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Abstract

We derive a necessary condition, called the chain dominance prop-

erty, for social choice correspondences to be admissibly implementable,

i.e., given whatever admissible actions the agents play in each state,

the outcomes always lie in the correspondence. The condition requires

that the correspondence has a selection that is “partially” dominant-

strategy incentive compatible in a certain sense. Applying the condi-

tion in worst-case expected welfare maximization problems in bilateral

trading, we show that (i) for a class of priors of the designer, no mech-

anism can improve over a posted-price mechanism of Hagerty and

Rogerson (1987), and (ii) for another class of priors, a non-dominant-

strategy mechanism, called a “demand-curve” (or a “supply-curve”)

mechanism, is optimal.
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1 Introduction

Mechanism design theory examines which social objectives (such as efficiency,

fairness, stability, and so on) can be achieved when agents have private in-

formation. To predict the possible outcomes of mechanisms, the standard

approach is to assume that the agents play a Bayesian-Nash equilibrium,

typically with a “common prior”.

This Bayesian-Nash approach is often criticized for the sensitivity of the

predicted outcomes of mechanisms to the assumptions about the agents’

beliefs.12 Namely, this approach relies on the mechanism designer’s knowl-

edge of the agents’ beliefs about each other’s private information, and their

(correct) beliefs about each other’s strategies. A mechanism that induces

“desirable” outcomes (given any objective of the mechanism designer) in a

Bayesian Nash equilibrium may induce undesirable outcomes if the agents

have different beliefs about each other’s private information or strategies.

Given these criticisms, some researchers have investigated more “robust”

1For example, in the context of game theory, Wilson (1987) argues:

Game theory has a great advantage in explicitly analysing the consequences

of trading rules that presumably are really common knowledge; it is deficient

to the extent it assumes other features to be common knowledge, such as one

agent’s probability assessment about another’s preferences or information. [.

. . ] I foresee the progress of game theory as depending on successive reduc-

tion in the base of common knowledge required to conduct useful analyses

of practical problems. Only by repeated weakening of common knowledge

assumptions will the theory approximate reality.

See also Neeman (2004) and Bergemann and Morris (2005).
2A related problem is that the optimal mechanism is sensitive to the assumptions on

the agents’ beliefs. For example, Crémer and McLean (1985) show that the first-best

efficiency with full-surplus extraction is possible if there is a commonly known correlated

prior over the agents’ valuations (see d’Aspremont, Cremer, and Gerard-Varet (2004) and

Kosenok and Severinov (2008) for similar first-best results under budget balance). Neeman

(2004) argues that this result crucially depends on the “beliefs-determine-preferences”

assumption, and Heifetz and Neeman (2006) show that this beliefs-determine-preferences

property is “non-generic” in a more general type space (see also Barelli (2009)).
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mechanisms. The standard approach is to restrict attention to mechanisms

that is dominant-strategy incentive compatible. This proves to be restrictive,

especially in settings that require a balanced budget.3

In this paper, we study admissible implementation, as an implementa-

tion concept that is robust to the agents’ “strategic uncertainty”. Namely,

we assume that each agent may play any admissible (i.e., not weakly domi-

nated) action given his private information. He may have multiple admissible

actions in a mechanism, and therefore, there could be multiple possible out-

comes depending on which admissible actions the agents play given their

types. We say that the mechanism admissibly implements a social choice

correspondence (SCC) if, given whatever admissible actions the agents play,

the induced outcome lies in this SCC.

In the literature, Jackson (1992) suggests that we should focus on “bounded”

mechanisms to study admissible implementation.4 He shows that an “un-

bounded” mechanism can admissibly implement essentially any social choice

correspondence, but he argues that implementation by unbounded mecha-

nisms does not seem reasonable, because an unbounded mechanism neces-

sarily has a “tail-chasing” or an “integer-game” structure. Following Jackson

(1992), in this paper, we focus on bounded mechanisms.

Jackson (1992) also shows that any social choice function that is admis-

sibly implementable (by bounded mechanisms) must be dominant-strategy

incentive compatible. Thus, as long as there is a unique desirable allocation

rule, our solution concept is equivalent to the dominant-strategy implemen-

tation.

However, if the objective of the mechanism designer is implementation of

social choice correspondences, or similarly, if the objective is maximization of

his “utility” (such as welfare or profit), then the restriction to the dominant-

strategy mechanisms could be unnecessary. In this problem, the mechanism

3See Laffont and Maskin (1980) and Hagerty and Rogerson (1987), for example.
4A bounded mechanism is such that, for any action that is weakly dominated for an

agent, there is an admissible action that weakly dominates it. For example, a mechanism

is bounded if its message spaces are finite.
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designer does not care which particular outcome is realized, as long as every

possible outcome is desirable. Thus, there may exist a non-dominant-strategy

mechanism that “robustly” achieves the objective, even if any dominant-

strategy mechanism cannot achieve it.5

Indeed, in Section 2, we provide a bilateral-trading example in which a

non-dominant-strategy mechanism implements an SCC that is not imple-

mentable by any dominant-strategy mechanism.6 Moreover, if the designer’s

objective is to maximize expected welfare (or total surplus) based on his

prior over the agents’ types, then for some priors, we find a non-dominant-

strategy mechanism that always attains higher expected welfare than that

of any dominant-strategy mechanism, given whatever admissible actions the

agents play in the mechanism.

The main objective of the paper is to derive a necessary condition for ad-

missibly implementable SCCs. In Section 4, we show that any implementable

SCC must have the “chain dominance property”, which is described as fol-

lows. First, fix any sequence of types for each agent. If an SCC is imple-

mentable, then for any profile of such sequences, we can find a selection of

the SCC (i.e., an allocation rule that lies in the SCC) that satisfies dominant-

strategy incentive compatibility along the sequences. In this selection, each

agent prefers the truth-telling to pretending to be the type that is the immedi-

ate predecessor of the true type, given any types of the opponents. Thus, this

selection satisfies dominant-strategy incentive compatibility for some pairs of

types, but not necessarily for all pairs.7

As an application, in Section 5, we consider a one-dimensional single-

5In voting, Börgers (1991) shows that some non-dictatorial social choice correspon-

dences are admissibly implementable with the universal domain of preferences. See also

Example 1 and 2 in Bergemann and Morris (2005).
6By Hagerty and Rogerson (1987), a dominant-strategy mechanism in this example

must be a (randomized) posted price mechanism.
7This condition generalizes the “strategy resistance” condition shown by Jackson (1992)

as necessary for admissible implementation, which corresponds to the sequences with only

two elements.
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crossing environment. The mechanism designer has a prior over the agents’

types, and wants to maximize his expected “utility” (such as welfare or profit)

given his belief. He does not know which admissible actions the agents play

in a mechanism, and therefore, he evaluates a mechanism according to its

“worst-case” expected utility among all admissible strategies of the agents.

For this problem, we can guess which incentive constraints implied by the

chain dominance property are binding. Specifically, we consider the “local

downward incentive compatibility” (LDIC) constraints, the incentive con-

straints implied by the natural chains over the types. We show that, under

certain conditions on the environment, the allocation rule that maximizes the

designer’s expected utility subject to the LDIC constraints implies a mech-

anism that is optimal among all (bounded) mechanisms in the sense of the

worst-case expected utility.

In Section 5.4, we study (balanced-budget) bilateral trading settings. The

designer wants to maximize the worst-case expected welfare based on his prior

over the agents’ values. First, for a class of priors, the optimal mechanism

is a posted-price mechanism. The class of priors includes any prior whose

density function is decreasing in the seller’s type, increasing in the buyer’s

type, and continuous. Because a posted-price mechanism is a dominant-

strategy mechanism, this result provides a foundation for dominant-strategy

mechanisms. For other priors, the optimal mechanism is not necessarily

a dominant strategy mechanism. For example, if the seller’s cost is likely

to be high, it may be better to allow the seller to raise the trading price,

rather than prefix the price in advance. We introduce the class of “demand-

curve” mechanisms,8 in which the seller names the trading price, and they

trade if the price is affordable for the buyer, while the size of the trade

is more limited by the designer as the price becomes higher. Although a

demand-curve mechanism is not a dominant-strategy mechanism, we obtain

a class of priors in which a demand-curve mechanism is optimal, and it indeed

attains strictly higher expected welfare than any posted-price mechanism,

8We also define the class of “supply-curve” mechanisms symmetrically.
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given whatever admissible actions are played in the mechanism. The class of

priors includes any “binary” cases (i.e., each agent has two possible types),

but it also includes more complicated cases, such as continuous distributions.

In the second application, we consider a quasi-linear environment with-

out balanced budget, which includes expected revenue maximization in an

auction setting. We provide sufficient conditions under which the optimal

mechanism is a dominant-strategy mechanism.

1.1 Other robust implementation concepts

As a related concept to admissibility, some papers study implementation with

iterative elimination of weakly or strictly dominated actions, but in complete-

information settings. For example, see Moulin (1979), Srivastava and Trick

(1996), Bergemann, Morris, and Tercieux (2010), and Abreu and Matsushima

(1992). Abreu and Matsushima (1991) and Kunimoto and Serrano (2010)

study incomplete-information settings, but with a common prior over the

agents’ types. In this paper, we allow only one round of elimination of

weakly dominated actions. This is a more robust concept than theirs in the

sense that we do not impose any assumption on the agents beliefs about each

other’s preference or their mutual knowledge of rationality.

Another branch of the implementation literature studies implementation

concepts robust to “structural uncertainty”, i.e., agents correctly predict each

other’s strategies (and so they play a Bayesian Nash equilibrium), but they do

not know each other’s private information and beliefs (and higher-order be-

liefs) about this information. Bergemann and Morris (2005) and Bergemann

and Morris (2010) study Bayesian Nash implementation with arbitrary be-

liefs in general implementation settings. Bergemann and Morris (2005) show

that, in a “separable” environment, robustness to the structural uncertainty

implies strategy-proofness. Bergemann and Morris (2010) show that, un-

der certain conditions, their robust implementation concept is equivalent to

“rationalizable” implementation, which is based on iterative elimination of

strictly dominated actions in incomplete-information settings. Chung and
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Ely (2007) study the worst-case expected revenue maximization in auction

settings, where the worst case is among all beliefs of the agents. They show

that no mechanism can attain strictly higher expected revenue than the op-

timal dominant-strategy mechanism given any beliefs of the agents. Smith

(2010) studies cost sharing problems in public good provision, and offers a

partial ranking of mechanisms based on the notion of improvement given

arbitrary beliefs of the agents. He shows that any dominant-strategy mech-

anism is weakly improvable in his criterion.

2 Example: Bilateral Trading

2.1 Environment

There is a pair of a seller (i = 1) and a buyer (i = 2). The seller has an

object, and c ∈ [0, 4] denotes his value for the object, while v ∈ [3, 5] denotes

the buyer’s valuation for the object. We assume that c is the seller’s private

information and v is the buyer’s private information.

An allocation is denoted by (z, p) ∈ [0, 1]× R, where z is the probability

of trading,9 and p is the price, or the payment from the buyer to the seller

conditional on trading (i.e., in the event that the buyer receives the object

from the seller).10 Let (0, 0) denote the “no-trade” outcome.

The seller’s utility and the buyer’s utility at state (c, v) are given by u1 =

(p−c)z and u2 = (v−p)z, respectively, and the economic welfare at state (c, v)

9Another interpretation is that z represents the time of trading in a continuous-time

dynamic bargaining setting where the agents’ types are persistent. Suppose that the

mechanism designer can specify the time of trading τ in a continuous-time model where

the agents have the same discount rate r. Then, by setting z so that z = e−rτ , an

allocation in this dynamic model is denoted by (z, p), and therefore, we can effectively

design the same mechanism. Copic and Ponsati (2008) provide a similar interpretation of

(randomized) posted-price mechanisms of Hagerty and Rogerson (1987) in such a dynamic

bargaining setting.
10Thus, the allocation satisfies balanced budget. There is no payment when they do not

trade.
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is (v− c)z. The mechanism designer has a prior Φ over (c, v) ∈ Θ, and wants

to maximize the expected welfare. We also assume that, in any mechanism,

each agent has a message that corresponds to “non-participation” that always

induces the no-trade outcome regardless of the opponent’s message.

This problem is studied more extensively in Section 5. In this section, we

consider the following specific class of Φ, parametrized by ε ∈ [0, 1]: There are

two states with probability mass: Pr{(c, v) = (1, 3)} = Pr{(c, v) = (4, 5)} =
1
2
(1 − ε). All the other (c, v) ∈ [0, 4] × [3, 5] are uniformly likely (i.e., the

density is 1
8
ε). Thus, if ε = 1, it is a uniform distribution, and if ε is close to

zero, then it is approximately a discrete and perfectly correlated case. The

mechanism designer knows the value of ε.

2.2 Dominant-strategy mechanisms

An optimal mechanism among all dominant-strategy mechanisms is a posted-

price mechanism (Hagerty and Rogerson (1987)): The mechanism designer

first chooses a price p, and a trade occurs (with probability one) if and only

if v > p and c < p. Thus, the expected welfare of a posted-price mechanism

is
∫

(c,v)∈[0,p)×(p,1]

(v − c) dΦ(c, v).

In this example, we observe that the optimal posted-price is p = 3 for

any ε.11

11Because the distribution is a convex combination of a uniform distribution on

[0, 4]× [3, 5] and a discrete, perfectly correlated one with Pr{(c, v) = (1, 3)} = Pr{(c, v) =

(4, 5)} = 1
2 , it suffices to show that the optimal posted-price is p = 3 for each of these

distributions. First, with a uniform distribution on [0, 4] × [3, 5], the expected welfare

with price p is 5
16p(5 − p), which is maximized at p = 3. Second, if Pr{(c, v) = (1, 3)} =

Pr{(c, v) = (4, 5)} = 1
2 , then any p ∈ (1, 3) is optimal. Therefore, for any ε, the supremum

of the welfare among all posted-price mechanisms is achieved by a sequence of posted-price

mechanisms p ↑ 3. In this section, we informally say that p = 3 is the optimal posted

price.
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The expected welfare of this mechanism is

2 ·
1

2
(1− ε) +

15

8
ε = 1 +

7

8
ε.

Figure 3: The optimal posted-price mechanism

The figure shows when the agents trade in the optimal posted-price mech-

anism: They trade whenever c < 3, but they cannot trade if c > 3, even if

v > c.

2.3 A two-price mechanism

This observation motivates us to consider the following “two-price” mecha-

nism (Table 1). In this mechanism, the seller chooses a price, either p = 3

or p = 4. Simultaneously, the buyer reports his “highest acceptable price”,

p = 3 or p = 4. If they choose p = 3 and p ≥ 3, then they trade with z = 1.

If they choose p = 4 and p = 4, then they trade with z = 2
3
. If p < p, then

they do not trade.

p = 3 p = 4

p = 4 (0, 0) (2
3
, 4)

p = 3 (1, 3) (1, 3)

Table 1: A two-price mechanism. The entry in each cell is (z, p).

In this mechanism, the buyer has a dominant strategy: if v > 4, then

p = 4, and otherwise, p = 3. On the other hand, the seller’s best action

depends on c and his belief about the buyer’s choice of p. If c ≥ 3, then it is
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weakly dominant to choose p = 4. If c ∈ (1, 3), then (i) if he is “optimistic”,

i.e., if he believes that the buyer chooses p = 4 with a high probability, then

his best action is to choose p = 4, because it yields a higher expected profit

than p = 3. On the other hand, (ii) if he is “pessimistic”, i.e., if he believes

that the buyer chooses p = 3 with a high probability, then his best action is

to choose p = 3.

Finally, if c ≤ 1, then it is weakly dominant for the seller to choose p = 3,

because even if he believes that the buyer chooses p = 4, the expected profit

of choosing p = 3 is higher than that of choosing p = 4 (i.e., 3− c ≥ 2
3
(4− c)

for c ≤ 1).

We now calculate the level of expected welfare “guaranteed” given what-

ever admissible strategies the agents play in the mechanism. Observe that

the worst-case expected welfare among all admissible strategies is attained

when the seller with c > 1 chooses p = 4, because then, the trade (and hence

the welfare) is smaller than when he chooses p = 3, regardless of the buyer’s

behavior (see Figure 4). Therefore, the worst-case expected welfare of this

two-price mechanism is

2 ·
1

2
(1− ε) +

7

8
ε+

2

3
[
1

2
(1− ε) +

1

2
ε] =

4

3
+

ε

24
.

Figure 4: The worst-case welfare in the two-price mechanism

In this two-price mechanism, the seller with cost c ∈ (3, 4) can trade

if v > 4, while he cannot in the posted-price mechanism. Hence, the two-

price mechanism attains higher welfare in these states. On the other hand,

the seller with c ∈ (1, 3) may deviate to the high-price allocation, which
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decreases the welfare in these states. Which mechanism guarantees a higher

expected welfare depends on the value of ε. If ε < 2
5
, then the two-price

mechanism is better than the posted-price mechanism with p = 3. If ε > 2
5
,

then the posted-price mechanism is better.

Moreover, as we see in Section 5, if ε = 1 so that the distribution is

uniform over [0, 4] × [3, 5], then the posted-price with p = 3 is the optimal

mechanism. (in the sense of the worst-case expected welfare). Similarly,

if ε = 0 so that each agent has a binary type space, then the two-price

mechanism we examined is the optimal mechanism.

It is also interesting to compare these worst-case expected welfares with

the expected welfare of the optimal Bayesian-Nash mechanism, where we

assume that Φ is common knowledge among the agents and the mechanism

designer. When ε = 1, then the optimal Bayesian-Nash mechanism is a

double auction mechanism studied by Myerson and Satterthwaite (1983) and

Chatterjee and Samuelson (1983). This mechanism attains 96% of the first-

best expected welfare,12 while, the posted-price mechanism with p = 3 attains

93% of the first-best expected welfare. This 3% difference can be interpreted

as the “price of robustness”: To make a mechanism robust to the agents’

strategic uncertainty, we lose this amount of expected welfare.

On the other hand, if ε = 0, then the agents have perfectly correlated

types, and thus, the optimal Bayesian-Nash mechanism can achieve the first-

best welfare, as studied by Crémer and McLean (1985) and Kosenok and

Severinov (2008). For example, the following mechanism works.

v = 3 v = 5

c = 4 (0, 0) (1, 4)

c = 1 (1, 3) (1, 3)

Table 2: Another two-price mechanism. The entry in each cell is (z, p).

12Specifically, we set the probability of trading is z(c, v) = 1 if v > c + 0.89 and zero

otherwise. This is derived by maximizing the weighted virtual surplus as in Myerson and

Satterthwaite (1983).
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We can interpret this mechanism as a two-price mechanism where the

seller chooses between p = 3 and p = 4, but regardless of the price chosen,

the probability of trading is always one. In a Bayesian-Nash equilibrium

where this distribution is common knowledge, the seller with c = 1 reports

his cost truthfully, because he believes for sure that the buyer reports v = 3.

However, if the mechanism designer is concerned about the worst case

when the agents take any admissible strategies, z should be made smaller to

have the seller with sufficiently lower costs choose the low price.

The highest worst-case expected welfare is 89% of the first-best welfare,

and therefore, the “price of robustness” is 11%. This level of expected welfare

is guaranteed by the two-price mechanism in Table 1. Note that it would

be 17% if we were restricted only to dominant-strategy mechanisms. This

6% difference quantifies the welfare loss due to the restriction to dominant-

strategy mechanisms.

The discussion is summarized in Table 2.

Robust Welfare Guarantee Uniform (ε = 1) Two-state (ε = 0)

Posted-price 93% 83%

Two-price 68% 89%

Optimal Mechanism 93% 89%

Common-prior, Bayesian-Nash 96%∗ 100%∗∗

Price of Robustness 3% 11%∗∗∗

∗ Myerson and Satterthwaite (1983), Chatterjee and Samuelson (1983).

∗∗ Kosenok and Severinov (2008), Crémer and McLean (1988).

∗∗∗ 17% if restricted to dominant-strategy mechanisms

Table 3: Summary of the example

In Section 5, we characterize the optimal mechanisms under more general

conditions. First, for a class of priors including uniform distributions, we

show that the optimal mechanism is a posted-price mechanism. Second, for
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another class of priors including the binary case, the optimal mechanism is a

“demand-curve” mechanism (or “supply-curve” mechanism), a generalization

of the two-price mechanism.

Remark 1. Although this paper studies admissible implementation, it may

be useful to observe that the two-price mechanism can guarantee the same

level of expected welfare even if we consider other robust implementation

concepts in the literature.

For example, Bergemann and Morris (2005) study the robust partial im-

plementation, which is described roughly as follows. Suppose that each agent

can have arbitrary belief about the opponent’s preference. Specifically, let

ti = (θi, βi) ∈ Ti be agent i’s “type”, where θi is his preference type,13 and

βi ∈ ∆(Ti) is his belief about the opponent’s type.

In the robust partial implementation, we say that a mechanism guarantees

expected welfare W if, for any type space T =
∏

i Ti, there exists a Bayesian

Nash equilibrium given T such that the equilibrium expected welfare is no

smaller than W .

In the two-price mechanism in Table 1, consider the following strategy

profile, which constitutes a Bayesian Nash equilibrium for any T : The buyer

chooses p = 3 if v < 4, and chooses p = 4 if v ≥ 4, regardless of his

belief types. The seller chooses p = 4 if either c > 3, or c ∈ (1, 3] and

β1(v ≥ 4) > 9−3c
8−2c

,14 while he chooses p = 3 if either c ≤ 1, or c ∈ (1, 3] and

β1(v ≥ 4) ≤ 9−3c
8−2c

.

The worst-case expected welfare in this criterion is when the seller believes

β1(v ≥ 4) > 9−3c
8−2c

and chooses p1 = 4 whenever c > 1. This corresponds to

the worst-case admissible actions, and therefore, this two-price mechanism

guarantees the same level of expected welfare as in the admissibility approach.

13Thus, it is a private-value type space of Heifetz and Neeman (2006).
14β1(v ≥ 4) denotes the seller’s belief for v ≥ 4. The seller with cost c earns 2

3 (4 −

c)β1(v ≥ 4) by choosing p1 = 4, while he earns 3− c by choosing p1 = 3.
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3 Environment

There are N agents. Each agent i = 1, . . . , N has private information θi ∈ Θi,

where Θi is agent i’s type space. Let Θ =
∏

iΘi.

An allocation is denoted by x ∈ X . Agent i’s utility function is ui :

X ×Θi → R. We assume that ui does not depend on θ−i (private values).

The objective of the mechanism designer is to implement a social choice

correspondence (or SCC) F : Θ → 2X . For each state θ, F (θ) ⊆ X is

interpreted as the set of desirable outcomes in that state.

A mechanism is denoted by Γ = 〈M, g〉, where M =
∏

iMi, each Mi is a

set of messages for agent i, and g :M → X is called an outcome function.

We say that mi ∈ Mi weakly dominates m′
i ∈ Mi for θi, if for any m−i ∈

M−i,

ui(g(mi, m−i), θi) ≥ ui(g(m
′
i, m−i), θi),

and the inequality is strict for at least one m−i. mi is said to be admissible

for θi if mi is not weakly dominated for θi. Let MA
i (θi) denote the set of

admissible messages for θi.

In this paper, we only consider the following class of mechanisms, called

“bounded mechanisms” (Jackson (1992)).

Definition 1. Γ is bounded if the following is satisfied: For each i and θi,

if mi is weakly dominated for θi, then there is m′
i ∈ MA

i (θi) that weakly

dominates mi (i.e., m
′
i itself is not weakly dominated).

Note that, in a bounded mechanism, MA
i (θi) is nonempty.

The following are some examples of bounded mechanisms. First, a finite

mechanism (i.e., a mechanism such that every Mi is finite) is bounded. More

generally, a “compact and continuous mechanism” (i.e., a mechanism such

that Mi is a compact metric space for each i, and ui(g(m), θi) is continuous

in m ∈ M for each i and θi) is bounded. The third example is a dominant-

strategy mechanism, i.e., Mi = Θi for each i, and for each θi, θ
′
i ∈ Θi, θ−i ∈

14



Θ−i,

ui(g(θi, θ−i), θi) ≥ ui(g(θ
′
i, θ−i), θi).

We study admissible implementation (by bounded mechanisms), as a ro-

bust implementation concept to the agents’ strategic uncertainty. Admissible

implementation requires that, given whatever admissible actions the agents

take in any state, the induced outcome is desirable.

Definition 2. A mechanism Γ admissibly implements F if for each θ and

each m ∈MA(θ), g(m) ∈ F (θ).

4 The chain dominance property

In this section, we derive a necessary condition on admissibly implementable

SCCs, which we call the chain dominance property.

A chain on Θi is a finite sequence of agent i’s types, Ci = {θti}
Ti

t=0, such

that θsi 6= θti for s 6= t. Let C = (Ci)
N
i=1 denote a profile of such chains. An

allocation rule f : Θ → X is called a selection of an SCC F if for each θ,

f(θ) ∈ F (θ).

Definition 3. An SCC F has the chain dominance property if, for any profile

of chains C = (Ci)
N
i=1, there exists a selection f of F such that, for each i,

t = 1, . . . , Ti, and θ−i ∈ Θ−i,

ui(f(θ
t
i, θ−i), θ

t
i) ≥ ui(f(θ

t−1
i , θ−i), θ

t
i).

The condition means that we have the dominant-strategy incentive com-

patibility along the chains.15

15The chain dominance property generalizes the “strategy resistance” of Jackson (1992),

which can be interpreted as the chain dominance conditions stated only for the chains with

two elements (i.e., Ti = 1). As Jackson (1992) has shown, when F is a social choice function

(i.e., F (θ) = {f(θ)} for any θ), then f must be dominant-strategy incentive compatible.
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Theorem 1. If an SCC F is admissibly implementable, then F has the chain

dominance property.

Proof. We first show the following lemma, proved by Jackson (1992).

Lemma 1. Let Γ = 〈M, g〉 be a bounded mechanism. For any i,θi and θ
′
i,

suppose that mi ∈ MA
i (θi). Then, for any θ

′
i 6= θi, there exists m′

i ∈ MA
i (θ

′
i)

such that for any m−i ∈M−i,

ui(g(m
′
i, m−i), θ

′
i) ≥ ui(g(mi, m−i), θ

′
i),

Proof. (of Lemma 1)

For θ′i, either mi ∈MA
i (θ

′
i) or mi /∈MA

i (θ
′
i).

Ifmi ∈MA
i (θ

′
i), letm

′
i = mi. Then the inequality is satisfied with equality

for any m−i ∈M−i.

If mi /∈ MA
i (θ

′
i), then mi is weakly dominated by some m′

i ∈ MA
i (θ

′
i)

because Γ is bounded. Thus, m′
i satisfies the inequality for any m−i ∈ M−i.

Let Γ = 〈M, g〉 be a mechanism that admissibly implements F . For each

i, let Ci = {θti}
Ti

t=1 be an arbitrary chain on Θi.

For each i, we construct µi : Θi →Mi in the following procedure. For the

initial type θ0i , let µi(θ
0
i ) be an arbitrary element in MA

i (θ
0
i ). By induction,

for each t = 1, . . . , Ti, given µi(θ
t−1
i ) ∈ MA

i (θ
t−1
i ), Lemma 1 implies that

there is µi(θ
t
i) ∈MA

i (θ
t
i) such that, for any m−i ∈M−i,

ui(g(µi(θ
t
i), m−i), θ

t
i) ≥ ui(g(µi(θ

t−1
i ), m−i), θ

t−1
i ).

Let µ = (µi)
N
i=1. Define f : Θ → X so that f(θ) = g(µ(θ)) for θ ∈ Θ.

Because each µi(θi) ∈ MA
i (θi), we have f(θ) ∈ F (θ). Also, for each i,

t = 1, . . . , Ti, and θ−i ∈ Θ−i,

ui(f(θ
t
i, θ−i), θ

t
i) ≥ ui(f(θ

t−1
i , θ−i), θ

t
i).
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In general, the tree dominance property need not be a sufficient condi-

tion. However, as we see in Section 4, we can sometimes “guess” the chain

profile that induces a selection f such that a “revelation mechanism” 〈Θ, f〉

admissibly implements F . This is straightforward if f is dominant-strategy

incentive compatible. However, even if f is not dominant-strategy incen-

tive compatible, if any admissible lies of the agents in 〈Θ, f〉 always induce

desirable outcomes, then 〈Θ, f〉 admissibly implements F .

5 Local downward incentive compatibility

This section applies the findings in the previous section to some economic

environments. In the following, let X ⊆
∏N

i=1Xi be the set of allocations,

where (zi, ti) ∈ Xi ⊆ R2 denotes the payoff relevant component for agent

i. Also, we assume that, for each i, Θi is a compact subset of R, and ui =

θizi+ti. For example, some trading settings with or without balanced budget

are included, as we see in Section 4.2 and 4.3.

In this one-dimensional, single-crossing environment, we study implica-

tions of some “natural” chain dominance conditions.

5.1 Finite type spaces

We first assume that each Θi is finite. For each i, consider a chain of types

Ci = (θti)
Ti

t=0 such that θsi < θti for s < t. Theorem 1 implies the following

result.

Theorem 2. If a mechanism Γ admissibly implements F , then there is a

selection f : Θ → X of F such that for each i, t = 1, . . . , Ti, and θ−i ∈ Θ−i,

θtizi(θ
t
i , θ−i) + ti(θ

t
i, θ−i) ≥ θtizi(θ

t−1
i , θ−i) + ti(θ

t−1
i , θ−i),

where f(θ) = (zi(θ), ti(θ))
N
i=1.

〈Θ, f〉 can be interpreted as a revelation mechanism that satisfies the

local downward incentive compatibility (LDIC): Each agent of each type has

17



no incentive to pretend to be the “locally” smaller type, because truth-telling

is always weakly better than such a deviation. Specifically, the truth-telling

either (i) weakly dominates pretending to be the adjacent smaller type, or

(ii) he is indifferent between the two.

5.2 Continuous type spaces with finite mechanisms

For simplicity, we assume that Θi = [0, 1] for each i. First, we consider

implementation by finite mechanisms. In a finite mechanism, each agent’s

type space is partitioned into finitely many “strategically equivalent” types

in the following sense.

Lemma 2. In a finite mechanism Γ = 〈M, g〉, each agent’s type space is

partitioned into finitely many connected subsets, {Θki
i }

Ti

ki=1 for each i, such

that any types in the same partition have the same ordinal preference on

g(M) = {g(m)|m ∈M}, i.e., for each x, x′ ∈ g(M), θi, θ
′
i ∈ Θki

i ,

ui(x, θi) ≥ ui(x
′, θi) ⇔ ui(x, θ

′
i) ≥ ui(x

′, θ′i).

As a corollary, we obtain MA
i (θi) =MA

i (θ
′
i) for θi, θ

′
i ∈ Θki

i . Without loss

of generality, we assume Θki
i < Θki+1

i in the following. Interpreting each Θki
i

as an ordinary preference type on g(M), we obtain an analogous result as

with finite type spaces.

Lemma 3. Suppose that a finite mechanism Γ admissibly implements F , and

for each i, let Pi = {Θki
i }

Ti

ki=1 denote the partitions of strategically equivalent

types induced by Γ. Let P =
∏

i Pi and k = (ki)
N
i=1. Then, there exist

f̃ : P → X such that (i) for each θ ∈ Θk =
∏

i Θ
ki
i , f̃(Θ

k) ∈ F (θ), and (ii)

for each i and k = (ki, k−i),

θkii z
k
i + tki ≥ θkii z

ki−1,k−i

i + t
ki−1,k−i

i ,

where f̃(Θk) = (zki , t
k
i )

N
i=1.
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As in the case with finite type spaces, we can interpret 〈P, f〉 as a revela-

tion mechanism where each agent reports Θki
i as the set of equivalent types

in which his true type exists, and the inequalities mean the local downward

incentive compatibility (“local” in the sense of the equivalent types). We call

these inequalities the “ordinal LDIC condition”.

The ordinal LDIC condition implies the following, which is proved to be

useful in some applications.

Theorem 3. Suppose that an SCC F is admissibly implemented by a finite

mechanism. Then, there is a selection f = (z, t) : Θ → X of F that satisfies

the following. For each i, θi, θ
′
i and θ−i,

Ui(θ) ≥ Ui(θ
′
i, θ−i) +

∫ θi

θ′i

zi(t, θ−i) dt,

where Ui(θ) = θizi(θ) + ti(θ).

This is an integral form of the LDIC condition. It is well known that if

f is dominant-strategy incentive compatible, then the same condition holds,

but with equality (i.e., the change in each agent’s utility is exactly pinned

down by z(·)).16

The idea of the proof is the following. Let Pi = {Θki
i }

Ti

ki=1 denote the

partitions of strategically equivalent types induced by Γ, and f̃ : P → X be

the selection of F in Lemma 3.

For each i and ki, let θ
ki
i = inf Θki

i be the lower limit of the equivalent

types Θki
i . In the following, we assume that every Θki

i is left-closed (i.e.,

θkii ∈ Θki
i ). The proof for the general case is in the appendix.

Proof. By the ordinal LDIC condition:

θkii z
k
i + tki ≥ θkii z

ki−1,k−i

i + t
ki−1,k−i

i ,

where f̃(Θk) = (zki , t
k
i )

N
i=1.

16For example, see Hagerty and Rogerson (1987) for bilateral trading cases.
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Define an allocation rule f = (zi, ti)
N
i=1 so that, for each i and θ ∈ Θk,

(zi(θ), ti(θ)) = (zki , t
k
i ).

For each i and threshold types θk,

θkii (zki − z
ki−1,k−i

i ) + tki − t
ki−1,k−i

i ≥ 0.

Summing both sides for j = k′i + 1, . . . , ki,

ki
∑

j=k′i+1

θji (z
j,k−i

i − z
j−1,k−i

i ) + t
j,k−i

i − t
j−1,k−i

i ≥ 0.

and thus,

Ui(θ
k) ≡ θkii z

k
i + tki ≥ Ui(θ

k′i
i , θ

k−i

−i ) +

ki
∑

j=k′
i
+1

(θji − θj−1
i )z

j−1,k−i

i .

Because (θji − θj−1
i )z

j−1,k−i

i =
∫ θ

j
i

θ
j−1

i

zi(t, θ
k−i

−i )dt, we obtain

Ui(θ
k) ≥ Ui(θ

k′i
i , θ

k−i

−i ) +

∫ θ
ki
i

θ
k′
i

i

zi(t, θ
k−i

−i )dt.

Now, let θ ∈ Θk. Because (zi(θ), ti(θ)) = (zki , t
k
i ), we have

Ui(θ) = Ui(θ
k) + (θi − θkii )zki .

Therefore, for any θi, θ
′
i and θ−i,

Ui(θ) ≥ Ui(θ
′
i, θ−i) +

∫ θi

θ′
i

zi(t, θ−i)dt.

Sometimes, one may want to assume that any mechanism has an “opt-

out” or “non-participation” message for each i that assigns (zi, ti) = (0, 0)

to agent i regardless of the opponents’ actions. In that case, we assume
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that there exists an “opt-out type” who strictly prefers (0, 0) than any other

allocations, so that the opt-out message is weakly dominant for this type in

any mechanism.

In this case, the LDIC condition obtained by letting this opt-out type to

be the initial type of the chain (i.e., θ0i in Ci) implies a lower bound on each

agent’s information rent: The integral form of the LDIC conditions

Ui(θ) ≥ Ui(θ
′
i, θ−i) +

∫ θi

θ′i

zi(t, θ−i)dt,

and the LDIC condition for θi = 0

Ui(0, θ−i) ≥ 0,

imply, by letting θ′i = 0,

Ui(θ) ≥

∫ θi

0

zi(t, θ−i)dt.

We call this inequality the information rent lower bound (IRLB). Again,

if f is dominant-strategy incentive compatible, then this holds with equality,

i.e., the agents’ information rents are exactly pinned down by z(·), but an

LDIC f bounds the information rents only from below.

5.3 Worst-case maximization problems

One may wonder whether we can implement some SCC that does not have

an LDIC selection using infinite mechanisms. We provide a partial answer

to this question.

In this section, we assume that the mechanism designer has his own utility

function w(x, θ), prior Φ over Θ, and wants to maximize the worst-case

expected utility when the agents may play any admissible actions in each

state. Specifically, for admissibly implementable F , we define

W (F ) =

∫

θ

[

inf
x∈F (θ)

w(x, θ)
]

dΦ.
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This W (F ) is the “guaranteed” level of the designer’s expected utility if

F is implemented, given whatever admissible actions the agents play in each

state.17

If every Θi is finite, then for any admissibly implementable F , there is an

LDIC selection f of F such that W (F ) ≤
∫

θ
w(f(θ), θ)dΦ. Thus, an upper

bound on the highest achievable guarantee of the designer’s expected utility

is given by

sup
f

∫

θ

w(f(θ), θ)dΦ (1)

sub.to (LDIC) (2)

Even if some Θi is infinite, if a finite mechanism admissibly implements

F , then F has a selection f with the integral LDIC condition and W (F ) ≤
∫

θ
w(f(θ), θ)dΦ. Moreover, the following result provides a sufficient condi-

tion on the environment under which the integral LDIC condition yields a

valid upper bound among all bounded mechanisms (not only among finite

mechanisms).

In the following, let Θi = [0, 1] for each i, and we define

W ∗ = sup
f

∫

θ

w(f(θ), θ)dΦ (3)

sub.to (integral LDIC). (4)

Theorem 4. Suppose that Φ is absolutely continuous with density function

φ, and there exists a Riemann integrable function b : Θ → R such that, for

17W (F ) is well defined if the worst-case selection of F is measurable. In the following,

we assume this measurability property implicitly. If the worst-case selection of some F is

not measurable, the guarantee may be defined as follows, and we obtain the same result:

Letting Ω be the set of all measurable functions on Θ,

W̃ (F ) = inf
ω∈Ω

∫

θ

ω(θ) dΦ

sub.to ω(θ) ≥ inf
x∈F (θ)

w(x, θ), ∀θ.
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each θ, θ′ and x,

|w(x, θ)φ(θ)− w(x, θ′)φ(θ′)| ≤ |b(θ)− b(θ′)|. (5)

Then, for any admissibly implementable F , we have W (F ) ≤W ∗.

Remark 2. The inequality may be violated, for example, in a revenue

maximization problem, because the designer’s objective,
∑

i ti ∈ R, is not

bounded. However, as we discussed in the previous section, if the participa-

tion constraints are additionally required, they imply bounds on the transfers,

and then, the boundedness of w may be satisfied.

Proof. In the proof, we assume φ(θ) ≡ 1 without loss of generality (otherwise,

we redefine w). Suppose that there is a mechanism Γ that implements F such

that W (F ) > W ∗.

Fix K ∈ N, and for each i and αi ∈ [0, 1
K
], consider the chain dominance

condition with Cαi

i = (θki,αi

i )Kki=1 where θki,αi

i = ki
K
− αi. Theorem 1 implies

that there exists a selection f̃ = (z̃i, t̃i)
N
i=1 of F such that, for each i, ki =

1, . . . , K, and θ−i,

θki,αi

i z̃i(θ
ki,αi

i , θ−i) + t̃i(θ
ki,αi

i , θ−i) ≥ θki,αi

i z̃i(θ
ki−1,αi

i , θ−i) + t̃i(θ
ki−1,αi

i , θ−i).

Denote α = (αi)
N
i=1, k = (ki)

N
i=1, and θk,α = (θki,αi

i )Ni=1. We define the

following “Problem (K,α)”:

max
f=(zi,ti)Ni=1

1

KN

∑

k

w(f(θk,α), θk,α)

sub.to θki,αi

i zi(θ
ki,αi

i , θ−i) + ti(θ
ki,αi

i , θ−i)

≥ θki,αi

i zi(θ
ki−1,αi

i , θ−i) + ti(θ
ki−1,αi

i , θ−i), ∀i, ki, θ−i.

Let W (K,α) be the value of this problem. Then,

W (K,α) ≥
1

KN

∑

k

w(f̃(θk,α), θk,α)

≥
1

KN

∑

k

[ inf
x∈F (θk,α)

w(x, θk,α)],

23



and thus, we obtain supαW (K,α) ≥W (F ) > W ∗.

Now we show that, for any ε > 0, there exists K(ε) such that for any

K ≥ K(ε) and α ∈ [0, 1
K
]N , W ∗ + ε ≥ W (K,α). This implies W ∗ ≥ W (F )

for any admissibly implementable F , which completes the proof.

In the following, we fix arbitrary α ∈ [0, 1
K
]N such that W (K,α) > W ∗,

and let f ∗ be the solution to Problem (K,α). Let Θk =
∏

l[θ
kl,αl

l , θkl+1,αl

l )

and define f̂ : Θ → X and ŵ : Θ → R so that

f̂(θ) = f ∗(θk,α) if θ ∈ Θk,

ŵ(θ) = w(f ∗(θk,α), θk,α) if θ ∈ Θk.

Both are finite step functions (and so they are measurable), and by def-

inition,
∫

θ
ŵ(θ)dθ = W (K,α). Also, because f̂ is a finite-step function that

satisfies the integral LDIC condition,18
∫

θ
w(f̂(θ), θ)dθ ≤W ∗.

Observe that

|W (K,α)−W ∗| ≤
∣

∣

∣

∫

θ

ŵ(θ)dθ −

∫

θ

w(f̂(θ), θ)dθ
∣

∣

∣

=

∫

θ

|ŵ(θ)− w(f̂(θ), θ)|dθ

≤
1

KN

∑

k

| sup
θ∈Θk

w(f̂(θ), θ)− inf
θ∈Θk

w(f̂(θ), θ)|

≤
1

KN

∑

k

| sup
θ∈Θk

b(θ)− inf
θ∈Θk

b(θ)|,

18The same logic in the proof of Theorem 3 implies the integral LDIC condition for

f̂ = (ẑ, t̂). First, for θk = (θki

i )Ni=1 and k′i ≤ ki, we have

Ui(θ
k) ≥ Ui(θ

k′

i

i , θ
k−i

−i ) +

∫ θ
ki

i

θ
k′

i

i

ẑi(t, θ
k−i

−i )dt,

where Ui(θ) = θiẑi(θ) + t̂i(θ) denotes agent i’s utility in state θ induced by f̂ .

Now, for θ ∈ Θk, because f̂(θ) = f̂(θk), we have Ui(θ) = Ui(θ
k)+(θi−θ

ki

i )ẑi(θ
k), which

implies

Ui(θ) ≥ Ui(θ
′
i, θ−i) +

∫ θi

θ′

i

zi(t, θ−i)dt.
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which is o( 1
K
) because of the Riemann integrability of b.

5.4 Balanced-budget bilateral trading

5.4.1 Environment

We consider the bilateral trading problem studied in Section 2. Recall that

an allocation is a pair (z, p), where z is the probability of trading, and p

is the price. The seller’s and the buyer’s utility in state (c, v) are given by

u1 = (p − c)z and u2 = (v − p)z, respectively, and the designer’s utility

is the total surplus, (v − c)z.19 We assume that any mechanism has an

“opt-out” message for each i, so that whenever agent i chooses the message,

(z, p) = (0, 0) is assigned.

The results in the previous section imply the following:

Corollary 1. Suppose Θ1 = {c1, . . . , cJ} and Θ2 = {v1, . . . , vK}. Then, the

highest achievable guarantee of the expected welfare is upper bounded by

W ∗ = sup
(z(·),p(·))

∫

c,v

(v − c)z(c, v) dΦ

sub.to (p(cj, vk)− cj)z(cj , vk) ≥ (p(cj+1, vk)− cj)z(cj+1, vk), ∀j, k,

(vk − p(cj , vk))z(cj , vk) ≥ (vk − p(cj, vk−1))z(cj , vk−1), ∀j, k,

(p(cJ , vk)− cJ)z(cJ , vk) ≥ 0, ∀k,

(v1 − p(cj, v1))z(cj , v1) ≥ 0, ∀j.

Corollary 2. Suppose that Θi = [0, 1] for each i. Then, the highest achiev-

able guarantee of the expected welfare among all finite mechanisms is upper

19In the notation in the previous section, z1 = z2 ≡ z, t1 = −t2 ≡ pz, c = −θ1 and

v = θ2.
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bounded by

W ∗ = sup
(z(·),p(·))

∫

c,v

(v − c)z(c, v) dΦ

sub.to (p(c, v)− c)z(c, v) ≥ (p(c′, v)− c)z(c′, v)

∫ c′

c

z(t, v) dt, ∀c < c′, v,

(v − p(c, v))z(c, v) ≥ (v − p(c, v′))z(c, v′)

∫ v

v′
z(c, t) dt, ∀c, v > v′,

(p(1, v)− 1)z(1, v) ≥ 0, ∀v,

(0− p(c, 0))z(c, 0) ≥ 0, ∀c.

Moreover, if Φ is absolutely continuous with density φ, and (v− c)φ(c, v)

is Riemann integral, then, W ∗ is the upper bound among all bounded mech-

anisms.

5.4.2 Optimality of posted-price mechanisms

In this section, we use the upper bound to show that, for a class of distribu-

tions, no mechanism can improve over the optimal posted-price mechanism.

Let Θi = [0, 1], and we assume that Φ is absolutely continuous with density

φ.

Theorem 5. Suppose that ψ(c, v) ≡ (v − c)φ(c, v) is strictly decreasing in

c, strictly increasing in v, and continuous in (c, v), for any c < v. Then

no mechanism guarantees expected welfare strictly higher than the wel-

fare guarantee of the posted-price mechanism with price p∗, where p∗ solves
∫ p∗

0
ψ(t, p∗) dt =

∫ 1

p∗
ψ(p∗, t) dt.20

An allocation rule (z(c, v), p(c, v))c,v induces expected welfare
∫

c,v
ψ(c, v)z(c, v) dvdc,

which is a weighted integral of z(c, v), where the weight is ψ(c, v). The mono-

tonicity of the weight function ψ means that more-efficient types have higher

weights. This condition is satisfied by independent uniform distributions

20I thank Gabriel D. Carroll, who pointed out an error in the proof in the previous

version.
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(i.e., φ(c, v) ≡ 1), and any distribution such that “more efficient types are

more likely” (i.e., φ(c, v) is non-increasing in c, non-decreasing in v).

As is shown in the previous section, no (possibly infinite, but bounded)

mechanism can achieve higher expected welfare than W ∗ under Riemann

integrability of ψ, which is satisfied because ψ is assumed to be continuous.

Proof. First, the integral LDIC condition and participation condition imply

the agents’ information rent lower bounds, as we discussed in the previous

section: For each c, v,

(p(c, v)− c)z(c, v) ≥

∫ 1

c

z(t, v) dt,

(v − p(c, v))z(c, v) ≥

∫ v

0

z(c, t) dt.

Adding up the agents’ information rent lower bounds, and because z(c, v) ≤

1, we obtain the following corollary.

Lemma 4. Let (z(c, v), p(c, v))c,v∈[0,1] be an allocation rule with the IRLB

condition. Then for any c, v,

v − c ≥

∫ 1

c

z(t, v) dt +

∫ v

0

z(c, t) dt (SC(c, v)).

This inequality means that the trading rule of an LDIC revelation mech-

anism is constrained by the surplus of a trade in state (c, v), i.e., v − c. We

call this inequality the surplus constraint in (c, v) (or SC(c, v)). Obviously,

c > v implies z(c, v) = 0.

Consider the following relaxed problem for W ∗:

sup
z(·)

∫

c,v

ψ(c, v)z(c, v) dvdc

sub.to SC(c, v), ∀c, v.

We guess which surplus constraints are binding. To give some intuition,

we consider a special case with φ(c, v) = 1 for (c, v) ∈ [0, 1]2 (i.e., a bivariate

uniform distribution), and hence the theorem yields p∗ = 1
2
. See the appendix
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for the general case. Our guess is that only the surplus constraints SC(1 −

q, q) for q ∈ [1
2
, 1] are binding:

2q − 1 ≥

∫ 1

1−q

z(t, q) dt+

∫ q

0

z(1 − q, t) dt (SC(1− q, q)),

and the other surplus constraints are ignored.

Notice that the objective can be decomposed as follows.
∫

c,v

ψ(c, v)z(c, v) dvdc

=

∫ 1

q=0

[

∫ 1

1−q

ψ(t, q)z(t, q) dt+

∫ q

0

ψ(1− q, t)z(1− q, t) dt]dq

=

∫ 1

q= 1

2

[

∫ 1

1−q

ψ(t, q)z(t, q) dt+

∫ q

0

ψ(1− q, t)z(1− q, t) dt]dq,

where the last equality obtains because z(c, v) = 0 for c > v.

For each q ∈ [1
2
, 1], we first solve the following decomposed problem sep-

arately, and show that the solutions to them also consist of the solution to

the original problem (i.e., W ∗):

max
z(·,q),z(1−q,·)∈[0,1]

∫ 1

1−q

ψ(t, q)z(t, q) dt+

∫ q

0

ψ(1− q, t)z(1− q, t) dt

sub.to 2q − 1 ≥

∫ 1

1−q

z(t, q) dt+

∫ q

0

z(1− q, t) dt (SC(1− q, q)).
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Figure 6: A decomposed problem for q

Because the objective is linear in z, in the solution, there is a value ψ∗ such

that z(c, v) = 1 if and only if ψ(c, v) ≥ ψ∗, and zero otherwise. Because a

uniform distribution implies ψ(c, v) = v−c, (i) there is c∗ such that z(t, q) = 1

if and only if t ≤ c∗, (ii) there is v∗ such that z(1 − q, t) = 1 if and only if

t ≥ v∗, (iii) ψ∗ = q−c∗ = v∗−(1−q), and (iv) 2q−1 = [c∗−(1−q)]+[q−v∗]

by the surplus constraint at (1− q, q). These imply c∗ = v∗ = 1
2
.

Therefore, in the solution to the decomposed problem for any q ∈ [1
2
, 1],

the agents trade if and only if c < 1
2
< v. A posted-price mechanism with

p∗ = 1
2
induces this allocation rule, and therefore, no mechanism improves

over this posted-price mechanism.

Remark 3. Because of the symmetry of a uniform distribution, all the bind-

ing constraints are on the diagonal (i.e., (1−q, q) for q ∈ [1
2
, 1])). For a general

distribution, our proof constructs a downward-sloping curve (not necessarily

on the diagonal) that connects (p∗, p∗) to (0, 1) such that maximizing the de-

composed welfare functions subject to the surplus constraints for the points

on this curve yields the posted-price mechanism with price p∗.

Theorem 3 may be interpreted as giving a foundation for the use of

dominant-strategy mechanisms as the optimal robust mechanisms for some

distributions.

5.4.3 Optimality of two-price mechanisms

In this section, we provide a sufficient condition on the environment where

the two-price mechanism we have examined in Section 2 is optimal. Thus, in

contrast to the previous section, the optimal mechanism guarantees strictly

higher expected welfare than any posted-price mechanism.

Recall that a two-price mechanism where the seller chooses a price is

characterized by (z1, p1), (z2, p2) ∈ X with z1 > z2 and p1 < p2 as follows:

The seller chooses p ∈ {p1, p2}, the buyer chooses p ∈ {p1, p2}, and (zk, pk)

is assigned if p = pk ≤ p (otherwise, no trade). That is, the trading price is
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chosen by the seller, and the buyer essentially accepts or rejects each price.

In the following, this mechanism is called a “two-price-for-seller” mechanism

(with (z1, p1), (z2, p2)).

As discussed in Section 2, the buyer has a dominant strategy in this

mechanism, while the seller does not. In particular, for the seller with c ∈

(p1z1−p2z2
z1−z2

, p1), either price is admissible: If he believes that the buyer chooses

p = p2, then p = p2 yields is better, while if he believes that the buyer chooses

p = p1, then p = p1 is better.

Similarly, a “two-price-for-buyer” mechanism with (z1, p1), (z2, p2) (where

z1 > z2 and p1 > p2) is such that the buyer chooses p ∈ {p1, p2}, the seller

chooses p ∈ {p1, p2}, and (zk, pk) is assigned if p = pk ≥ p.

Theorem 6. Suppose that Φ is the following discrete distribution: There

exist C = {c1, c2} ⊆ Θ1 and V = {v1, v2} ⊆ Θ2 with c1 < v1 < c2 < v2 such

that Pr((c, v) ∈ C × V ) = 1. Let Φjk = Pr((c, v) = (cj , vk)). Then,

• if Φ11

Φ22

≥ (v2−v1)(v2−c2)
(c2−c1)(v1−c1)

, then a two-price-for-seller mechanism with (1, v1), (
v1−c1
c2−c1

, c2)

is optimal.

• if Φ11

Φ22

< (v2−v1)(v2−c2)
(c2−c1)(v1−c1)

, then a two-price-for-buyer mechanism with (1, c2), (
v2−c2
v2−v1

, v1)

is optimal.

Proof. We treat C × V as the true type space. By Corollary 3, the highest

achievable guarantee of the expected welfare is upper bounded by

W ∗ = sup
(zjk,pjk)j,k

∑

j,k

(vk − cj)zjkΦjk

sub.to (p1k − c1)z1k ≥ (p2k − c1)z2k, ∀k,

(v2 − pj2)zj2 ≥ (v2 − pj1)zj1, ∀j, k,

(p2k − c2)z2k ≥ 0, ∀k,

(v1 − pj1)zj1 ≥ 0, ∀j.

As in the case with continuous type spaces, these LDIC conditions induce

lower bounds for the agents’ information rents, which then induce the surplus
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constraints:

W ∗ ≤ sup
(zjk)j,k

∑

j,k

(vk − cj)zjkΦjk

sub.to (v1 − c2)z21 ≥ 0,

(v2 − c2)z22 ≥ (v2 − v1)z21,

(v1 − c1)z11 ≥ (c2 − c1)z21,

(v2 − c1)z12 ≥ (c2 − c1)z22 + (v2 − v1)z11.

For this relaxed problem, first, because v1 < c2, we have z21 = 0. Because

v2 − c1 > 0, and because z12 is not bounded from above except that z12 ≤ 1,

we have z12 = 1. For z11 and z22, because the problem is linear and both

v1 − c1 and v2 − c2 are positive, one of them equals one, while the other is

determined so as to satisfy v2 − c1 = (c2 − c1)z22 + (v2 − v1)z11.

If we have z11 = 1, then z22 =
v1−c1
c2−c1

, and the objective is

(v2 − c1)Φ12 + (v1 − c1)Φ11 + (v2 − c2)
v1 − c1
c2 − c1

Φ22. (6)

If we have z22 = 1, then z11 =
v2−c2
v2−v1

, and the objective is

(v2 − c1)Φ12 + (v1 − c1)
v2 − c2
v2 − v1

Φ11 + (v2 − c2)Φ22. (7)

Therefore, if φ11

φ22

≥ (v2−v1)(v2−c2)
(c2−c1)(v1−c1)

, then the first way is better, and vice

versa.

The two-price mechanisms in the statements attain these upper bound

levels of expected welfare, and therefore, they are the optimal mechanisms if

C × V is the true type space. Even if Θ ) C × V is the true type space, the

optimal mechanism does not change as long as Pr((c, v) /∈ C × V ) = 0.

Remark 4. In the binary case, it turns out that it is a “probability zero

event” (in terms of Φ) that an agent does not have a dominant strategy, but

with more than two types, it is possible that with a positive probability, some

types of an agent have multiple admissible actions.
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5.4.4 Optimality of “demand-curve mechanisms”

In this section, we generalize two-price mechanisms to allow more than

two prices, and interpret that class of mechanisms as “demand-curve” (or

“supply-curve”) mechanisms. In the following, we assume Θi = [0, 1] for each

i, and Φ is absolutely continuous with density φ. Let ψ(c, v) = (v− c)φ(c, v).

In a demand-curve mechanism, the seller chooses a price in p ∈ [0, 1], and

the probability of trading is given by a decreasing function ζ : [0, 1] → [0, 1].

We call this function ζ a “demand curve”. The buyer reports p ∈ [0, 1] as the

highest acceptable price. The allocation is (ζ(p), p) if p ≤ p, and no trade

otherwise. In the previous two-price mechanism, we have

ζ(p) = 0 if p > p1,

ζ(p) = z1 if p2 < p ≤ p1,

ζ(p) = z2 if p ≤ p2.

Definition 4. Γ = 〈M, g〉 is a demand-curve mechanism if M1 =M2 = R+,

and there is a function ζ(p) : [0, 1] → [0, 1] such that (i) g(p, p) = (ζ(p), p)

if p ≤ p, (ii) g(p, p) = (0, 0) if p > p, and (iii) ζ(p) is non-increasing and

left-continuous (i.e., ζ(p) = limp′↑p ζ(p
′)).

Under a demand-curve mechanism, the seller’s profit is given by (p−c)ζ(p)

if p is accepted. If we interpret ζ as a “demand curve”, (p−c)ζ(p) represents a

“monopolist’s profit”. Thus, if the seller believes that the “monopoly price”,

a price that maximizes (p − c)ζ(p), is acceptable for the buyer, then he

chooses it. On the other hand, if he believes that the buyer may choose p

lower than the monopoly price, then he has an incentive to choose a lower

price. Therefore, in this mechanism, the seller does not have a dominant

strategy. Let p∗(c) be the lowest price in argmaxp∈[0,1](p− c)z(p), and we call

it the monopoly price for the seller with type c.21

21We observe that argmaxp∈[0,1](p − c)ζ(p) is not empty. Let p1, p2, . . . , be a sequence

of prices where limk→∞(pk − c)ζ(pk) = supp∈[0,1](p − c)ζ(p). Let p∗ = limk→∞ pk. If

(p∗ − c)ζ(p∗) 6= limk→∞(pk − c)ζ(pk), then ζ(p) is discontinuous at p∗, which implies
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Observe that the mechanism is bounded. For the buyer, he has a domi-

nant strategy. For the seller with type c, (i) p∗(c) is admissible because p∗(c)

is the unique best response to p = p∗(c), (ii) any p /∈ [c, p∗(c)] is weakly dom-

inated by p∗(c), (iii) if p ∈ (c, p∗(c)) is weakly dominated, then it is weakly

dominated by the lowest price in argmaxp′∈[0,p](p
′ − c)ζ(p′).22

The worst-case expected welfare in this mechanism is obtained when the

seller with any cost c chooses p∗(c). Let z : Θ → [0, 1] be the worst-case trade

rule for a demand curve ζ , i.e., z(c, v) = ζ(p∗(c)) if v > p∗(c), and z(c, v) = 0

otherwise. The worst-case expected welfare is given as follows.

∫

(c,v)

ψ(c, v)z(c, v)dvdc

=

∫ 1

c=0

∫ 1

v=p∗(c)

ψ(c, v)ζ(p∗(c))dvdc.

Let ZD denote the set of the worst-case trade rules for the demand curve

mechanisms.

Symmetrically, we can define a (fixed) supply-curve mechanism so that

a non-decreasing function ζ(p) is fixed at the beginning, and now the seller

reports the lowest acceptable price p, the buyer chooses the trading price p,

and the outcome is (ζ(p), p) if p ≥ p, and (0, 0) otherwise. In the rest of the

section, we only consider demand-curve mechanisms, but the same results

hold for supply-curve mechanisms as well.

We now show that, for a class of the designer’s priors, a demand-curve

mechanism is optimal among all bounded mechanisms. Let ζ∗ : [0, 1] → [0, 1]

represent a demand-curve mechanism that is optimal among all demand-

curve mechanisms, and let WD denotes the worst-case expected welfare at-

tained by ζ∗.

As in the proof of Theorem 4, for each K ∈ N and α = (α1, α2) ∈ [0, 1
K
],

we consider the following “Problem (K,α)”: Letting cj =
j

K
−α1, vk = k

K
−α2,

(p∗ − c)ζ(p∗) > supp∈[0,1](p − c)ζ(p), but this is a contradiction. The same argument

shows that argmaxp∈[0,1](p− c)ζ(p) is a compact subset of [0, 1].
22argmaxp′∈[0,p](p

′ − c)ζ(p′) is nonempty as for argmaxp∈[0,1](p− c)z(p).
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and ψjk = ψ(cj , vk) for j, k = 1, . . . , K,

W (K,α) = max
(zjk ,pjk)j,k

1

K2

∑

j,k

ψjkzjk

sub.to (pjk − cj)zjk ≥ (pj+1,k − cj)zj+1,k, ∀j, k,

(vk − pjk)zjk ≥ (vk − pj,k−1)zj,k−1, ∀j, k,

(pKk − cK)zKk ≥ 0, ∀k,

(v1 − pj1)zj1 ≥ 0, ∀j.

For any K, supαW (K,α) ≥ W ≥ WD, where W denotes the highest

achievable guarantee of expected welfare among all bounded mechanisms.

Theorem 7. For each (K,α), suppose that there is zK,α ∈ ZD that satisfies

the following: For any ε > 0, there is K(ε) ∈ N such that supα |W (K,α)−
∑

j,k ψjkz
K,α(cj, vk)| ≤ ε for K ≥ K(ε).

Then, W = WD, i.e, the demand-curve mechanism ζ∗ is optimal.

The theorem states that, if some demand curve mechanism (which may

be different from ζ∗) is approximately optimal for each Problem (K,α), then

ζ∗ is optimal for the original problem.

Proof. Because the optimal demand curve mechanism guarantees WD with

prior Φ, we have

WD ≥

∫

c,v

ψ(c, v)zK,α(c, v)dvdc.

Fix an arbitrary K and α. Let Θj
1 = (cj−1, cj ], Θk

2 = [vk, vk+1), and

wK,α(c, v) = ψ(cj , vk)z
K,α(c, v) for (c, v) ∈ Cj × Vk.

∣

∣

∣
W (K,α)−

∫

ψ(c, v)ẑK,α(c, v)
∣

∣

∣

=

∫

c,v

|wK,α(c, v)− ψ(c, v)ẑK,α(c, v)|dθ

≤
1

K2

∑

j,k

| sup
(c,v)∈Θj

1
×Θk

2

ψ(c, v)ẑK,α(c, v)− inf
(c,v)∈Θj

1
×Θk

2

ψ(c, v)ẑK,α(c, v)|

≤
1

K2

∑

j,k

| sup
(c,v)∈Θj

1
×Θk

2

φ(c, v)− inf
(c,v)∈Θj

1
×Θk

2

φ(c, v)|.
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Because of the Riemann integrability of φ, for any ε > 0, there isK(ε) ∈ N

such that supα |W (K,α)−
∑

j,k ψjkz
K,α(cj , vk)| ≤ ε for K ≥ K(ε).

Therefore, we have WD = W , which means that the demand curve mech-

anism that guarantees WD is optimal among all mechanisms.

We provide a condition in which a demand-curve mechanism is approxi-

mately a solution to Problem (K,α) . For each j, k, and k′ ≤ k, define

η(j, k) =
1

K

K
∑

k̃=k

ψjk̃,

η̃(j, k, k′) = η(j, k) + (vk − cj +
1

K
)ψjk′.

η(j, k) roughly indicates the potential welfare obtained by making the

seller with cost cj trade with the buyer with v ≥ vk, and η̃(j, k, k
′) is η(j, k)

plus some extra term.

Assumption 1. There exist j∗ and γ(j) that is non-decreasing in j, γ(j) =

min{k|vk ≥ cj} for j ≥ j∗, and, letting δ(k) = max{j ≤ j∗ − 1|γ(j) ≤ k},

1. η(j∗, γ(j∗)) ≥ η(j1, γ(j1)) for j1 > j∗,

2. 1
j∗−j1

∑j∗

j=j1+1 η(j, γ(j)) ≥ η̃(j1, γ(j1), k1) for j1 < j∗ and k1 < γ(j1),

3. 1
j∗−δ(k1)

∑j∗

j=δ(k1)+1 η(j, γ(j)) ≤
1

δ(k1)−j1+1

∑δ(k1)
j=j1

η̃(j1, k1, k1) for j1 < j∗

and k1 ≥ γ(j1), and

4.
∑δ(k1)

j=1 ψjk1 ≥ η(j∗, γ(j∗)) for each k1 ≥ γ(1).

The first two conditions are satisfied, for example, when η(j, γ(j)) is in-

creasing in j for j < j∗ and decreasing for j > j∗. The third condition

requires that η(j, γ(j)) does not change too rapidly for j < j∗. The last

condition is satisfied, for example, when there is some v > 0 such that

Pr(v < v) = 0 and Pr(c < v) is sufficiently high.

Let S = sup(c,v) ψ(c, v), which is in R+ because ψ is Riemann integrable.
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Proposition 1. If Problem (K,α) satisfies Assumption 1, then there is

zK,α ∈ ZD such that |W (K,α)−
∑

j,k ψjkz
K,α(cj, vk)| ≤

2S
K
.

The proof is in the appendix. The following example shows that Theorem

7 is not vacuous.

Example 1. Suppose that φ(c, v) = 1
(1−c)2

if (c, v) ∈ [0, 0.45] × [0.9, 1] or

(c, v) ∈ [0, 0.95]× [0.95, 1], and φ(c, v) = 0 otherwise.23

Proposition 2. The following demand-curve mechanism is optimal: ζ∗(p) =

1 if p ≤ 0.9, ζ∗(p) = 9
10

if p ∈ (0.9, 0.95], and ζ∗(p) = 0 otherwise.

The worst-case trade rule of this mechanism is given as follows: z(c, v) = 1

for (c, v) ∈ [0, 0.45]× (0.9, 1], z(c, v) = 9
10

for (c, v) ∈ (0.45, 0.95]× (0.95, 1],

and z(c, v) = 0 otherwise.

Indeed, this mechanism guarantees expected welfare

∫ 0.45

c=0

∫ 1

v=0.9

ψ(c, v)dvdc+

∫ 0.95

c=0.45

∫ 1

v=0.95

9

10
ψ(c, v)dvdc = 0.143,

which is 94% of the first-best welfare (0.153), and is higher than the expected

welfare attained by the optimal posted-price p∗ = 0.9:

∫ 0.45

c=0

∫ 1

v=0.9

ψ(c, v)dvdc+

∫ 0.9

c=0.45

∫ 1

v=0.95

ψ(c, v)dvdc = 0.131,

which is 86% of the first-best welfare.

To prove the proposition, it suffices to observe that, with sufficiently large

K, the worst-case trade rule for ζ∗ attains no less than W (K,α)− 2S
K

for any

Problem (K,α). We prove it in the appendix.

23We can find other examples with more “standard” distributions, such as those with

independent and continuous density functions, but then the analysis becomes more com-

plicated.
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5.5 Without balanced budget

In this section, we consider an environment without balanced budget (e.g.,

auction). The mechanism designer’s utility function is w(z, t, θ), which is

decreasing in each ti. As in the balanced-budget case, we assume that any

mechanism has an “opt-out” message for each agent, and whenever agent i

chooses that message, (zi, ti) = 0 is assigned for him. In the following, we

consider the case with Θi = [0, 1] for each i, but the similar results hold for

the case with finite type spaces as well.

As in Theorem ??, under certain conditions on the environment, the high-

est achievable guarantee of the designer’s expected utility is upper bounded

by the following IRLB bound:

max
f(·)

∫

θ

w(f(θ), θ) dΦ

sub.to Ui(θ) ≥

∫ θi

0

zi(θ̃i, θ−i) dθ̃i, ∀i, θ.

Without balanced budget, all IRLBs are satisfied with equality:24

We call each constraint with equality ICFOCi(θ).

Suppose that the solution to the relaxed problem is a monotonic allocation

rule (z∗(θ), t∗(θ))θ. Then, the allocation rule is dominant-strategy incentive

compatible and ex post individually rational.25

As an example, suppose that w(z, t, θ) =
∑

i θizi − λ
∑

i ti for some con-

stant λ > 0. Then, the designer’s objective is a weighted sum of the agents’

total surplus and monetary residual.26 Then, the relaxed problem for W ∗ is

24Otherwise, we can decrease a transfer by a small amount without violating any other

constraints nor decreasing the objective. With the exact balanced budget, this logic does

not apply, because any decrease in the transfer to one of the agents implies an increase in

the transfer to the other agent.
25For example, see Milgrom (2004).
26A simple story would be that the mechanism designer can be a residual claimant for

the net transfers. In this case, the expected (not exact) budget balance may be the only

necessary requirement, and λ > 0 corresponds to the “shadow price” for the expected

budget balance constraint. An alternative situation is that the mechanism designer is a
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given as follows:

max
z(·),t(·)

∫

θ

∑

i

θizi − λ
∑

i

ti dΦ

sub.to Ui(θ) =

∫ θi

0

zi(θ̃i, θ−i) dθ̃i ∀i, θ.

Now, replacing ti(θ) in the objective by the ICFOCi(θ), and applying

integration by parts, the objective function becomes the following.

∫

θ

∑

i

θizi − λ
∑

i

[

∫ θi

θi

zi(θ̃i, θ−i) dθ̃i − θizi(θ)] dΦ

=

∫

θ

∑

i

[

((1 + λ)θi − λ
1− Φi(θi|θ−i)

φi(θi|θ−i)
)
]

zi(θ) dΦ,

where Φi(θi|θ−i) and φi(θi|θ−i) denote the conditional cdf and pdf of θi given

θ−i. Suppose that the monotone hazard rate conditions are satisfied for the

conditional distributions: 1−Φi(θi|θ−i)
φi(θi|θ−i)

is non-increasing in θi for any θ−i, then

we obtain a monotone trading rule as the solution to this expected welfare

maximization problem, which is dominant-strategy incentive compatible and

ex post individually rational. Thus, there is no improvement over the optimal

dominant-strategy mechanism.

This result provides a foundation to restrict attention to dominant-strategy

mechanisms in this setting.27 The result is also related to a result obtained

by Chung and Ely (2007). They show that the mechanism that maximizes

the worst-case expected revenue (corresponding to λ → ∞) is dominant-

strategy incentive compatible if Φ satisfies affiliation and monotone hazard

rate condition. Note that the “worst-case” in their definition is based on the

robust partial implementation of Bergemann and Morris (2005).

government who is concerned not only about the agents’ welfare, but also the “tax payers”.

Then, she may desire to maximize the weighed sum of the expected welfare of the agents

and the tax payers, as in Laffont and Tirole (1993). In this case, λ represents the shadow

price of the transfer from the tax payers to the agents. This becomes equivalent to a

revenue maximization problem, if 1
λ
→ 0.

27For example, see Segal (2003).
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A Proof of Theorem 3

For each i and ki, let θ
ki
i = inf Θki

i . In the following, we assume that every

Θki
i is left-closed (i.e., θkii ∈ Θki

i ). The proof for the general case is in the

appendix.

Each θkii is the lower limit of the equivalent types Θki
i . The ordinal LDIC

condition implies:

θkii z
k
i + tki ≥ θkii z

ki−1,k−i

i + t
ki−1,k−i

i ,

where f̃(Θk) = (zki , t
k
i )

N
i=1.

Define an allocation rule f = (zi, ti)
N
i=1 so that, for each i and θ ∈

∏

l[θ
kl
l , θ

kl+1
l ),

zi(θ) = zki if θ ∈
∏

l

[θkll , θ
kl+1
l ),

ti(θ) = tki if θ ∈
∏

l

[θkll , θ
kl+1
l ).

This allocation rule satisfies the “local downward incentive compatibility”

(or LDIC), in the sense that for any type of an agent, the truth-telling is al-

ways weakly better than pretending to be slightly less efficient types. Because

the ordinal ADIC condition implies the LDIC condition, the LDIC condition

is also a necessary condition for implementable F by finite mechanisms.

The next step is to show that the LDIC condition has an integral form

as in the statement. We first show the inequalities for the threshold types.

For each i and θk, the LDIC condition implies

θkii (zki − z
ki−1,k−i

i ) + tki − t
ki−1,k−i

i ≥ 0.

Thus, summing both sides for j = k′i + 1, . . . , ki,

ki
∑

j=k′i+1

θji (z
j,k−i

i − z
j−1,k−i

i ) + t
j,k−i

i − t
j−1,k−i

i ≥ 0.
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and thus,

Ui(θ
k) ≡ θkii z

k
i + tki ≥ Ui(θ

k′i
i , θ

k−i

−i ) +

ki
∑

j=k′i+1

(θji − θj−1
i )z

j−1,θ
k
−i

−i

i .

Because (θji − θj−1
i )z

j−1,θ
k
−i

−i

i =
∫ θ

j
i

θ
j−1

i

zi(t, θ
k−i

−i )dt, we obtain

Ui(θ
k) ≥ Ui(θ

k′i
i , θ

k−i

−i ) +

∫ θ
ki
i

θ
k′
i

i

zi(t, θ
k−i

−i )dt.

Now, let θ ∈
∏

l[θ
kl
l , θ

kl+1
l ). Because (zi(θ), ti(θ)) = (zki , t

k
i ), we have

Ui(θ) = Ui(θ
k) + (θi − θkii )zki .

Therefore, for any θi, θ
′
i and θ−i,

Ui(θ) ≥ Ui(θ
′
i, θ−i) +

∫ θi

θ′i

zi(t, θ−i)dt.

B Proof of Theorem 5

For each q ∈ (p∗, 1], define r(q) so that

∫ r(q)

0

ψ(t, p∗) dt =

∫ 1

q

ψ(p∗, t) dt.

Observe that r(q) uniquely exists for each q, is strictly decreasing in q,

r(q) → p∗ as q → p∗. Also, because the right hand side is differentiable in q,

so is the left hand side, and r′(q)ψ(r(q), p∗) = −ψ(p∗, q).

Recall that our (relaxed) problem is

sup
z(·)

∫

c,v

ψ(c, v)z(c, v) dvdc

sub.to (v − c)z(c, v) ≥

∫ 1

c

z(θ, v) dθ +

∫ v

0

z(c, θ) dθ, c ≤ v.
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In the following, we ignore all the constraints except for the surplus con-

straint at (r(q), q) for each q ∈ [p∗, 1]:

SC(r(q), q) : q − r(q) ≥

∫ 1

r(q)

z(θ, q) dθ +

∫ q

0

z(r(q), θ) dθ.

Also, notice that the objective can be decomposed as follows.

∫

c,v

ψ(c, v)z(c, v) dvdc =

∫ 1

q=0

[

∫ 1

r(q)

ψ(θ, q)z(θ, q) dθ +

∫ q

0

ψ(r(q), θ)(−r′(q))z(r(q), θ) dθ]dq

=

∫ 1

q=p∗
[

∫ 1

r(q)

ψ(θ, q)z(θ, q) dθ +

∫ q

0

ψ(r(q), θ)(−r′(q))z(r(q), θ) dθ]dq,

where the last equality obtains because z(c, v) = 0 for c > v.

Now, consider the following decomposed problem. For each q ∈ [p∗, 1],

max
z(r(q),·),z(·,q)∈[0,1]

∫ 1

r(q)

ψ(θ, q)z(θ, q) dθ +

∫ q

0

ψ(r(q), θ)(−r′(q))z(r(q), θ) dθ

sub.to q − r(q) ≥

∫ 1

r(q)

z(θ, q) dθ +

∫ q

0

z(r(q), θ) dθ.

Because the objective is linear in z, we set z(c, v) = 1 if its coefficient is

large enough. That is, for each q, (i) there is θc such that z(θ, q) = 1 if and

only if θ ≤ θc, (ii) there is θv such that z(r(q), θ) = 1 if and only if θ ≥ θv,

(iii) ψ(θc, q) = ψ(r(q), θv)(−r
′(q)), and (iv) q − r(q) = q − θc + θv − r(q).

Condition (iv) implies θc = θv, and hence, condition (iii) implies ψ(θc, q) =

ψ(r(q), θc)(−r
′(q)). The left hand side is decreasing in θc, while the right

hand side is increasing in θc. Therefore, θc uniquely exists for each q. This

implies θc = p∗, because p∗ solves ψ(p∗, q) = ψ(r(q), p∗)(−r′(q)).

Let W ∗(q) denote the value of the problem above for each q. Then the

welfare guarantee is no greater than
∫ 1

p∗
W ∗(q) dq. Thus, if we can find a

mechanism that guarantees
∫ 1

p∗
W ∗(q) dq, then it is optimal. Indeed, this

level of expected welfare is guaranteed by a posted-price mechanism with

price p∗, because under the mechanism, we obtain z(c, v) = 1 if and only if

c < p∗ and v > p∗.
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C Proof of Proposition 1

Define

W (K,α) = sup
(zjk)j,k

1

K2

∑

j,k

ψjkzjk

sub.to

K−1
∑

k=1

zj1k +

K
∑

j=j1+1

zjK ≤ K(vK − cj1)zj1,K , ∀j1, (SC(j1))

k1−1
∑

k=1

zj1−1,k +

K−1
∑

k=k1

zj1k +

K
∑

j=j1+1

zjK +K(vk1 − cj1−1)zj1k1

≤ K(vk1 − cj1−1)zj1−1,k1 +K(vK − cj1)zj1,K , ∀j1 ≤ k1 (PSC(j1, k1)).

z1k ∈ [0, 1], ∀k,

zjk ≥ 0, ∀j, k.

The first constraint is the discrete version of the surplus constraint (see

Lemma 4). Similarly, the second constraint may be interpreted as the pair-

wise surplus constraint, because the pair of surpluses in states (j1 − 1, k1)

and (j1, K) restricts possible allocations.

Then we haveW (K,α) ≤W (K,α), because of the following two observa-

tions. First, as in the continuous case (see Theorem 3), the LDIC condition

implies that, for each j1,

(pj1K − cj1)zj1k ≥

K
∑

j=j1+1

(cj − cj−1)zj,K =
1

K

K
∑

j=j1+1

zj,K ,

(vk − pjk)zjk ≥
K−1
∑

k=1

(vk+1 − vk)zj1,k =
1

K

K−1
∑

k=1

zj1,k.

Summing up these two inequalities, we obtain

K(vK − cj1)zj1,K ≥

K−1
∑

k=1

zj1k +

K
∑

j=j1+1

zjK .
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Second, we have

(pj1K − cj1)zj1K ≥
1

K

K
∑

j=j1+1

zj,K ,

(pj1−1,k1 − cj1−1)zj1−1,k1 ≥ (pj1k1 − cj1)zj1k1 +
1

K
zj1k1 ,

(vk1 − pj1−1,k1)zj1−1,k1 ≥
1

K

k1−1
∑

k=1

zj1−1,k,

(vK − pj1K)zj1K ≥ (vk1 − pj1k1)zj1k1 +
1

K

K−1
∑

k=k1

zj,k.

Summing up these four inequalities, we obtain

K(vK − cj1)zj1K +K(vk1 − cj1−1)zj1−1,k1

≥
K
∑

j=j1+1

zjK +
K−1
∑

k=k1

zj1,k +K(vk1 − cj1−1)zj1,k1 +

k1−1
∑

k=1

zj1−1,k.

Therefore, this new problem has a larger feasible set, and thus,W (K,α) ≤

W (K,α).

We now solve this problem with Assumption 1. First, because z1K is

bounded from above only by the constraint that z1K ≤ 1, we have z1K = 1.

The surplus constraint SC(1) holds with equality, because otherwise, we can

increase the objective by increasing z1K .

In the following, we ignore the pairwise surplus constraint PSC(j1, k1)

for j1 ≤ j∗ and k1 < γ(j1), the surplus constraint SC(j1) for j1 ≥ j∗, and the

non-negativity constraints for zjk if 1 < j ≤ j∗ and k ≥ γ(j), or if j > j∗ and

j ≤ k < K. The solution without those constraints proves to satisfy them.

For each 1 < j1 < j∗, the surplus constraint SC(j1) holds with equality,

because otherwise, we can increase the objective by decreasing each zj1k,

k = γ(j1), . . . , K by ε > 0, and increasing each zjk, j = j1 + 1, . . . , j∗,

k = γ(j), . . . , K by ε
j∗−j1

.

By the similar logic, we have zj1k1 = 0 for 1 ≤ j1 < j∗ and k1 < γ(j1),

because otherwise, we can increase the objective by decreasing each zj1k,
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k = γ(j1), . . . , K by ε > 0, zj1k1 by [K(vγ(j1) − cj1)+ 1]ε, and increasing each

zjk, j = j1 + 1, . . . , j∗, k = γ(j), . . . , K by ε
j∗−j1

.

For each j > j∗, if zjK > 0, then we can increase the objective by de-

creasing zjk by ε > 0 for each k ≥ γ(j) and increasing each zj∗k by ε for each

k ≥ γ(j∗). Thus, for each j > j∗, we have zjK = 0.

For each zj1k1 for 1 < j1 < j∗ and k1 ≥ γ(j1), the pairwise surplus con-

straint PSC(j1, k1) holds with equality, because otherwise, we can increase

the objective by increasing each zj1k, k = k1 + 1, . . . , K by ε > 0, zj1k1 by

[K(vk1−cj1)+2]ε, and decreasing each zjk, j = j1+1, . . . , j∗, k = γ(j), . . . , K

by ε
j∗−j1

.

Also, for each zj1k1 for j1 ≥ j∗ and k1 ≥ j∗, the pairwise surplus constraint

PSC(j1, k1) holds with equality, because zj1k1 is bounded from above only

by this constraint.

Therefore, for each zjk for j ≥ 2, we obtain the following.

• zjK = 0 for j > j∗,

• zjk = z1k + zjK − 1 for j ≥ 2 and k = γ(j), . . . , K − 1,

• zjk = 0 for all j and k < γ(j), and

• zj1KK(vγ(j1) − cj1) =
∑j∗

j=j1+1 zjK .

Replacing zjk for j ≥ 2, the objective becomes a linear function of

(z1k)
K
k=γ(1). The coefficient for each z1k1 is no smaller than

δ(k1)
∑

j=1

ψjk1 −
K
∑

k=γ(j∗)

ψj∗k ≥ 0.

Because z1k ∈ [0, 1], we have z1k = 1, which then induces the following.

• zjk = zjK for j ≤ j∗ and k ≥ γ(j),

• zj1KK(vγ(j1) − cj1) =
∑j∗

j=j1+1 zjK for j1 < j∗, and

• zjk = 0 otherwise.
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This (zjk)j,k is the solution because it satisfies all the constraints ignored.

Now, we construct a demand-curve mechanism ζK,α whose worst-case

trade rule attains no less than W (K,α)− 2S
K
. Let ζK,α(p) = 1 for p ≤ vγ(1),

ζK,α(p) = zjK for p ∈ (vγ(j−1), vγ(j)] for each 1 < j ≤ j∗−1, ζK,α(p) = zj∗−1,K

for p ∈ (vγ(j∗−1), cj∗ ], and ζ(p) = 0 for p > vγ(j∗).

Then, its worst-case trade rule, zK,α, satisfies z(cj , vk) = zjk for each

j < j∗ and k > γ(j), while z(cj , vk) ≤ zjk for j = j∗, or for each j < j∗ and

k = γ(j).

Therefore,

W (K,α)−
1

K2

∑

jk

ψjkz
K,α(cj, vk)

≤
1

K2
[

K
∑

k=γ(j∗)

S +

j∗−1
∑

j=1

S]

≤
2S

K
.

D Proof of Proposition 2

Fix arbitrary (K,α), and let j∗ = max{j|cj ≤ 0.95}, j∗∗ = max{j|cj ≤ 0.45},

k∗ = min{k|vk ≥ 0.95}, k∗∗ = min{k|vk ≥ 0.9}, and let γ(j) = k∗ for

j∗∗ < j ≤ j∗ and γ(j) = k∗∗ for j ≤ j∗∗.

Consider the following problem:

Ŵ (K,α) = max
(zjk ,pjk)j,k

1

K2

∑

j,k

ψ̂jkzjk

sub.to (pjk − cj)zjk ≥ (pj+1,k − cj)zj+1,k, ∀j, k,

(vk − pjk)zjk ≥ (vk − pj,k−1)zj,k−1, ∀j, k,

(pKk − cK)zKk ≥ 0, ∀k,

(v1 − pj1)zj1 ≥ 0, ∀j,

where ψ̂j∗k = ψj∗−1,k for k ≥ k∗, and ψ̂jk = ψjk otherwise. Note that we have
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|Ŵ (K,α)−W (K,α)| ≤ S
K
.28

Recall that, for each j < k and k′ ≤ k,

η(j, k) =
1

K

K
∑

k̃=k

ψ̂jk̃,

η̃(j, k, k′) = η(j, k) + (vk − cj +
2

K
)ψ̂jk′.

Then, we have η(j − 1, k) ≤ η(j, k) ≤ η(j, k + 1), η̃(j, k, k′) ≤ η̃(j, k, k),

and η̃(j + 1, k, k) ≤ η̃(j, k) ≤ η̃(j, k + 1).

We now show that, for sufficiently largeK, this problem satisfies Assump-

tion 1 for any α.

First, for j1 > j∗, we have η(j∗, γ(j∗))−η(j1, γ(j1)) > 0 because η(j1, γ(j1)) =

0.

Second, for j1 < j∗ and k1 < γ(j1), we have η̃(j1, γ(j1), k1) = η(j1, γ(j1)).

Thus, (i) if j∗∗ < j1 < j∗,

1

j∗ − j1

j∗
∑

j=j1+1

η(j, γ(j))− η̃(j1, γ(j1), k1)

=
1

j∗ − j1

j∗
∑

j=j1+1

η(j, k∗)− η(j1, k
∗),

which is positive because ηjk is non-decreasing in j.

28Let (zjk)j,k and (ẑjk)j,k be such that

1

K2

∑

j,k

ψjkzjk ≥
1

K2

∑

j,k

ψjk ẑjk,

1

K2

∑

j,k

ψ̂jk ẑjk ≥
1

K2

∑

j,k

ψ̂jkzjk.

Then,

1

K2

∑

j,k

ψjkzjk −
S

K
≤

1

K2

∑

j,k

ψ̂jkzjk ≤
1

K2

∑

j,k

ψ̂jk ẑjk ≤
1

K2

∑

j,k

ψjkẑjk +
S

K
≤

1

K2

∑

j,k

ψjkzjk +
S

K
.
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(ii) For j1 ≤ j∗∗,

1

j∗ − j1

j∗
∑

j=j1+1

η(j, γ(j))− ˜eta(j1, γ(j1), k1)

≥
1

j∗ − j∗∗

j∗
∑

j=j∗∗+1

η(j, k∗)− η(j∗∗, k∗∗)

=
1

0.95− 0.45

∫ 0.95

c=0.45

∫ 1

v=0.95

ψ(c, v)dvdc−

∫ 1

v=0.9

ψ(0.45, v)dv + o(
1

K
)

= 0.03 + o(
1

K
),

which is positive for sufficiently large K.

Third, for j1 < j∗ and k1 ≥ γ(j1)(= k∗∗), (i) if k1 ≥ k∗, then

1

j∗ − δ(k1)

j∗
∑

j=δ(k1)+1

η(j, γ(j))−
1

δ(k1)− j1 + 1

δ(k1)
∑

j=j1

η̃(j1, k1, k1)

= η(j∗, k∗)−
1

j∗ − j1

j∗−1
∑

j=j1

η̃(j1, k1, k1)

≤ η(j∗, k∗)− η̃(j∗ − 1, k1, k1),

which is negative because η̃(j∗ − 1, k1, k1) ≥ η̃(j∗, k1, k1) ≥ η(j∗, k∗).

(ii) If k1 < k∗ and j1 ≤ j∗∗, then

1

j∗ − δ(k1)

j∗
∑

j=δ(k1)+1

η(j, γ(j))−
1

δ(k1)− j1 + 1

δ(k1)
∑

j=j1

η̃(j1, k1, k1)

≤
1

j∗ − j∗∗

j∗
∑

j=j∗∗+1

η(j, k∗)− η̃(j∗∗, k∗∗, k∗∗)

=
1

0.95− 0.45

∫ 0.95

c=0.45

∫ 1

v=0.95

ψ(c, v)dvdc− [

∫ 1

v=0.9

ψ(0.45, v)dv + 0.45ψ(0.45, 0.9)] + o(
1

K
)

= −0.17 + o(
1

K
),

which is negative for sufficiently large K.
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For the last condition in Assumption 1, for k1 ≥ γ(1) = k∗∗,

j∗∗
∑

j=1

ψ̂jk1 − η(j∗, k∗) ≥

j∗∗
∑

j=1

ψ̂jk∗∗ − η(j∗, k∗)

=

∫ 0.45

c=0

ψ(c, 0.9)dc−

∫ 1

v=0.95

ψ(0.95, v)dv + o(
1

K
)

= 0.016 + o(
1

K
),

which is positive for sufficiently large K.
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