of f; we have

f 0(u) = �p+ (1� p)s0 for u 2 (u0; u1):

De�ne sn+1 as the slope of f in (un; un+1) : then we have

s1 = �p+ (1� p)s0;

sn+1 = �p+ (1� p)sn:

Now note that

sn+1 � sn = (1� p)(sn+1 � sn);

so

sn = s0 � (1 + s0)(p+ (1� (1� p)n+1)):
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Now note that for u 2 [un; un+1);

f(u) = f(u0) +
nX
j=1

(uj � uj�1)sj + sn+1(u� un)

= v + s0(u0 � u) +
nX
j=1

�j(u0 � u)sj + sn+1(u� un)

= v + (u0 � u)
nX
j=0

�jsj + sn+1(u� un):

The summation
nX
j=0

�jsj can be evaluated explicitly. De�ne

S(n) =

nX
j=0

�jsj :

Then

(1� �(1� p))S(n) = s0 +
nX
j=1

�j(sj � (1� p)sj�1)� �n+1sn(1� p)

= s0 �
p�(1� �n+1)

1� � � �n+1sn(1� p):

Substituting this back into the expression for f(u); we have

f(u) = v + (u0 � u)
nX
j=0

�jsj + sn+1(u� un):

= v +
(u0 � u)

1� �(1� p)(s0 �
p�(1� �n+1)

1� � � �n+1sn(1� p)) + sn+1(u� un):

Since sn = s0� (1+ s0)(p+ (1� (1� p)n+1)); the expression above determines f completely
as long as we know what s0 is. Note that

v + s0(u0 � u) = f(u0)

= (1� �)(py � w) + �((1� p)v + p(py � c� (u+ k)));
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where the second inequality uses Lemma 6. This implies that16

s0 =
(1� �)(py � w) + �((1� p)v + p(py � c� (u+ k)))� v

(1� �)(w � c) + �(u+ pk)� u :

7.2 Comparative Statics

In this subsection, we derive comparative statics by exploiting properties of functional operators.

The �rst lemma shows that, in the range of agent�s payo¤s where e¤orts are called for, the PPE

frontier shrinks continuously as the agent�s outside option improves.

Lemma 8: If maxufF (u; u; v; w)g > F (u0(u); u; v; w); then all u 2 [u0(u); ue)

�s < @F (u; u; v; w)

@u
< 0;

where s is the left derivative (with respect to u) of F (u0(u); u; v; w):

Proof. Suppose we increase the agent�s outside option from u to u + ": To simplify notation,

suppose f1 is the PPE Pareto frontier with respect to u de�ned on [u0(u + "), ue]: And let f2
be the PPE Pareto frontier with respect to u+ " de�ned on [u0(u+ "), ue]:

We know that u0(u+ ") = u0(u) + �": We also know that uA(u+ ") 2 (u0(u+ "); ue): Now
take a line segment between (u + "; v) and (u0(u + "); f1(u0(u + "))): This line segment lies

strictly below f1 (except at the right end point where the two are equal.).

Now de�ne an operator T1 on functions on [u0(u+ "); ue] as follows.

T1g(u) = (1� �)(py � w)

+�p(1fL(u)+k<uegg(L(u) + k) + 1fL(u)+k�ueg(py � c� (L(u) + k))

+�(1� p)(1fL(u)�u0(u+")gg(L(u) +

1fL(u)<u0(u+")g(v +
L(u)� (u+ ")

u0(u+ "))� (u+ ")
(f1(u0(u+ ")� v))

16An alternative method of calculating s0 is to note that

f(ue) = f(u0) +

1X
n=1

sn(un � un�1) = v + s0(u0 � u) +
�u0(�p+ (1� p)s)� p�2u0

1��
1� (1� p)� :

And in addition,

f(ue) = py � c� ((w � c) +
�pk

(1� �) ):

Some algebra shows that this gives the same s0 as before.
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Note that this operator is very similar to the operator T in Lemma 7, except the "straight line

on the left" is smaller than that in T: It follows that

T1g � Tg for all g:

In addition, T1 can be checked to be monotone.

De�ne g1 on [u0(u+ "); ue] by g1(u) = f1(u): Then it is clear that

T1g1(u) � Tg1(u) � g1(u):

Since T is monotone, it follows that

g1(u) � gT1(u);

where gT1 is the �xed point of T1: From Lemma 7, this implies that f2(u0(u+ ")) = gT1(u0(u+

")) < g1(u0(u+ ")) = f1(u0(u+ ")):

Now de�ne the operator T2 on functions on [u0(u+ "); ue] as follows.

T2g(u) = (1� �)(py � w)

+�p(1fL(u)+k<uegg(L(u) + k) + 1fL(u)+k�ueg(py � c� (L(u) + k))

+�(1� p)(1fL(u)�u0(u+")gg(L(u)

+1fL(u)<u0(u+")g(v +
L(u)� (u+ ")

u0(u+ "))� (u+ ")
(f2(u0(u+ ")� v))

De�ne g2 on [u0(u + "); ue] by g2(u) = f2(u): We know that g2 is a �xed point of T2: On

the other hand, we can check that T2g1(u) � g1(u): It immediately follows (as in Lemma 7)

that g1(u) � g2(u) for all u: Moreover, we note that g1(u) > g2(u) for some neighborhood of

u0(u+ "): And since all of u < ue reaches the the neighborhood of with positive probability, so

we have

f2(u) = g2(u) < g1(u) = f1(u) for all u 2 [u0(u+ "); ue):

And f2(ue) = f1(ue): This proves the �rst part of the lemma.

For the second part, suppose the slope between (u; v) and (u0(u); f1(u0(u)) is s; where

f1(u0(u)) is the maximal PPE payo¤of the principal at u0(u) assuming that the outside option is

u: Take a small "; construct a line through (u+"; v) with slope s. For small enough "; we can show

that this line lies strictly below f1 from u till u0(u+ "): This is because maxufF (u; u; v; w)g >
F (u0(u); u; v; w); the right derivative of f1 at u0(u) is strictly positive, so there exists a small "1
such that f1(u0(u) + "1) � f1(u0(u)): Now take " = "1=� will work:)

Let d = s": De�ne an operator T3 on functions de�ned on [u0(u + "); ue]; such that the

"straight line on the left" is given by the line through (u + "; v) with slope s. De�ne g1 on
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[u0(u+ "); ue] by g1(u) = f1(u):

T3(g1(u)� d)

= (1� �)py

+�p(1fL(u)+k<ueg(g1(L(u) + k)� d) + 1fL(u)+k�ueg(py � c� (L(u) + k)� d))

+�(1� p)(1fL(u)�u0(u+")g(g1(L(u)� d) + 1fL(u)<u0(u+")g(v + s(L(u)� u� ")):

For small enough "; we see that

T3(g1(u)� d) ' g1(u)� �d � g1(u)� d:

Now by the uniqueness proof (and that the slope of f1 is smaller than s for u > u0(u+ ")); we

see that

f2(u0(u+ ")) > f1(u0(u+ "))� d:

Finally, follow the proof procedure in the �rst part of the theorem, we see immediately that

f2(u) > f1(u)� d for all u 2 [u0(u+ "); ue]:

The next lemma shows that, while the value of the PPE set shrinks for u 2 [u0(u); ue]; its
slope increases.

Lemma 9: If maxufF (u; u; v; w)g > F (u0(u); u; v; w); then for almost all u 2 [u0(u); ue]

@2F (u; u; v; w)

@u@u
> 0:

Proof. Again to simplify notation, suppose f1 is the PPE Pareto frontier with respect to u
de�ned on [u0(u+ "), ue]: And let f2 be the PPE Pareto frontier with respect to u+ " de�ned

on [u0(u+ "), ue]: Now de�ne h1 = f 01; and h2 = f
0
2: When f

0
1 and f

0
2 are not properly de�ned,

we use the right limit.

Lemma 8 implies that

h2 > h1 for u < u0(u+ "):

Now de�ne

eT (h) = p(1fL(u)+k<ueg(h)� 1fL(u)+k�ueg)

+(1� p)(1fL(u)�u0(u+")gh(L(u)) + s11fL(u)<u0(u+")g);
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where s1 is the slope between (u + ";maxfx � (u + "); 0g) and (u0(u + "); f2(u0(u + ")): It is
easy to see that eT (h1) � h1:
Let us de�ne that

h� = lim
n
eTn(h1):

Since the operator is monotone,

eT (h�) = eT (lim
n
eTn(h1)) � eT ( eTn(h1)) for all n;

so we have eT (h�) � n:
On the other hand, take any u; we know that

eT (h�(u)) = p(1fL(u)+k<ueg(h
�(u))� 1fL(u)+k�ueg)

+(1� p)(1fL(u)�u0(u+")gh
�(L(u)) + s11fL(u)<u0(u+")g)

� p(1fL(u)+k<ueg(
eTn(h1(u)) + ")� 1fL(u)+k�ueg)

+(1� p)(1fL(u)�u0(u+")g eTn(h1L(u)) + ") + s11fL(u)<u0(u+")g)
� eT (h�(u)) + ":

And therefore, eTh� = h�:
Moreover, while eT isn�t a contraction mapping, it is nevertheless non-expansive, in the sense

that

jjeTh1 � eTh2jj � jjh1 � h2jj
and it can be checked that in this case, it has a unique �xed point.

To see this, suppose ha and hb are two �xed points of eT : And let M = jjha � hbjj: Take the
smallest u� such that jjha(u�) � hb(u�)jj = M17: Then we see that jjeTha(u�) � eThb(u�)jj < M
by the de�nition of eT unless M = 0:

Now, this implies that

h�(u) = h2(u) = f
0
2(u):

And therefore, we have

f 01(u) � f 02(u)

for all u 2 [u0(u+ "); ue]:

With these two lemmas, we are ready to study the e¤ect of the agent�s outside option on the
17Note that such V � may not exist both because of the achievability of the sup norm and because of the liminf

of such V �: In this case, we can take the appropriate approximation.
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optimal relational contract.

De�ne uP (u; v; w) as the principal�s maximum payo¤ is the agent�s outside option is u: De�ne

uA(u; v; w) as the associated payo¤ of the agent. We have the following results.

Proposition 3: If maxufF (u; u; v; w)g > F (u0(u); u; v; w); then

@uP (u; v; w)

@u
< 0;

@uA(u; v; w)

@u
> 0;

@(uP (u; v; w) + uA(u; v; w))

@u
> 0:

Proof. The �rst inequality follows directly from Lemma 8.

Lemma 9 implies that @u
A(u;v;w)
@u � 0: (It does not imply a strict inequality directly because

f may have kinks at uA:).

Moreover, Berger�s continuity theorem implies that uA(u; v; w) is continuous with respect to

u: Again to simplify notation, suppose f1 is the PPE Pareto frontier with respect to u de�ned on

[u0(u)+", ue]: And let f2 be the PPE Pareto frontier with respect to u+" de�ned on [u0(u)+",

ue]:It then su¢ ces to show that, for small enough "; f2(uA(u) + ") � f1(uA(u))� ":
To this end, de�ne

g1(u) = f1(u� ")� "; for u 2 [u0(u) + "; ue):

Now link the line segment between (u+ "=�; v) and (u0(u)+ "; f1(u0(u)); and de�ne an operator

T on bounded functions between [u0(u) + "; ue] as

T (g(u)) = (1� �)(py � w)

+�p(1fL(u)+k<ueg(g(L(u) + k)) + 1fL(u)+k�ueg(py � c� (L(u) + k))

+�(1� p)(1fL(u)�u0(u)+"gg(L(u)) +

1fL(u)<u0(u)+"g(v +
L(u)� (u� "=�)

u0(u) + "� (u� "=�)
(f1(u0(u))� v));

With this operator, we can show that

T (f1(u)) > f1(u); for u 2 [u0(u) + "; ue):
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Now notice that, for u 2 [u0(u) + "; ue);

T (g1(u)) = (1� �)(py � w)

+�p(1fL(u)+k<ueg(g1(L(u) + k)) + 1fL(u)+k�ueg(py � c� (L(u) + k))

+�(1� p)(1fL(u)�u0(u)+"gg1(L(u))

+1fL(u)<u0(u)+"g(v +
L(u)� (u� "=�)

u0(u) + "� (u� "=�)
(f1(u0(u))� v))

= (1� �)(py � w)

+�p(1fL(u)+k<ueg(f1(L(u� �") + k)� ") + 1fL(u)+k�ueg(py � c� (L(u) + k))

+�(1� p)(1fL(u)�u0(u)+"(gf1(L(u� �"))� ")

+1fL(u)<u0(u)+"g(v +
L(u)� (u� "=�)

u0(u) + "� (u� "=�)
(f1(u0(u))� v))

� T (f1(u� �"))� �"

> f1(u� �"))� �"

� f1(u)� (f 01(u) + 1)�"

= f1(u)� (f 01(u) + 1)"+ (f 01(u) + 1)(1� �)"

� f1(u� ")� "+ (f 01(u) + 1)(1� �)"

= g1(u) + (f
0
1(u) + 1)(1� �)":

The last inequality follows from the fact that f 01(u) > �1 for u 2 [u0(u) + "; ue); which is a
consequence of the concavity of f and the de�nition of ue:

By a similar proof method as in Lemma 8, this implies that for u 2 [u0(u) + "; ue);

f2(u) > g1(u) + (f
0
1(u) + 1)(1� �)"

= f1(u� ")� "+ (f 01(u) + 1)(1� �)"

This implies that the surplus is strictly increasing.

Finally, from this result and that @u
P (u;v;w)
@u < 0; we have that @u

A(u;v;w)
@u > 0:

Similar method as above can establish the following result.

Proposition 4: If maxufF (u; u; v; w)g > F (u0(u); u; v; w); then

@uP (u; v; w)

@v
> 0;

@uA(u; v; w)

@v
< 0;

@(uP (u; v; w) + uA(u; v; w))

@v
< 0:
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Proof. The proof parallels the arguments in Proposition 3, and it is easier. so we omit it
here. Neither u0 and ue changes with v; but the value of f to the left of u0 increases because

of the increase in v: It follows in an argument like Lemma 8 that the value of f in [u0; ue] must

increase so that the principal�s payo¤ must increase. Moreover, an argument similar to Lemma

9 shows that the derivative of f in (u0; ue) must decrease, so the expected payo¤ of the agent

decreases. Finally, following Proposition, we can de�ne a function g(u) = f(u + ") + "; and a

similar argument can show that the overall e¢ ciency decreases.

Finally, we examine the e¤ect of the minimum wage. We show that the minimum wage

decreases the principal�s payo¤ and the overall e¢ ciency.

Proposition 5: If maxufF (u; u; v; w)g > F (u0(u); u; v; w); then

@uP (u; v; w)

@w
< 0

@(uP (u; v; w) + uA(u; v; w))

@w
< 0:

Proof. Suppose the minimum wage increases from w to w + ": In this case, both u0 and

ue increases by 1��
� ": Then the �rst inequality can be established by using a method similar

to Lemma 8 and noting that f 0 � �1: The second inequality follows Proposition 3 closely.
Again to simplify notation, suppose f1 is the PPE Pareto frontier with respect to w de�ned on

[u0(u) +
1��
� ", ue +

1��
� "]: And let f2 be the PPE Pareto frontier with respect to w + " de�ned

on [u0(u) + 1��
� ", ue +

1��
� "]:It then su¢ ces to show that, for small enough "; f2(u

A(u) + ") �
f1(u

A(u))� ": (If uA decreases, we immediately have the decrease in e¢ ciency because both the
principal and the agent�s payo¤ decrease.)

To this end, de�ne

g1(u) = f1(u� ")� "; for u 2 [u0(u) +
1� �
�
"; ue +

1� �
�
"]:

Now link the line segment between (u; v) and (uA(u) + 1��
� "; f1(u0(u) +

1��
� "); and de�ne an
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operator T on bounded functions between [u0(u) + 1��
� "; ue +

1��
� "] as

T (g(u)) = (1� �)(py � w � ")

+�p(1fL(u)+k� 1��
�
"<ueg(g(L(u) + k �

1� �
�
") +

1fL(u)+k� 1��
�
"�ueg(py � c� (L(u) + k �

1� �
�
"))

+�(1� p)(1fL(u)� 1��
�
"�u0(u)+ 1��

�
"gg(L(u)�

1� �
�
") +

1fL(u)� 1��
�
"�u0(u)+ 1��

�
"g(v +

L(u)� 1��
� "� u

u0(u) +
1��
� "� u

(f1(u0(u) +
1� �
�
")� v));

With this operator, we can show that

T (f1(u)) > f1(u); for u 2 [u0(u) +
1� �
�
"; ue +

1� �
�
"):

Finally, as in Proposition 3, we have the following:

T (g1(u)) � T (f1(u� �"))� �"� (1� �)"

�(1� �)"(pf 01(u� �"+ k) + (1� p)f 01(u� �"))

< f1(u� �"))� �"� (1� �)"� (1� �)"f 01(u)

� f1(u)� (f 01(u) + 1)�"� (1� �)"� (1� �)"f 01(u)

= g1(u):
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