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ABSTRACT
An autocoherent model is a model which is validated by the data if peo-

ple use it to form their expectations. A structural model may be incorrect
but autocoherent, thus supporting a self-confirming equilibrium. This paper
explores some mathematical properties of autocoherent models. The first
part clarifies the relationship between autocoherence and identification.It es-
tablishes suffi cient conditions under which an expert constraints is compelled
to reveal the true value of some parameter. These conditions are related to
the traditional notion of identification, but it must be amended to reflect
the performativity of the perceived model and the fact that identification
is different depending on the econometrician’s assumptions about the per-
ceived model’s validity. The second part clearly spells out the conditions for
an autocoherent model equilibrium to arise in the linear/Gaussian case, and
provides an equivalent characterization based on an "interpretation". That
is, an autocoherent model equilibrium can be constructed on the basis of
a linear transformation which maps the actual realization of the shocks to
their "interpreted counterpart", defined as the value of the shocks consis-
tent with the observed outcomes on the basis of the (incorrect) perceived
model. If such a transformation exists then the perceived model can support
a self-confirming equilibrium.
KEYWORDS: Rational expectations, self-confirming equilibrium, identi-

fication, learning, autocoherent models, performativity
JEL: A11, E6.
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1 Introduction

While rational expectations theory typically assumes that people use the

correct model to form their forecasts, more recent research has studied what

happens when that is not the case. Authors like Sargent (2008) and Fu-

denberg and Levine (2007) have argued that the economy may settle at a

point where incorrect beliefs are sustained in equilibrium, because to inval-

idate those beliefs the economy would have to engage in an off-equilibrium

path. This is the essence of the self-confirming equilibrium concept (SCE) of

Fudenberg and Levine (1993).

Imposing that the economy settles at an SCE rather than a rational

expectations equilibrium with correct beliefs is clearly less restrictive. In

macroeconomics, we may want to impose that agents form their beliefs using

an explicit structural model. The fact that such a model supports an SCE

then means that in an equilibrium where agents use it, the model matches

the data, i.e. correctly predicts the moments of the observables. This is

what I define as an "autocoherent model". In such a world, a theory of how

expectations are formed is a theory of which model people use, and it is

then reasonable to impose that such a model be autocoherent. Otherwise,

the model would be "counter-performative" in that its adoption to form

expectations would lead it to be eventually rejected when confronted with

the data1.

If there are enough observables relative to the number of parameters of

the relevant model, then only the correct model is likely to be autocoherent.

Otherwise, there will typically exists a continuum of autocoherent models.

Autocoherence alone then does not suffi ce to predict which model will be

used; a positive theory of which model is actually used is needed. In Saint-

Paul (2011a,b) I have analyzed, for some specific examples, the case where

1See McKenzie, 2006.
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the model is produced by intellectuals who pursue their own agenda, while

facing the constraint that the model be autocoherent. This approach was

a first step in understanding the political economy of models. It delivers

some plausible predictions regarding how ideological biases may influence the

parameter values in the model proposed by the expert (such as the Keynesian

multiplier).

Instead, this paper is more analytical and explores some mathematical

properties of autocoherent models. It consists of two parts. The first part

clarifies the relationship between autocoherence and the traditional econo-

metric notion of identification. In particular, it establishes suffi cient condi-

tions under which an expert subject to autocoherence constraints is com-

pelled to reveal the true value of some parameter. These conditions are

closely related, of course, to the parameter being identified in the economet-

ric sense, but must be amended to reflect the performativity of the expert

(i.e., if people adopt his model, the equilibrium and therefore the data gener-

ating process change) and the fact that identification is different depending

on whether or the econometrician assumes that people use the correct model

to form their expectations. The second part clearly spells out the conditions

for an autocoherent model equilibrium to arise in the linear/Gaussian case,

and provides an equivalent characterization based on an "interpretation".

That is, an autocoherent model equilibrium can be constructed on the basis

of a linear transformation which maps the actual realization of the shocks to

their "interpreted counterpart", defined as the value of the shocks consistent

with the observed outcomes on the basis of the (incorrect) perceived model.

If such a transformation, which must be orthogonal for the scalar product

defined by the variance-covariance matrix of the observables, exists, then the

perceived model is autocoherent.
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2 Autocoherence and identification

We start by tackling the following question: Suppose that the model used

by people in forming their expectations is designed by an expert, whose

theory must be compatible with the data. How much discipline does such

a constraint impose on the expert? One way to tackle this issue is to ask

how many parameters’true value will the expert be forced to reveal. This

in turn brings the question of the relationship between autocoherence and

identification.

Let v ∈ Rn be the vector of correct structural parameters and v̂ ∈ Rn the
vector of perceived structural parameters. In general, economic outcomes

will depend both on the actual and perceived parameters, the former af-

fecting outcomes directly and the latter through private expectations and

government policies. Let M(v, v̂) be a vector representing the relevant em-

pirical moments of the distribution of observables2. This vector is treated as

a function of the actual and perceived model.

Definition 1 —A model v̂ is autocoherent if and only if

M(v, v̂) = M(v̂, v̂).

We can denote by AC(v) the set of autocoherent models. This set clearly

depends on the correct model. The correct model is always autocoherent:

v ∈ AC(v).

2If it is common knowledge that the distribution of observables is part of a family
spanned by a few parameters, then M() is the vector of these parameters. For example if
the observables are a Gaussian vector, M() consists of the mean vector and its variance-
covariance matrix. If there is no such common knowledge, M would then be the entire
distribution, or at least the vector of coordinates of that distribution in a base of the
functional space from which the distribution is drawn.
Throughout the whole paper, sample moments are assumed for simplicity to be equal

to the true moments of the underlying distribution, that is, everything takes place as if
there were an infinite number of observations.

4



People may also have prior ideas (or information) about which model

may be correct. Therefore I will assume that there is a set V of admissible

models, and that any model formulated by the expert must be in V ∩AC(v).

Finally it is also reasonable to assume that v ∈ V.
Let us now consider the inferences about the correct model that an econo-

metrician would make in this world where the perceived model might be

incorrect. One possibility is that the econometrician wrongly believes that

people use the true model, as do the people themselves, but does not observe

the model used by the people.

Definition 2 — A model ṽ is acceptable with unknown beliefs (or u-

acceptable) if

M(v, v̂) = M(ṽ, ṽ).

The set of u-acceptable models is denoted as UA(v, v̂). Note that it de-

pends on both v and v̂, contrary to AC. Two different models in AC deliver

two different self-confirming equilibria and two different values of the mo-

ment vector M(v, v̂). In contrast, when the econometrician considers all the

possible models that may explain the empirical moments, the equilibrium

and therefore those moments remain invariant. That is, the econometrician

lives in a given equilibrium and cannot change it, in contrast to the expert

who may influence behavior through the formation of expectations. It is

immediate to prove the following:

Proposition 1 —∀v, (v̂ ∈ AC(v)⇐⇒ v̂ ∈ UA(v, v̂)).

Saying that a model is autocoherent is equivalent to saying that it is one

of the models that are acceptable, in an equilibrium where it is the perceived

model. Note that the correct model is not in general u-acceptable. If people

believed in the correct model, the empirical moments would be different. The

incorrect identifying assumption that people use the correct model generally

prevents the econometrician from considering it as potentially correct.
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Alternatively, the econometrician may observe the perceived model, but

be uncertain about whether it is the correct one. This leads to the following

definition

Definition 3 —Amodel ṽ is acceptable with known beliefs (or k-acceptable)

if

M(v, v̂) = M(ṽ, v̂).

I will denote the set of k-acceptable models by KA(v, v̂).

Proposition 2 —(i) ∀v̂, ∀v, v ∈ KA(v, v̂)

(ii) ∀v,(v̂ ∈ AC(v)⇐⇒ v̂ ∈ KA(v, v̂)).

Now the correct model is k-acceptable, and so is the perceived one, oth-

erwise it would not be autocoherent.

For the sake of completeness, we might also consider an econometrician

who could not observe v̂ and would not assume that the perceived model

is correct. He would then have to consider all the pairs (ṽ, v∗) such that

M(v, v̂) = M(ṽ, v∗). However, there is nothing we will do with such a defin-

ition of acceptability, so there is no need to pursue it further.

With this apparatus in hand, we can ask whether identification of a pa-

rameter compels the expert to reveal its true value. This question is not

totally obvious, because a change in the value of a perceived parameter leads

to a different equilibrium, where this different value might be acceptable even

though it was not in the original equilibrium.

To address this question I define identification as follows.

Definition 4 — Let π : Rn → Rp be a function, also referred to as a
"parameter". Let S ⊂ Rn. Then π is S-identified if and only if: |π(S)| = 1.
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In definition 4, π() is a composite vector of parameters derived from

the structural ones, and S the set of acceptable models according to some

definition. If all those models deliver the same value for π, then it is identified.

Proposition 3 —Let π() be a parameter. Assume that for any v̂ ∈ V ∩
AC(v), π is KA(v, v̂)-identified. Then for any v̂ ∈ V ∩ AC(v), π(v̂) = π(v).

Proposition 3 tells us that if π is always identified, at any equilibrium

supported by an admissible autocoherent model, then autocoherence requires

the expert to choose the perceived parameters so as to reveal the true value

of π. The proof is straightforward: for any v̂ ∈ V ∩ AC(v), we have that

v̂ ∈ KA(v, v̂) by (ii) in prop. 2. By (i), we also have that v ∈ KA(v, v̂).

Since π is KA(v, v̂)-identified, it follows that π(v̂) = π(v).

It might be that for many autocoherent choices of v̂, π is KA(v, v̂)-

identified, but that for some other choices it is not. In that case only the first

choices will compel the expert to reveal the true π, while the other choices

allow the expert to pick a different π since it is no longer identified by the

data generating process in the equilibrium associated with those beliefs.

Proposition 3’s proof rests on the property that the true model is k-

acceptable, and so is the perceived model if it is to be autocoherent. The

unique identified value of the parameter π() must therefore be the correct

one.

Things are different if the econometrician is wrong and considers only

u-acceptable possibilities. Then typically v /∈ UA(v, v̂). Suppose that π is

UA(v, v̂)-identified for any admissible autocoherent model. Then it means

that in the equilibrium delivered by the perceived model v̂, there is a unique

value for parameter π across all the possible models that would match the

same moments if they were correct and believed. But this unique value may

well differ across perceived models, because different perceived models imply

different equilibria and thus different moments, and there does not a priori

7



exist a model v∗ which would be common to different sets UA(v, v̂) (while

instead the correct model is common to all the KA(v, v̂)). Consequently, if

a parameter is identified under the wrong identifying assumption that any

candidate correct model is also the perceived one, then not only the expert

is not compelled to reveal its true value, but there is no unique value of that

parameter across autocoherent models.

3 A linear framework

I now consider a general linear framework and try to elicit some formal

properties of autocoherent models.

We consider a linear model of the following form:

Z = MX +QZe. (1)

In this formulation , X is the vector of exogenous variables. It is com-

mon knowledge that it is distributed normally with zero mean3 and known

variance-covariance matrix Ω. The assumption of known distributions for the

exogenous variables is less special than it seems. For example, in a Gaussian

setting, any exogenous variable x with unknown variance σ2 can be treated

as endogenous, with x = σε and ε an exogenous standard normal random

variable, and similarly for vectors of exogenous variables with unknown dis-

tributions.

Z is the vector of endogenous variables. Because people may not observe

all exogenous variables, they may form expectations of them, which in turn

may affect outcomes. For this reasons I will assume that the vector Z also

3This follows the tradition of the literature on stabilization and rational expectations
where means typically do not matter and are usually normalized to zero. Empirically,
however, it is much easier to find evidence of mean-matching autocoherence conditions,
than variance-matching ones. See Saint-Paul (2011a).
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contains all the exogenous variables4, and accordingly that the corresponding

sub-matrix of M is the identity matrix. The vector Ze gives me the value of

Z which is expected by the public. The matrix M depicts the direct effect of

exogenous variables on outcomes, while Q depicts the effect of expectations.

If Q 6= 0, expectations matter and affect outcomes. If m is the number of

exogenous variables and p the number of truly endogenous variables, then

n = m + p is the dimension of vector Z. M is an (n,m) matrix, and by

reducing the number of endogenous variables when they are redundant, we

can always assume it is of rank p and therefore that p ≤ m.

This model describes how an economy actually behaves, conditional on

expectations. As such, it is clearly incomplete. To compute the equilib-

rium, I need to know how people form expectations. I will limit myself to

expectations formation processes that have the following two properties:

A. Expectations are intrinsic, that is, for a given realization of X there is

a unique value of Ze in equilibrium. This rules out "sunspot" equilibria where

one might have Z = f(X,X ′), where X ′ is a random variable not included

in X. However, one could always allow for such equilibria by making X ′ part

of X, i.e. making it intrinsic,and add only a unit diagonal term to M to

reflect the fact that X ′ does not affect any true endogenous variable. So this

restriction is not binding as long as X includes all the variables on which

society may index its expectations.

B. Expectations are linear, that is, there must exist an equilibrium rela-

tionship between Ze and X of the following form:

Ze = KX.

Given K, the behavior of the economy is determined by

Z = (M +QK)X. (2)
4What is really needed, though, is to add to the true endogenous variables only a

subset of the exogenous variables, i.e. those that are observed and/or whose expectation
intervenes in one of the equations of the model.
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Under this simple structure, an equilibrium is simply a matrix H such

that Z = HX. Hence, M +QK is an equilibrium. However, to know K, one

must specify how expectations are formed.

I assume that the information available to the agents is given by two

information sets I and J. Both are represented as subspaces of Rn such
that I ⊂ J. I is the information set of the agents when they form their

expectations. That is, I assume that people observe TIZ, where TI is the

projection operator on subspace I (and we also use TI to denote its matrix).

For example, if Z = (z1 z2 z3)
′ and only z1 is observed,

I = R.

 1
0
0


and

TI =

 1 0 0
0 0 0
0 0 0

 .

J is the "ex-post" information set, that is, the information set used by

the agents to validate their model. As long as the model is validated "ex-

post", it is natural to assume that I ⊂ J. For example, we may observe z2 in

addition to z1 once all outcomes are realized, and then we will have

J = R.

 1
0
0

⊕ R.
 0

1
0


and

TJ =

 1 0 0
0 1 0
0 0 0

 .

Agents form their expectations on the basis of what they observe, i.e. the

vector TIZ. We know that if X ∼ N(0,Ω), and if A is any k ×m matrix of

full rank such that k ≤ m, then E(X | AX = Y ) = h(A,Ω)Y, where

h(A,Ω) = ΩA′(AΩA′)−1. (3)
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I know derive a few properties of operator h() that will play a key role

in proving my analytical results. Let B be an invertible matrix. Since

(BAX = Y )⇐⇒ (AX = B−1Y ), we have that

h(BA,Ω) = h(A,Ω)B−1. (P1)

Since BE(X | ABX = Y ) = E(BX | ABX = Y ) and BX ∼ N(0, BΩB′),

we have that

h(AB,Ω) = B−1h(A,BΩB′). (P2)

In what follows I will drop the variable Ω from the argument of h(), since

Ω will remain the same throughout.

Since it is observed that Y = AX, the operator

φ(A) = h(A)A (4)

maps the realization of X into its expectation conditional on observing Y.

The preceding properties imply that if B is invertible,

φ(BA) = φ(A). (P3)

As a corollary, if A itself is invertible, then φ(A) = I,meaning that the actual

value of X can be recovered from observing Y. Finally, if one were to forecast

Y out of the inferred X, one would pick up Y again, implying that

Aφ(A) = A. (P4)

These properties can be directly proved using (3).

A useful corollary of the above is

Lemma 1 —φ(A)2 = φ(A).

Proof —φ(A)φ(A) = h(A)Aφ(A) = h(A)A = φ(A).

The theory outlined below rests on the assumption that whenever observ-

ing AX, people behave as if they believe that X is equal to φ(Â)X, where
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Â is the perceived model and φ, h two operators related through (4) and

satisfying (P1)-(P4). It does not really matter that h() be the optimal filter

defined by (3). Thus potentially people can use a wrong model, a wrong

filter, or both. The set of autocoherent models analyzed below is conditional

on a given filter5.

Let us now specify how expectations are formed. People observe TIZ.

They must infer from it the conditional distribution of X. Given the linear

structure of the problem, they only care about the mean of this distribution.

Then, given this mean, they must make a forecast for Z. For both of these

operations, they need a model which tells us how Z relates to X. I assume

that if people observe Y and they believe that Y = ÂX, then they forecast

Xe = h(Â)Y. They then also believe that Xe = φ(Â)X for the unobserved

true realization of X.

In what follows, an equilibrium is defined as a reduced form matrix H

which relates the endogenous variables Z to the exogenous ones X. To any

equilibrium is associated a matrix K which maps the realization of the ex-

ogenous variables X into the expectations Ze. In a rational expectations

equilibrium (Muth 1961), people use the correct model to form their expec-

tations, which leads us to the following definition6:

Definition 5 —A rational expectations equilibrium (REE) is a matrix H

such that there exists K ∈Mnm(R),

5Conversely, one could develop a theory of autocoherent filters conditional on a per-
ceived model, which may or may not be the correct one. Such a theory would be of limited
interest: While the correct model may be impossible to know because it is econometrically
underidentified, the correct filter is available offthe shelf of statistical theory. However, this
putative ‘dual’theory might have some merit if supplemented with cognitive constraints
on the complexity of the filters that may be used.
Relatedly, it is conceivable that people use the right model, but the wrong filter, perhaps

because they make approximmations. The results that follow remain valid in this case as
long as the inference operators h and φ that are involved satisfy (P1)-(P4).

6If h(A) 6= ΩA′(AΩA′)−1 then peole do not use the optimal filter and this is not an
REE in the Muth sense. One could then relabel it a "correct model equilibrium".
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(i) H = M +QK

(ii) K = Hφ(TIH)

The second condition means the following. We have (dropping Ω from

the notations). Ze = E(Z | TIZ) = E(HX | TIHX) = HE(X | TIHX) =

Hh(TIH)TIHX = Hφ(TIH)X. Therefore it must be that K = Hφ(TIH).

4 Autocoherent model equilibria

We now discuss the equilibria that may arise when people indeed use a model

to set their forecast Ze, but this model may not be the correct model of the

economy.

Let us therefore assume that people use the following model

Z̃ = M̂X̃ + Q̂Ze

Ze = K̂X̃.

Here, X̃ is a random variable which has the same (known) distribution as

X. A natural interpretation of X̃ is that it is the agent’s "perceived" value

of X̃. But people do not think that they observe X̃ and do not need to know

its realization, they just need to formulate a forecast. Similarly, Z̃ is the

"perceived" vector of endogenous variables, but people again do not think

that they observe it. They do observe TIZ at the time of forming expectations

and TJZ when validating their model, and therefore they interpret those

values as being equal to TIZ̃ and TJ Z̃ for Z̃ drawn from the model.

Note that the set of exogenous variables upon which the people’s per-

ceived model is based is the same as for the true model7. Indeed, I focus on

the case where the structural model used by people has the same specification

(M,Q) as the true model. That is, people use the same mental steps as an

7Confer the above remark about sunspots.
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economist who would want to compute a rational expectations equilibrium

in that economy, using a not necessarily correct model. One deep justifica-

tion for such an approach is the idea that models and theories are public

knowledge, and will therefore be used by the people to form their beliefs. If

everybody in this economy believes that the model is of the (Q,M) form,

then the agents will solve this model to optimally set their forecasts.

A different option would be to assme that people have a simpler rep-

resentation of the world and use a reduced form Z = ĤX instead,without

making a distinction between the direct contribution of the exogenous shocks

and that of expectations. In the literature on learning (Marcet and Sargent

(1989) and Evans and Honkapohja (2003)), the perceived law of motion is

such a reduced form. In the Appendix, I briefly discuss the differences be-

tween the two approaches.

The matrices Q̂ and M̂ describe the model that people have in their

minds, and it may differ from the correct model, which is described by Q

and M. The matrix K̂ describes the mapping assumed by people from the

realization of (perceived) exogenous variables X̃ to the forecast Ze.

4.1 Forecasts

How do people form expectations here? They observe TIZ, which they believe

is equal to TIZ̃ = TI(M̂ + Q̂K̂)X̃. Therefore, Xe = h(TI(M̂ + Q̂K̂))TIZ and

Zei = (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TIZ, (5)

where the "i" subscript means that this is the forecast of an individual.

This equation allows us to recover the forecast as a function of Z, given

people’s mental representations M̂, Q̂, and K̂. Furthermore, we also have
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that

Zei = (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TIZ̃

Zei = (M̂ + Q̂K̂)φ(TI(M̂ + Q̂K̂))X̃. (6)

This means that people believe that their own forecast is related to the

realization of the exogenous variables by this relationship.

Next, we assume that everybody uses the same model and that this is

common knowledge. In particular, the realization of the forecast variable Ze

is the same in the perceived model as in the true model, since people know

their own forecast. Consequently

Zei = Ze = K̂X̃.

Therefore, by (6) the K̂ matrix, which describes the perceived process of

expectation formation, must satisfy

K̂ = (M̂ + Q̂K̂)φ(TI(M̂ + Q̂K̂)).

How does this relate to the real world process of expectation formation,

described by K? Using (5), (2), and the fact that Zei = Ze, we have that

Ze = (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TI(M +QK)X,

and therefore

K = (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TI(M +QK).

4.2 Model validation: the autocoherence property

We are now going to impose an additional restriction on the model that

people use: it must be consistent with their observed data. The observed

data are given by the vector TJZ. In equilibrium, this vector is given by

TJ(M +QK)X.
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This determines its distribution.

On the other hand, agents can also use their own model to predict the

distribution of TJZ, since they know the distribution of X and their model

is based on an exogenous random variable X̃ which has the same distribu-

tion. Thus when observing TJZ, they interpret it as TJ Z̃ = TJ(M̂ + Q̂K̂)X̃.

Therefore, for the model used by the people to replicate the distribution of

TJZ, it must be that TJZ and TJ Z̃ have the same distribution, a relationship

commonly denoted by "˜".

This discussion leads to the following definition of an Autocoherent Model

Equilibrium. This is an equilibrium supported by a model M̂, Q̂, such that

people use the model to form their forecast in a way consistent with this

model.

Definition 6 —H is an Autocoherent Model Equilibrium (AME) for the

model M̂, Q̂ iff there exists K (called a forecast process) and K̂ (called a

perceived forecast process) ∈Mnm(R) such that

(i) H = M +QK.

(ii) K̂ = (M̂ + Q̂K̂)φ(TI(M̂ + Q̂K̂)).

(iii) K = (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TIH.

(iv) There exists a random variable X̃ such that X̃ ∼ X and TJHX ∼
TJ(M̂ + Q̂K̂)X̃.

It will be useful, in the sequel, to use the following properties of an AME:

Lemma 2 —The perceived forecast process of an AME associated with

(M̂, Q̂) has the following properties:

(i) TI(M̂ + Q̂K̂) = TIK̂

(ii) K̂φ(TIK̂) = K̂

(iii) TIM̂φ(TIK̂) = TIM̂.

Proof — (i) is proved by applying projector TI to both sides of (ii) in
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Definition 6 and using (P4); (ii) is obtained by right-multiplying both sides

of (ii) in Definition 6 and applying Lemma 1. Finally, to get (iii), right-

multiply both sides of (i) by φ(), getting, for the LHS TI(M̂+ Q̂K̂)φ(TIK̂) =

TIM̂φ(TIK) +TIQ̂K̂φ(TIK̂) = (by (ii)) TIM̂φ(TIK) +TIQ̂K̂; then the RHS

is TIK̂φ(TIK̂) = TIK̂ = TI(M̂ + Q̂K̂). The terms in TIQ̂K̂ cancel and one

gets (iii). QED.

Lemma 2 expresses in matrix form some intuitive properties of an AME.

Condition (i), for example, is equivalent to TIZe = TIZ, meaning that the

observable part of my forecasts must match the actual observables. Condi-

tion (ii) means that the forecast of my forecast, using the perceived forecast

process, is equal to my forecast. Condition (iii) means that since I know the

forecasts, I believe I can correctly infer the part of the observables that are

accounted for by the exogenous variables, i.e. the MX vector (this belief

would be correct if the model were correct).

One issue is: Given the perceived model, is there a unique AME? This

issue is somehow the generalization of the uniqueness problem in an REE

to the AME case. My main result (Proposition 6 below) does not rely on

the equilibrium being unique. However that question is interesting in its

own right and has two aspects. First, given the perceived model (M̂, Q̂) and

the perceived forecast process K̂, is there a unique equilibrium H satisfying

definition 6? The answer is that this is generically true. Second, given

the perceived model (M̂, Q̂), is there a unique perceived forecast process

satisfying (ii)? This is equivalent to having a unique REE if (M̂, Q̂) were

the correct model. Thus the required conditions are the same, however they

are more subtle that just I −Q being invertible, which looking at (1) alone

would suggest. All these issues are discussed more precisely in the Appendix.
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4.3 Interpretation of outcomes

Definition 6 is not very practical. But we will shortly show an equivalent set

of conditions which is far more practical. Before doing so, it is interesting to

introduce the notion of an interpretation.

Definition 7 —Assume there exists an AME. Let z be a vector of Rn. Then
x̃ is an I−interpretation (resp. J−interpretation) of z iff

TIz = TI(M̂ + Q̂K̂)x̃

(resp TJz = TJ(M̂ + Q̂K̂)x̃).

In short, an interpretation is a realization of the perceived exogenous

variables which is compatible with a given observation, ex-ante or ex-post.

The two following results are obvious but useful:

Proposition 4 —Let z ∈ Rn. Then if x̃ is a J−interpretation of z, it is
also an I−interpretation.
Proof —Since I ⊂ J, TITJ = TI . Thus if TJz = TJ(M̂ + Q̂K̂)x̃, then

TIz = TI(M̂ + Q̂K̂)x̃.

Proposition 5 —If x̃ and x̃′ are I−interpretations of z, then

K̂x̃ = K̂x̃′

Proof — K̂x̃ = (M̂ + Q̂K̂)φ(TI(M̂ + Q̂K̂))x̃ = (M̂ + Q̂K̂)h(TI(M̂ +

Q̂K̂))TI(M̂ + Q̂K̂)x̃

= (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TIz, and we get the same expression if we

perform the computations with x̃′ instead.

Proposition 5 tells us that if I have an I−interpretation of z, nothing is
lost by assuming that this is indeed the realization of X̃ in order to compute

the forecasts. This is not surprising since the forecast only depends on the

observable TIz and is therefore the same for all interpretations.
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4.4 Autoherent model equilibria are interpretable

We now establish a characterization of AMEs which has the merit of being

easier to handle than definition 6, and at the same time can naturally be

understood as a representation of an AME based on the agents’interpretative

activity.

Proposition 6 —H is an Autocoherent Model Equilibrium for the model

M̂, Q̂ if and only if there exists K and K̂ ∈ Mnm(R) and matrix P (called

an interpretation matrix of the AME) such that

PΩP ′ = Ω

and

(i) H = M +QK.

(ii) K̂ = (M̂ + Q̂K̂)φ(TI(M̂ + Q̂K̂)).

(iii) K = K̂P−1.

(iv) TJ(M̂ + Q̂K̂) = TJHP.

Proof —Assume that the conditions in Definition 6 hold. Then clearly (i)

and (ii) above hold. Furthermore, let A = TJ(M̂ + Q̂K̂) and B = TJ(M +

QK). By (iv) in Def. 3, BX ∼ AX̃. In particular , EBXX ′B′ = EAX̃X̃ ′A′.

Since X ∼ X ′, EXX ′ = EX̃X̃ ′ = Ω. Hence BΩB′ = AΩA′. Since det Ω 6= 0,

there exists a matrix P such that A = BP, which is orthogonal for the scalar

product defined by Ω, i.e. PΩP ′ = Ω.8 This proves (iv). Furthermore, by

8A proof is provided in the Appendix.
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(iii) in Def. 6, we have

K = (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TIH

= (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TITJH

= (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TITJ(M̂ + Q̂K̂)P−1

= (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TI(M̂ + Q̂K̂)P−1

= (M̂ + Q̂K̂)φ(TI(M̂ + Q̂K̂))P−1

= K̂P−1.

Let us now prove the converse. Assume that (i)-(iv) hold. Clearly, (i)

and (ii) hold in Def. 6. Let X̃ be the random variable defined by X̃ = P−1X.

Since X ∼ N(0,Ω) and EX̃X̃ ′ = P−1ΩP ′−1 = P−1PΩP ′P ′−1 = Ω, indeed

X̃ ∼ X. Furthermore TJHX = TJHPX̃ = TJ(M̂ + Q̂K̂)X̃. Since these two

variables are equal, they clearly have the same distribution. This proves (iv)

in Definition 2. Finally, we have that TI(M̂ + Q̂K̂) = TI(M +QK)P, hence

K = K̂P−1

= (M̂ + Q̂K̂)φ(TI(M̂ + Q̂K̂))P−1

= (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TI(M̂ + Q̂K̂)P−1

= (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TIHPP
−1

= (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TIH.

This proves (iii) in Def. 6.

QED.

Proposition 6 tells us that in the autocoherent model used by the people,

everything takes place as if, for any realization of X, people were using an

interpretation X̃ = P−1X instead. Then, clearly, they will forecast K̂X̃ =

K̂P−1X = KX.

This is confirmed by Proposition 7.
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Proposition 7 —Let H be an AME and P an interpretation matrix, then

for any realization x of X and its associated endogenous vector z = Hx,

P−1x is a J−interpretation of z.
Proof —We just have to compute TJ(M̂ + Q̂K̂)P−1x = TJHx = TJz.

QED.

A well known example of such an interpretation matrix arises in the lit-

erature on structural VARs (Sims (1980), Blanchard and Quah (1989), Gali

(1999)). There, the variance-covariance matrix of disturbances is known, but

there are degrees of freedom in mapping the structural shocks to the econo-

metric disturbances. As a result, one formulates identifying assumptions

—typically that some structural shocks have zero effect on some variables —

which amounts to imposing one interpretation of the structural disturbances.

Generally the variance-covariance matrix of the shocks is normalized to iden-

tity, so that the interpreted ones will be related to the correct ones by an

orthogonal transformation, which will be the identity matrix if the identifying

assumptions are correct. In other words, the authors of the VAR literature

are explicitly undertaking the interpretation exercise that our agents are per-

forming in Proposition 4.

Condition (iv) implies that given their incorrect interpretation of the re-

alization of x people can predict the ex-post observables as well as somebody

who would use the correct model H to make those predictions and accord-

ingly interpret the data correctly9.

9Another property is that TIK = TIH. Indeed,

TIK = TIK̂P
−1

= TI(M̂ + Q̂K̂)φ(TI(M̂ + Q̂K̂))P−1

= TI(M̂ + Q̂K̂)P−1

= TITJ(M̂ + Q̂K̂)P−1

= TITJH = TIH,

This result means that despite that people use the wrong model, they make the same
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5 Conclusion

A self-confirming equilibrium imposes fewer restrictions on outcomes than a

rational expectations equilibrium. If the dimension of the ex-post observable

space is not too large, there will be a large number of such equilibria which

will differ according to which autocoherent model people use to form their

expectations. The present paper has discussed some analytical properties of

autocoherent models. In the interesting case where the set of autocoherent

models is not reduced to the correct one, we need to supplement the model

by a meta-theory of how the perceived model is determined. Such a meta-

theory may be provided by Bayesian learning, as in the learning literature

of Marcet and Sargent (1989) and Evans and Honkapohja (2003). Or it can

be based on positive political economy as in Saint-Paul (2011a,b). Crossing

these two approaches and understanding how ideological preferences affect

the learning strategies of experts and intellectuals is likely to be a realistic

and fruitful direction for further research.

forecast on observables as somebody who would use the right model. This is clear since
the forecast on observables is the observables themselves.
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6 APPENDIX

6.1 Completing the proof of Prop. 3

Lemma A1 — Assume that A and B are two k × m matrices such that

Rank(A) = Rank(B) = k, and k ≤ m. Assume that AΩA′ = BΩB′ for

Ω definite positive. Then there exists an m×m matrix P such that A = BP

and PΩP ′ = Ω.

Proof —To prove this, note that by replacing Ω by its Choleski decomposi-

tion, Ω = CC ′, the condition is equivalent to A1A′1 = B1B
′
1 for A1 = AC and

B1 = BC. If we can prove that A1 = B1P1 for P1 such that P1P ′1 = I, then

A = A1C
−1 = B1P1C

−1 = BCP1C
−1 = BP, where P = CP1C

−1 clearly

satisfies PΩP ′ = Ω.

Thus we just have to focus on the case where Ω = I, which I now assume.

Consider the case where AA′ = BB′ = I. Then the k row vectors of A

are an orthonormal family of Rm, and similarly for B. Each of those families

can be completed into an orthonormal basis of Rm. By stacking the row of

these two bases, we get two invertible m × m matrices Ā =

(
A
A1

)
and

B̄ =

(
B
B1

)
such that ĀĀ′ = B̄B̄′ = I. Let P = B̄′Ā′−1. Then clearly

PP ′ = I and A = BP. Suppose now that AA′ = BB′ = M. Let again be

M = DD′ be the Choleski decomposition of M, where D is k × k invertible
and triangular. Let Ã = D−1A and B̃ = D−1B. Then since ÃÃ′ = B̃B̃′,

∃P ∈ Mmm(R), Ã = B̃P, PP ′ = I. Multiplying both sides by D we get the

required condition A = BP.

6.2 Uniqueness conditional on the model

First consider the uniqueness of K and H conditional on K̂, M̂ , Q̂. Given

Definition 2, we note that K must solve
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K = (M̂ + Q̂K̂)h(TI(M̂ + Q̂K̂))TI(M +QK).

This can be rewritten K = A + BK, where A = (M̂ + Q̂K̂)h(TI(M̂ +

Q̂K̂))TIM and B = (M̂+Q̂K̂)h(TI(M̂+Q̂K̂))TIQ. Since I−B is generically
invertible, this condition will generically be satisfied by a unique value of K.

Second, consider whether K̂ is unique given the perceived model. This

means that there is only one matrix K̂ which satisfies (ii) in Proposition 2.

The following result provides suffi cient conditions for this to hold:

Proposition A1 —Given M̂ and Q̂, there is at most one matrix K̂ which

satisfies (ii) provided det(In− Q̂) 6= 0 and one of the conditions are satisfied:

(a) TIQ̂ = 0.

(b) TIQ̂ = Q̂TI .

(c) Rank(TIM̂) = min(dim I,m).

Proof — From Lemma 2 we see that equation (ii) in Definition 5 and

Prop. 4 implies that K̂ must satisfy K̂ = M̂φ(TIK̂) + Q̂K̂. If TIQ̂ = 0,

we have that TIK̂ = TIM̂φ(TIK̂) = TIM̂ by Lemma 2 again. Therefore,

φ(TIK̂) = φ(TIM̂) and K̂ is solution to the linear matrix equation K̂ =

M̂φ(TIM̂)+Q̂K̂, which has a unique solution given the invertibility of In−Q̂.
This proves (a). If TIQ̂ = Q̂TI , then we have that TIK̂ = TIM̂φ(TIK̂) +

Q̂TIK̂ = TIM̂ + Q̂TIK̂ (lemma 2), so that TIK̂ = (In − Q̂)−1TIM̂, implying

again, since (In − Q̂)−1 is invertible, φ(TIK̂) = φ(TIM̂) (proposition 1), and

the rest follows as for (a).

Let us now turn to case (c). Let k = Rank(TI) = dim(I). Let T̃k be the

nn matrix defined by

T̃k =

(
Ik 0k,n−k

0n−k,k 0n−k,n−k

)
.

Then there exists an invertible nn matrix U such that TI = UT̃kU
−1. By

Lemma 2 K̂ satisfies TIM̂φ(TIK̂) = TIM̂. This can be rewritten UT̃kU−1M̂h(UT̃kU
−1K̂)UT̃KU

−1K̂ =

26



UT̃kU
−1M̂. Denoting M̄ = U−1M̂ and K̄ = U−1K̂, and applying proposition

1, we see that this is equivalent to

T̃kM̄h(T̃kK̄)T̃kK̄ = T̃kM̄. (7)

Assume first that k ≤ m. Clearly, Rank(T̃kM̄) = Rank(TIM̂). By as-

sumption, this is equal to k. Thus, by (7) we also have thatRank(T̃kM̄h(T̃kK̄)T̃kK̄) =

k. SinceRank(T̃kK̄) ≤ k, it must be thatRank(T̃kK̄) = Rank(T̃kM̄h(T̃kK̄)) =

k. Now, the matrix T̃kM̄h(T̃kK̄) has the following form:

T̃kM̄h(T̃kK̄) =

(
A B

0n−k,k 0n−k,n−k

)
,

while T̃kK̄ can be written

T̃kK̄ =

(
K̄1

0n−k,m

)
.

Here A is kk, B is k, n − k and K̄1 is km. We can then see that (7) is

equivalent to (
AK̄1

0n−k,m

)
= T̃kM̄,

implying that RankA = k and therefore that A is invertible. Consider now

the matrix defined by

C =

(
A 0k,n−k

0n−k,k In−k

)
.

Clearly, detC = detA 6= 0. Furthermore, CT̃kK̄ = T̃kM̄. It then follows

from Proposition 1 that φ(T̃kK̄) = φ(T̃kM̄). Therefore φ(TIK̂) = φ(UT̃kU
−1K̂) =

φ(T̃kK̄) = φ(T̃kM̄) = φ(UT̃kU
−1M̂) = φ(TIM̂). The rest of the proof is the

same as for (a) and (b).

Next, assume m ≤ k. By assumption, Rank(T̃kM̄) = Rank(TIM̂) = m.

Multiplying both sides of (7) by (T̃kM̄)′, we get (T̃kM̄)′T̃kM̄h(T̃kK̄)T̃kK̄ =

(T̃kM̄)′T̃kM̄. Since (T̃kM̄)′T̃kM̄ is an mm matrix of rank m, it is invertible.
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It follows that h(T̃kK̄)T̃kK̄ = φ(T̃kK̄) = φ(TIK̂) = Im. Therefore, the only

solution is K̂ = (In − Q̂)−1M̂.

QED.

Note: Proposition A1 refers to the properties of the perceived model re-

gardless of whether it is correct and therefore also applies to the case where

it is correct, i.e. to the uniqueness of an intrinsic rational expectations equi-

librium. It addresses an issue which, to the best of my knowledge, has been

overlooked in the literature, i.e. that the filter φ() is a nonlinear function of

K which opens up the possibility of multiple equilibria even though I − Q
might be invertible. The meaning of that multiplicity is that the information

available to the agents for forming their expectations may itself depend on

the equilibrium matrix K, ie on the way expectations are formed. That is,

how much filtering can be done differs across equilibria and some equilibria

may be more informative than others. The less informative equilibria would

be broken if people could make as precise inferences as in the more informa-

tive ones, but in those less informative equilibria expectations are formed in

such a way that information is lost. In the literature (e.g. Blanchard and

Kahn (1980), Futia (1981)) one is mostly in a context where this is ruled

out and uniqueness boils down to the invertibility of I − Q. Indeed, since

condition (c) is generic, this source of multiplicity is somewhat a curiosity.

6.3 Reduced form vs. Structural models

Definition A1 —H is an Autocoherent Reduced Form Model Equilibrium

(ARFME) for the model Ĥ and the unbiased LIO h() iffthere exists a forecast

process K ∈Mnm(R) such that

(i) H = M +QK.

(ii) K = Ĥh(TIĤ)TIH

(iii) There exists a random variable X̃ such that X̃ ∼ X and TJHX ∼
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TJĤX̃.

There is then a straightforward counterpart to Proposition 4:

Proposition A2 —H is an Autocoherent Reduced FormModel Equilibrium

(ARFME) for the model Ĥ and the unbiased LIO h() iffthere exists a forecast

process K ∈Mnm(R) and an orthogonal matrix P such that

(i) H = M +QK.

(ii) K = Ĥh(TIĤ)TIH

(iii) TJH ∼ TJĤP .

How do ARFME relate to AME? Clearly, all AMEs are also ARFMEs

for the reduced form implied by the model that people use:

Proposition A2 —LetH an AME for model (M̂, Q̂), and perceived forecast

process K̂. Then it is an ARME for model Ĥ = M̂ + Q̂K̂.

Proof —By definition 5, (i), (ii) and (iii) in definition 9 hold.

It is also true that any ARFME is an AME for some model:

Proposition A3 —Let H be an ARFME for model Ĥ. Then it is an AME

for model M̂ = H, Q̂ = 0.

Proof —Straightforward.

These two propositions tell us that if all I am looking for is an AME, I

can actually restrict myself to looking for an ARFME, which is simpler to

characterize. However, the theory is really useful in a context where not all

models are acceptable. Thus, we want to restrict the choice for (Q̂, M̂) to

a subset of "acceptable" models. In this case the search for an acceptable

AME cannot be reduced to looking for an ARFME. For example it may just

not be plausible to think that Q̂ = 0, since it would mean that expectations

are completely irrelevant.
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