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Abstract

We reconsider the question of the optimal level of termination fees
between communication networks in the context of heterogeneous us-
age and elastic participation. The interaction between these two fea-
tures yields insights; in particular: i) The profit maximizing reciprocal
termination fee is above marginal cost; ii) The welfare maximizing ter-
mination fee is also above cost, but below the former.

1 Introduction

In most communication networks, users expect to be able to interact regard-
less of which network they subscribe to. To achieve this, operators enter into
interconnection agreements, which not only cover technical aspects, but also
stipulate access fees compensating the terminating network for the cost of
communications originated from another network. These so-called termina-
tion fees have been the center of many investigations, and the question of
the privately and socially optimal levels of those fees is still hotly debated
in many communication industries (fixed and mobile telephony, Internet...).
In this paper we revisit this question by considering the impact of hetero-
geneous demands for both calls and subscriptions. We show that, when the
consumers who call less have also a more elastic demand for subscription:
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i) the profit-maximizing reciprocal termination fee is above the marginal
cost of termination;
ii) the welfare-maximizing reciprocal termination fee is also above cost,

but below the profit-maximizing level.

A key element of our analysis is the negative correlation between the traf-
fic originated and the elasticity of participation, a feature that is present in
many networks. A good illustration is mobile telephony, which exhibits a
considerable heterogeneity in usage patterns. This heterogeneity is reflected
to some extent in the large variety of post-paid contracts targeting different
customer categories, as well as in the differences between pre-paid and post-
paid users. It is a source of traffic imbalance at the customer level, since
some customers call more than they receive while others receive more than
they call. Genakos and Valletti (2011b) note or example that “anecdotal
evidence seems to suggest [...] that pre-paid consumers predominantly use
their phone for incoming calls”. Another illustration of the difference be-
tween pre-paid and post-paid clients is given by a change in the collection
of data on mobile traffic by the French regulator that occurred during the
year 2005.1 During the first semester (Q1 and Q2 in Table 1 below), volumes
included the minutes of calls emitted, along with fixed-to-mobile termination
and roaming. Afterwards, the volumes also included the number of minutes
of off-net mobile-to-mobile calls received. Using these data, for each quarter
of 2005 we computed average volumes for pre-paid and post-paid customers:

Volume per subscriber 2005 (mn) Q1 Q2 Q3 Q4 Q3/Q2
Post-pay 786 798 837 867 +5%
Pre-pay 156 159 205 201 +30%

Table 1

The data from the first two quarters confirms that pre-paid customers call
much less than post-paid ones. But the difference between the third and
second quarters, representing the volume of calls received from other mobile
networks, also shows that the proportion of calls received is much higher for
pre-paid customers.2

1France moved away from bill-and-keep for mobile to mobile termination fees in January
1, 2005. The regulatory regime was thus stable throughout 2005, but the change in the
statistics published by the Observatoire des mobiles was only introduced in the third
quarter.

2Using the first two quarters to account for dynamic trends does not affect the 5% and
30% figures for post-pay and pre-pay. Assuming that the proportions of outgoing calls
within the data perimeter of the first quarters, and of on-net calls among incoming mobile
calls, are stable from one quarter to another, this means that the ratio of calls received to
calls emitted is 6 times higher for pre-pay users.

2



Other examples include Internet, since most of the traffic originates from
websites but the extensive margin of the market includes many content users,
and the convergence between fixed and mobile services, as fixed line cus-
tomers still call more mobile customers than the reverse.

Our paper is concerned with termination fees between networks that are
active on all segments of the market, a situation that is often referred to as
a two-way access problem. When callers and receivers do not belong to the
same network, a network terminating a communication enjoys market power
as it can hardly be bypassed and the receiving customer is not necessarily
sensitive to the price paid by those who call him. One of the main conclusions
of the existing literature on termination fees is that network operators should
collectively favor low fees, which is somewhat at odds with the observation
that, in practice, network operators often resist reducing those fees. We aim
at reconciling theory and practice and show why firms may favor above cost
termination fees. We show that the socially optimal fee is also above cost.
Formally, we use the framework of Laffont, Rey and Tirole (1998a) —

hereafter LRT — in which we introduce user heterogeneity — and also account
for the utility of receiving calls. Our model is based on the above observation
that the willingness to pay for a subscription is related to the volume of calls.
Customers with very large volumes of calls are infra-marginal customers, who
may switch between operators when prices increase but always subscribe to
one operator; marginal customers are instead those who also call less. We
thus distinguish two types of customers: heavy and light users; the latter not
only call less often, but their demand for subscription is also more elastic.
To keep things simple, we assume the following:

• light users only receive calls;3 we moreover first consider a benchmark
model where their utility from receiving calls is fixed; later on, we
account for endogenous reception utility;

• network operators can offer different two-part tariffs, each including a
subscription fee and a unit price for calls, to heavy and light users;later
on, we also allow the operators to charge different prices for on-net and
off-net calls (termination-based price discrimination).

In each situation, we analyze the impact of reciprocal termination fees on
subscription and usage prices, as well as on profits and welfare. In equilib-
rium, usage prices are equal to perceived costs and there is no profit from

3In our 2010 working paper, we show that our results extend to the case where light
users have a small demand for calls.
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origination; network operators’ profit is thus driven by termination profit
and by subscription fees. We identify two new effects:
Raising termination profit weakens the competition for heavy users: intro-

ducing light users reduces competition for heavy users when the termination
fee is above cost, since the operators then obtain more profit from terminat-
ing off-net calls than on-net calls; losing a heavy user to the competitor thus
raises the termination profit on light users — without generating an equivalent
cost, as light users call less than they are called.
Raising termination profit intensifies the competition for light users: since

light users generate a positive termination balance, they become more prof-
itable when the termination mark-up increases, hence a reduction in the
equilibrium price due to increased retail competition. In our setting this
“waterbed” effect4 is however modified, due to the fact that losing light users
to the competing network generates a termination deficit, since light users
are mainly receivers; this additional cost further intensifies competition for
light users.
In the case of uniform pricing, the former effect dominates for profit

while the latter dominates for welfare. As a result, both profit and welfare
are maximal for termination fees that are above cost. The operators prefer
a positive mark-up because the extra revenue from termination by heavy
users is not fully competed away through subscription fees. Adopting a
positive termination mark-up also increases welfare because it generates a
market expansion that benefits all customers — in contrast, in the absence of
any scope for demand expansion, welfare would be maximized for cost-based
termination fees. A conflict arises, however, since network operators favor
excessively high termination fees.
When on-net pricing is allowed, the market exhibits tariff-mediated net-

work effects: with a positive termination mark-up, the off-net price is above
the on-net price so a customer is better off joining a larger network; these
network effects in turn intensify competition, as pointed out by Laffont, Rey
and Tirole (1998b) and Gans and King (2001). In our setting, while network
effects mostly concern heavy users, the operators compete more fiercely for
both heavy and light users, and we show that welfare is still maximized for a
termination rate that lies above cost; the operators also prefer an above-cost
termination fee when the size of the demand from light users is not too small.
Finally when the receivers’ utility is not fixed but depends on the number

of calls received, the usage price is distorted downward to generate more calls,
more utility and thus higher revenues for the firms. By way of numerical
simulations, we show that the main insights — profit-maximizing and welfare-

4The term was coined by Paul Geroski. See Schiff (2008) for a formal analysis.
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maximizing termination fees are above cost — extend to this more general
model.

Starting with the work of Armstrong (1998) and Laffont, Rey and Tirole
(1998a,b), a body of literature has analyzed the role of termination fees in
industries with two-way access.5 In particular, LRT found that the termi-
nation fee had no impact on equilibrium profits when networks compete in
two-part tariffs and subscription demand is inelastic, a result extended to het-
erogeneous calling patterns by Dessein (2003) and Hahn (2004). Subsequent
work suggests that network operators should favor below-cost termination
fees: see e.g. Gans and King (2001) for competition in two-part tariffs with
termination-based price discrimination, Berger (2004, 2005) taking into ac-
count call externalities,6 or Dessein (2003) and (2004) for, respectively, elastic
but homogenous demand and heterogenous but inelastic demand. This pa-
per shows that allowing instead for both heterogeneity and elastic demand
drastically changes the previous conclusion, leading to above-cost private and
social optimal termination fees.
DeGraba (2004) and Hermalin and Katz (2010) compare different in-

terconnections pricing schemes when operators can charge both callers and
receivers;7 they focus on the role of cost sharing in achieving optimal usage
while we focus on participation. Atkinson and Barnekov (2000) consider in-
stead the allocation of investment costs in a setting where usage demand is
fixed.
In the case of mobile telephony, Armstrong and Wright (2009) explain

the opposition of network operators to a reduction in termination fees by
a link (due to arbitrage possibilities) between fixed and mobile rates along
with the importance of fixed-to-mobile termination revenue.8 We show that
accounting for demand heterogeneity yields similar insights even in the ab-
sence of fixed-to-mobile termination — and that socially optimal termination
fees are then also above cost. The same thus applies to any communication
network with the above pattern of demand.9 In the case of mobile telephony,
Genakos and Valletti (2011a and 2011b) estimate the impact of the regula-

5See Armstrong (2002) for an overview of this literature.
6Note that adding constraints on two-part tariffs, such as participation constraints as

in Poletti and Wright (2004), may lead to non-neutrality.
7Bolt and Tieman (2006) discuss the conflict between social efficiency and cost recovery

in this context.
8Calzada and Valleti (2008) and Lopez and Rey (2009) points to the possibility that

high termination fees may act as a barrier to entry.
9Convergence in communication markets favors integration so that the distinction be-

tween fixed and mobile operators may not be relevant in the future. In France, for instance,
all four operators now propose fixed and mobile services.
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tion of termination fees on retail tariffs, confirming the existence of a partial
waterbed effect, which is in line with an elastic participation. Their results
for post-paid and pre-paid contracts are also consistent with the predictions
of our model.10 Recently, several papers have explored other features that
may explain mobile operators’ attitude towards termination fees. Hoernig,
Inderst and Valletti (2011) account for heterogeneity in the destination of
calls and show that, with termination-based price discrimination, the profit-
maximizing termination fee is above cost when calling patterns are sufficiently
concentrated on on-net calls. Hurkens and Lopez (2010) suppose that con-
sumers’ expectations about networks’ market shares do not react to changes
in prices, and show that, with on-net price discrimination, this also results
in profit-maximizing termination fee above cost. We focus instead on het-
erogeneity in the volume of calls, and rational expectations about market
shares, and our conclusions are valid both with and without on-net price dis-
crimination. In a very recent paper, Tangeras (2012) shows that accounting
for wealth effects in the demand function may also help explaining why profit
increases with termination fees above cost. We do not consider wealth effects
here and focus instead on quasi-linear utilities.

The paper is organized as follows. Section 2 presents our model. Section 3
develops the main insights of our analysis in a simplified framework. Section
4 extends the results to the general model. Section 5 concludes.

2 The model

Two mobile operators 1 and 2 compete for two types of customers: heavy
users wishing to call as well as to receive calls, and light users who are only
interested in being reached.
We will denote by c the cost of a call.11 In the case of an off-net call, the

calling network pays an access fee to the receiving network, which is assumed
to be reciprocal and non-negative;12 denoting by m the termination mark-up
(i.e., the difference between the access fee and the actual cost of terminating
the call) earned by the receiving network, the originating network thus bears

10We show in our 2010 working paper that the waterbed effect of FTM rates is stronger
for heavy users than for light users, which is confirmed by Genakos and Valletti (2011b).
11For the sake of exposition, we will ignore here fixed costs (per network as well as per

customer), as they do not affect the qualitative analysis (in what follows, subscription fees
can be interpreted as net of per subscriber fixed costs, and profits as gross of network fixed
costs).
12Negative termination charges could generate abuses.
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a cost c+m. To study the impact of this access fee on network competition,
we consider the following timing:

• first, the reciprocal access mark-up m is set (more on this below);

• second, the two operators compete in retail prices.

We moreover assume that the two types of users are sufficiently different
that each network i = 1, 2 can discriminate between them by offering two
contracts: a two-part tariff for heavy users, which consists of a subscription
fee FH

i and a price pi (per unit) for originating a call, and a simple fixed
fee FL

i for light users (together with a high usage price, say). In practice,
light users’ contracts do not include many of the services offered to heavy
users, making these contracts unattractive to heavy users. Conversely, heavy
users’ contracts often involve quantity forcing elements which make them
unattractive to light users.13

Networks are differentiated and face symmetric demands:

• Light users’ demand for network i is given by Li = DL(FL
i , F

L
j ;V

L
i , V

L
j )

(for i 6= j = 1, 2), where V L
i represents light users’ utility from receiving

calls from network i.

• Heavy users are uniformly distributed on an Hotelling line of length 1,
the network operators being located at the two ends of the segment.

Heavy users moreover have a balanced calling pattern and thus call all
subscribers (heavy and light) with equal probability. A volume of calls q
gives them a utility u (q) per subscriber; a usage price p generates a volume
of calls per subscriber given by

q (p) ≡ argmax
q≥0

{u (q)− pq} ,

where we assume that q (p) is differentiable; we will denote by v (p) ≡
maxq≥0 {u (q)− pq} the surplus so achieved. Letting HT and LT denote,
respectively, the total number of (connected) heavy and light users, by sub-
scribing to network i a heavy user located at distance x obtains a net utility

wi + u0 −
x

2σ
,

13In our setting, where heavy users’ contracts are efficient but take the form of two-part
tariffs, they may attract light users if competition were to drive heavy users’ subscription
fees below light users’ fees. This however never occurs in the simulations of section 4.2
— and thus would a fortiori not occur either if the same offers were implemented through
quantity forcing contracts.
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where
wi ≡ (HT + LT ) v (pi)− FH

i (1)

denotes the variable net surplus from placing calls, whereas the other terms
reflect a fixed utility from being connected (including the utility from receiv-
ing calls), the parameter σ measuring the degree of substitution between the
two networks.
We first provide below a complete analysis of the case where light users’

utility from receiving calls is not sensitive to the volume of calls. We then
provide a characterization of the equilibrium in the more general case, and
check the robustness of our insights by way of simulations.

3 Main insights

In this section, we present our main insights in a simplified framework that
neglects the impact of call volumes on light users’ utilities: that is, V L

i does
not depend on heavy users’ actual calling behavior; for the sake of exposi-
tion, we will then denote by D

¡
FL
i , F

L
j

¢
≡ DL(FL

i , F
L
j ;V

L
i , V

L
j ) the resulting

subscription demand. We will moreover assume that demand for network i is
bounded, twice continuously differentiable with bounded derivatives, decreas-
ing with its own price14 (D1 < 0) and nondecreasing with the rival’s price
(D2 ≥ 0), and that the aggregate demand, LT = DT (F

L) ≡ 2D(FL, FL), is
decreasing (D1 +D2 < 0).

3.1 Retail equilibrium

It is well-known that departing from cost-based termination fees (i.e., m 6= 0)
may introduce non-concavity problems. However, building on the analysis of
LRT, it can be checked that a unique symmetric equilibrium exists as long
as the termination mark-up is not too large and/or networks are sufficiently
differentiated. Thus, throughout the paper we will assume the following:

Assumption A

1. u0 is large enough to ensure that heavy users always subscribe; normal-
izing their total mass to 1 (so that HT = 1), operator i’s subscription
demand (and market share) from heavy users is then given by:

Hi =
1

2
+ σ (wi − wj) . (2)

14In the following, Di denotes the partial derivative of the demand function D with
respect to its ith argument.

8



2. v (0) and q (0) are bounded and the two networks are sufficiently differ-
entiated that there always exists a unique, pure strategy equilibrium,
in which the two networks share the market equally.15

Assumption A ensures that, for any given access mark-up m, there ex-
ists a unique, symmetric equilibrium, moreover characterized by first-order
conditions. We will thus focus on these conditions in what follows.
For given prices

¡
pi, F

H
i , FL

i

¢
i=1,2

and given subscription demands from
heavy and light users (Hi, Li, )i=1,2, network i’s profit, for i 6= j = 1, 2, is:

Πi = Hi

£
(1 + LT ) (pi − c) q (pi)− (Hj + Lj)mq (pi) + FH

i

¤
+(Hi + Li)Hjmq (pj) + LiF

L
i . (3)

A first and by now standard step consists in optimizing with respect to the
usage price pi, adjusting the fee FH

i so as to maintain the surplus wi =
(1 + LT ) v (pi) − FH

i (that is, ∂FH
i /∂pi

¯̄
wi
= − (1 + LT ) q (pi)); this keeps

market shares constant and yields a marginal gain:

∂Πi

∂pi

¯̄̄̄
wi,FL

i

= Hi [(1 + LT ) ((pi − c) q0 (pi) + q (pi))− (Hj + Lj)mq0 (pi)− (1 + LT ) q (pi)]

= Hiq
0 (pi) [(1 + LT ) (pi − c)− (Hj + Lj)m] ,

which, evaluated at a symmetric equilibrium (Hj = 1/2, Lj = LT/2), leads
to:

p1 = p2 = p∗ ≡ c+
m

2
. (4)

As in the previous literature, the networks price usage at the average per-
ceived marginal cost. Given these equilibrium prices, network i’s profit is
equal to:

Πi = Hi

∙
(Hi + Li)

mq∗

2
− (Hj + Lj)

mq∗

2
+ FH

i

¸
+(Hi + Li)Hjmq∗+LiF

L
i ,

where q∗ ≡ q (p∗) denotes the equilibrium volume of calls per subscriber and:

Hi = 1−Hj =
1

2
− σ

¡
FH
i − FH

j

¢
.

15Laffont, Rey and Tirole (1998a) show that, in the case of homogeneous users, a sym-
metric shared-market equilibrium exists when m and/or σ is small enough. The argument
can easily be extended here (as in Dessein (2003), who considers the case of implicit dis-
crimination among heterogenous users); in particular, the bound on v (0) puts a limit on
non-concave terms in profit expressions for m > 0, while the restriction to non-negative
termination charges puts a similar limit for m < 0. Lopez and Rey (2009) provide a
detailed analysis of the existence of shared-market and cornered market equilibria for m
and/or σ large.
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Differentiating with respect to the subscription fee FH
i yields, at a symmetric

equilibrium:

∂Πi

∂FH
i

¯̄̄̄
FH
1 =F

H
2 =F

H∗ ,L1=L2=LT /2

= −σFH∗ +
1

2
(−σmq∗ + 1) +

µ
−σ1
2
+ σ

1 + LT

2

¶
mq∗

=
1

2
− σFH∗ + σ (LT − 1)

mq∗

2
.

Therefore, the equilibrium fixed fee FH∗ is given by

FH∗ =
1

2σ
+ (LT − 1)

mq∗

2
. (5)

Condition (5) is similar to that obtained by LRT, except for the term in
LT . To understand this condition, consider first the profits earned by network
i on the calls made or received by a heavy user. If the user subscribes to
network i, his own calls generate no profit since the usage price reflects the
average variable cost, taking into account the termination mark-up paid on
the proportion of off-net calls; the calls received from the same network
generate however a retail profit equal to H∗

i (p
∗ − c) q∗ = mq∗/4, while the

calls received from the rival network generate a termination profit equal to
H∗

jmq∗ = mq∗/2. If the user subscribes instead to the rival network, his
calls to network i’s heavy users generate a termination profit of H∗

imq∗ =
mq∗/2, while the calls he receives from network i generate a retail profit
H∗

i (p
∗ − c−m) q∗ = −mq∗/4, due to the difference between the price and

the cost of an off-net call. On the whole, attracting the user generates a net
gain equal to mq∗/2, as in LRT, and equilibrium fees are reduced by this
amount.
The existence of light users mitigates this first impact. While the calls

placed by network i’s subscribers to light users still generate no profit, calls
from the rival network generate a termination profit equal to Limq∗ =
LTmq∗/2. Losing a heavy user to the rival thus generates an additional
net gain of LTmq∗/2, which increases equilibrium fees by the same amount.
Conditions (4) and (5) characterize the retail equilibrium prices for heavy

users, for a given number of light users. Setting heavy users’ prices to their
equilibrium values (which yields H∗

1 = H∗
2 = 1/2), and letting

t ≡ mq
³
c+

m

2

´
denote the termination profit, network i’s total profit becomes:

Πi =
1

2

∙µ
1

2
+ Li

¶
t

2
−
µ
1

2
+ Lj

¶
t

2
+ FH∗

¸
+

µ
1

2
+ Li

¶
t

2
+ LiF

L
i .
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Maximizing this profit with respect to FL
i amounts to maximizing

(FL
i +

3t

4
)D
¡
FL
i , F

L
j

¢
− t

4
D
¡
FL
j , F

L
j

¢
. (6)

In the first term, 3t/4 reflects the profit attached to the calls received by
network i’s light users, namely, a retail profit H∗

i (p
∗
i − c) q (p∗i ) = t/4 from

on-net calls and a termination profit H∗
jmq

¡
p∗j
¢
= t/2 from incoming off-net

calls; the last term represents the termination deficit generated by the calls
to the rival network, H∗

i (p
∗
i − c−m) q (p∗i ) = −t/4.

Let γ(FL) ≡ −D2(F
L, FL)/D1(F

L, FL) denote the “replacement ratio” ,
which is such that 0 ≤ γ(FL) < 1,16 and μ(FL) ≡ −D(FL, FL)/D1(F

L, FL)
denote the “market power” associated with the demand from light users, in
the terminology of Weyl and Fabinger (2009). The first-order condition that
characterizes the unique, symmetric equilibrium, FL

1 = FL
2 = FL∗, is:

FL∗ +
3 + γ

¡
FL∗

¢
4

t = μ(FL∗), (7)

Differentiating (7) yields

dFL∗

dt
= −

3+γ(FL∗)
4

1− μ0 (FL∗) + γ0 (FL∗) t
4

. (8)

It follows that

−1 < dFL∗

dt
< 0 (9)

whenever
μ0
¡
FL
¢
<
¡
1− γ

¡
FL
¢
+ γ0

¡
FL
¢
t
¢
/4. (10)

We will assume that this is indeed the case:

Assumption B μ0 (.) and |γ0 (.)| are small enough, so that (9) is satisfied
for any t in the relevant range.17

Assumption B implies that, for any termination mark-up m, (7) has a
unique solution, which moreover satisfies (9). This assumption holds for
example when (i) μ0 ≤ 0, which ensures that a reduction in the opportunity
cost of servicing consumers is (at least partially) passed on to them through

16The limit case γ = 1 would correspond to the case of fixed participation.
17Since the termination charge cannot be negative, t is lowest for “bill and keep” (t =
−cT q (c− cT /2) for m = −cT , where cT denotes the actual cost of terminating a call);
conversely, t cannot exceed the "monopoly level" maxmmq (c+m).
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a reduction in the price (see Weyl and Fabinger (2009)) and is satisfied by
many demand functions, and (ii) γ0 is close to zero, so that the opportunity
cost of letting consumers join the rival’s network (the second term in (6))
does not alter this partial pass-through property. Assumption B holds for
many usual demand specifications. For example, γ0 = 0 and μ0 = −1 for a
linear demand (D = α − βFL

i + γβFL
j ) and γ0 = μ0 = 0 for a log-linear

demand (logD = α − βFL
i + γβFL

j ), so that (10) holds for any γ < 1.
For a constant elasticity demand (D = L exp

¡
−εFL

i + γεFL
j

¢
), γ0 = 0 but

μ0 = 1/ε > 0; yet, (10) holds when the elasticity ε is large enough (namely,
ε > 4/ (1− γ)).18

3.2 Choosing the termination rate

Let us now derive the private and social optimal values for the termination
mark-up m. Evaluating (3) for FH

i = FH∗ and FL
i = FL∗ yields each opera-

tor’s equilibrium profit:

Π∗ =
1

4σ
+
¡
FL∗ + t

¢ L∗T
2
, (11)

where L∗T ≡ DT (F
L∗ (t)) denotes the equilibrium number of light users. This

equilibrium profit depends on m only through t = mq (c+m/2): this termi-
nation profit affects the subscription revenue from light-users (FL∗L∗T/2) as
well as the last term (tL∗T/2), which captures two effects. First, the presence
of light users reduces the intensity of competition for heavy users; as a result,
the profit on heavy users increases by tL∗T/4. Second, light users generate a
termination profit tL∗T/4 (which is however partially granted back through a
reduction in FL∗).
Similarly, light users’ equilibrium surplus, SL∗, depends only on FL∗ and

thus on t. As for heavy users, their surplus can be written as:

SH∗ = (1 + L∗T ) v (p
∗)− FH∗ − 1

8σ

= (1 + L∗T ) v (p
∗) +

t

2
(1− L∗T )−

5

8σ
. (12)

The termination mark-upm thus affects their surplus both through the access
profit t and through the equilibrium price p∗ = c+m/2.

18For a logit demand (D =
α exp(−εFL

i )
β+exp(−εFL

i )+exp(−εFL
j )
), μ0 < 0 and γ0 > 0; Assumption B

thus holds for t ≥ 0. By continuity, it holds as well in the range t ∈ [−cT q (c− cT /2) , 0]
when cT is small, as it is indeed the case in practice.
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Let us now define the “monopoly” termination mark-up,

mM ≡ argmax
m

t (m) ,

which, for the sake of exposition, is assumed to be unique.19 We can note a
useful preliminary result:

Proposition 1 For any m > mM , there exists m̃ < mM that Pareto domi-
nates m.

Proof. Take any candidate m > mM . Since t(0) = 0 and t(.) is continuous
(by the continuity of demand), there exists m̃ ∈ [0,mM ] such that t(m̃) =
t(m), and:

• the profit is the same for m and m̃ since it only depends on t;

• for the same reason, light users’ surplus is also the same for m and m̃;

• heavy users’ surplus is higher with m̃ than with m since p∗ is lower for
m̃.

We now show that the monopoly rate maximizes networks’ equilibrium
profit:

Proposition 2 The profit-maximizing termination mark-up is positive and
equal to the monopoly termination mark-up mM .

Proof. The impact of t on total profits is given by:

d (2Π∗)

dt
= D0

T

dFL∗

dt

¡
FL∗ + t

¢
+ L∗T (

dFL∗

dt
+ 1). (13)

For m ≥ 0, t ≥ 0 and thus

FL∗ + t ≥ FL∗ +
3 + γ

¡
FL∗

¢
4

t = μ(FL∗) > 0,

where the equality stems from (7). Since D0
T < 0 and 0 > ∂FL∗

∂t
> −1, total

profits therefore increase with t. Hence, in the range m ≥ 0, the profits are
maximal for m = mM .
19If the monopoly rate mM is not uniquely defined, the same analysis applies to its

lowest value.
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For m < 0, a similar reasoning applies as long FL∗ + t ≥ 0, since dt
dm
=

mq0

2
+ q > 0 for m < 0; if instead FL∗ + t < 0, then from (11) the equilibrium

profit is lower than 1
4σ
; but for t = 0, FL∗ = μ

¡
FL∗

¢
> 0 from (7), and thus

Π∗ > 1
4σ
from (11). Therefore, m < 0 cannot yield more profit than m = 0,

which implies that the profit-maximizing termination mark-up is mM .

That operators favour a high termination mark-up is not entirely surpris-
ing: if only light users were present (and receiving calls from some external
source, say), the operators would indeed favour maximal termination profit
since, with an elastic demand, only part of the termination profit would be
passed-on to consumers through lower prices; conversely, if only heavy users
were present, LRT shows that operators would be indifferent as to the level
of the termination fee. To be sure, when both categories of users are present,
their interaction affects the intensity of competition for each segment; yet,
our analysis shows that these new effects also induce the operators to favour
maximal termination profit

¡
m = mM

¢
.

Let us now turn to users. Light users’ equilibrium surplus is of the form
SL∗ = SL

¡
FL∗, FL∗

¢
, where SL

¡
FL
1 , F

L
2

¢
is such that ∂SL

∂FL
i
= −Li. Therefore:

dSL∗

dt
=

µ
∂SL

∂FL
1

+
∂SL

∂FL
2

¶
dFL∗

dt
= −L∗T

dFL∗

dt
> 0.

As light users’ equilibrium surplus increases with t, it is maximal for m =
mM . As for heavy users, we show in the appendix that, at m = 0:

dSH∗

dm

¯̄̄̄
m=0

= L∗Tv (c)

Ã¯̄̄̄
¯D0

T

¡
FL∗

¢
DT (FL∗)

¯̄̄̄
¯
¯̄̄̄
dFL∗

dm

¯̄̄̄
m=0

¯̄̄̄
−
¯̄̄̄
v0 (c)

v (c)

¯̄̄̄!
. (14)

Therefore:

Proposition 3 Light users’ surplus increases with the termination profit and
is thus maximal for m = mM ; furthermore, for m small, increasing m raises
heavy users’ surplus if light users’ subscription demand is very elastic or if
heavy users’ usage surplus is not very elastic.

Proof. See Appendix A.1.

The effect on heavy users is two-fold. First, raising the termination mark-
up reduces the net surplus from usage, which in the presence of light users
is no longer fully compensated by a reduction in subscription fees. Second,
heavy users benefit from an increase in light users’ participation, due to

14



intensified competition on this customer segment. The latter effect dominates
if the subscription demand of light users is sufficiently elastic.
Finally, total welfare can be written as:

W ∗ =

∙
(1 + L∗T )

µ
v∗ +

mq∗

2

¶
− 1

8σ

¸
+
£
SL(FL∗, FL∗) + L∗TF

L∗
¤
. (15)

The first term within bracket represents the joint surplus generated with
heavy users, including call termination profits. The second term represents
the joint surplus generated with light users (excluding termination profits).
We then obtain:

Proposition 4 The welfare-maximizing termination mark-up is positive and
strictly less than mM .

Proof. Using p∗ = c+ m
2
and dSL

∗

dm
= −L∗T dFL∗

dm
, we have:

dW ∗

dm
= (1 + L∗T )

mq0 (p∗)

4
+

µ
v∗ +

mq∗

2
+ FL∗

¶
D0

T

¡
FL∗

¢ dFL∗

dm
. (16)

For m ≤ 0, (i) the first term is non-negative, (ii) D0
T

¡
FL∗

¢
dFL∗

dm
> 0 (since

dFL∗

dm
= dFL∗

dt
t0 (m), where dFL∗

dt
< 0 and t0 (m) = q∗ + mq0(p∗)

2
> 0), and (iii)

from (7), FL∗ ≥ −3+γ∗
4

mq∗; therefore:

dW ∗

dm
≥
µ
v∗ − 1 + γ∗

4
mq∗

¶
D0

T

¡
FL∗

¢ dFL∗

dm
> 0.

Since dW∗

dm
> 0 form ≤ 0, from Proposition 1 the socially optimal termination

mark-up lies in the range
¤
0,mM

¤
. To conclude the proof, it suffices to note

that, at m = mM (> 0), dFL∗

dm
= dFL∗

dt
dt
dm
= 0 and thus:

dW ∗

dm

¯̄̄̄
m=mM

= (1 + L∗T )
mq0 (p∗)

4
< 0.

Hence, the welfare-maximizing level is strictly below mM .

Therefore, the presence of light users, whose participation is elastic,20

leads to favoring a positive termination mark-up. Note that the above analy-
sis puts the same weight on both categories of users. If a regulator wanted

20In the case of a fixed participation (i.e., DT constant), dW∗

dm = (1 +DT )
mq0(p∗)

4 and
thus welfare is maximal for m = 0.
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to promote the participation of light users, thus placing a higher weight on
those users, the optimal termination mark-up would be even higher. Note
moreover that raising the termination fee above cost may benefit here all
categories of agents. In particular, if the participation of light users is quite
elastic, heavy users are also better off with a positive mark-up, as this in-
creases their calling opportunities.

3.3 On-net pricing

We now allow networks to set different prices for on-net and off-net calls.
We keep the same notation as before except that pi and p̂i now denote the
prices that network i charges for on-net and off-net calls. Network i’s profit
becomes, for i 6= j = 1, 2:

Πi = Hi

£
(Hi + Li) (pi − c) q (pi) + (Hj + Lj) (p̂i − c−m) q (p̂i) + FH

i

¤
+(Hi + Li)Hjmq (p̂j) + LiF

L
i ,

where:

Hi =
1

2
+ σ(wi − wj),

wi = (Hi + Li)v(pi) + (Hj + Lj)v(p̂i)− FH
i .

This profit can also be written as a function of wi rather than FH
i :

Πi = Hi[(Hi + Li) ((pi − c) q(pi) + v(pi))

(Hj + Lj) ((p̂i − c−m) q (p̂i) + v(p̂i))− wi]

+ (Hi + Li)Hjmq(p̂j) + LiF
L
i

Differentiating with respect to usage prices pi and p̂i while adjusting the
subscription fee FH

i so as to keep constant the surplus wi (and thus the
market shares) yields:

p1 = p2 = c and p̂1 = p̂2 = p̂ = c+m.

Using the notation q̂ ≡ q(c + m), v ≡ v(c) and v̂ ≡ v(c +m), network i’s
profit can be written as:

Πi = HiF
H
i +Hj(Hi + Li)mq̂ + LiF

H
i , (17)

where the market shares can be expressed as a function of the fixed fees:

Hi =
1

2
+ σ(wi − wj)

=
1

2
+ σ[(2Hi − 1 + Li − Lj)(v − v̂)− (FH

i − FH
j )],
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and thus:

Hi −
1

2
= σ

(Li − Lj)(v − v̂)− (FH
i − FH

j )

1− 2σ(v − v̂)
. (18)

Differentiating (17) with respect to FH
i then yields, at a symmetric equilib-

rium:

∂Πi

∂FH
i

¯̄̄̄
L1=L2=

LT
2
,FH
1 =F

H
2 =F

H

=
1

2
− σ

1− 2σ(v − v̂)

µ
FH − 1 + LT

2
mq̂ +

mq̂

2

¶
,

which leads to:

FH
1 = FH

2 = F̂H =
1

2σ
+ LT

mq̂

2
− (v − v̂). (19)

To understand this characterization of the equilibrium fees, it is useful
to decompose again the profits generated by the calls made or received by a
heavy user. If he subscribes to network i, as in the absence of on-net pricing,
his calls generate no profit, since usage prices reflect again marginal costs,
including the termination mark-up in the case of off-net calls; as for the
calls received, those originating off-net still generate an termination profit
mq̂/2, whereas those originating on-net no longer generate any profit since
the price of these calls now reflect their actual cost. If instead the user
switches to the rival network, then his off-net calls generate a termination
profit (1 + LT )mq̂/2 whereas the calls received from network i no longer
generate any profit, since the price of off-net calls now reflects their actual
cost. On the whole, losing the user to the rival network yields a net gain of
LTmq̂/2, which increases the equilibrium fee by the same amount. Compared
to the situation without on-net pricing, the net gain of attracting this user
is however reduced by mq̂/2, which tends to raise the equilibrium fee.
This first effect is mitigated by a tariff-mediated network effect. As in Laf-

font, Rey and Tirole (1998b), on-net pricing increases competition between
networks: since attracting an additional user raises the value of a network
by v − v̂, networks compete more fiercely for subscribers; and the higher
the difference between the utilities generated by on-net and off-net calls, the
more intense the competition and the lower the fixed fee.
Consider now the subscription fees for light users. Setting heavy users’

prices to their equilibrium values, network i’s profit becomes:

Πi = HiF̂
H +Hj(Hi + Li)mq̂ + LiF

L
i , (20)

where FL
1 and F

L
2 affect the market shares in both segments: Li = D

¡
FL
i , F

L
j

¢
and

Hi =
1

2
+

σ(Li − Lj)(v − v̂)

1− 2σ(v − v̂)
.
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Differentiating (20) with respect to FL
i then yields, at a symmetric equilib-

rium:

∂Πi

∂FL
i

¯̄̄̄
FL
1 =F

L
2 =F̂

L

=
σ (v − v̂) (D1 −D2)

1− 2σ (v − v̂)

µ
F̂H − LT

mq̂

2

¶
+D1

µ
mq̂

2
+ F̂L

¶
+
LT

2
,

which, using D2 = −γD1 and (19), can be rewritten as:

F̂L +
(1 + γ(F̂L)) (v − v̂) +mq̂

2
= μ(F̂L). (21)

We now study the impact of on-net pricing on the prices offered to light
users:

Proposition 5 For termination fees close to the marginal cost, on-net pric-
ing leads to lower (resp., higher) subscription fees for both heavy and light
users when m is positive (resp., negative).

Proof. See Appendix A.2.
As mentioned above, on-net pricing generates two conflicting effects on

the fees charged to heavy users. On the one hand, the opportunity cost
of losing a heavy user is reduced, since there is less cross-subsidy between
different types of calls; this first effect tends to decrease competition. On
the other hand, tariff-mediated network effects tend to increase competition.
The proposition shows that, for small termination mark-ups, the second effect
dominates, so that on-net pricing therefore benefits heavy users.
On-net pricing also induces a decrease in the price for light users when the

termination fee lies above cost. This is again partly driven by network effects:
adding an additional light user renders a network comparatively more attrac-
tive for heavy users, which encourages networks to compete more fiercely for
light users. In addition, while on-net calls to light users no longer generate
any net revenue, off-net incoming calls still generate a termination profit
equal to mq̂/2, which contributes again to reduce prices.

Using the same decomposition as before, total welfare now becomes:

Ŵ =

∙³
1 + L̂T

´ v + v̂ +mq̂

2
− 1

8σ

¸
+
h
ŜL + L̂T F̂

L
i
, (22)

where ŜL = SL(F̂L, F̂L). It is then again socially desirable to raise the
termination fee above cost:

Proposition 6 With on-net pricing, the welfare-maximizing termination mark-
up is positive.
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Proof. Using ∂ŜL

∂F̂L =
∂SL

∂FL
1
+ ∂SL

∂FL
2

¯̄̄
FL
1 =F

L
2 =F̂

L
= −L̂T , we have

∂Ŵ

∂m
=
³
1 + L̂T

´ mq0 (p̂)

2
+

∂L̂T

∂m

µ
v + v̂ +mq̂

2
+ F̂L

¶
,

where, from (21):

v + v̂ +mq̂

2
+ F̂L = μ(F̂L) + v̂ − γ

³
F̂L
´ v − v̂

2
.

Since v̂ ≥ v for m ≤ 0, this implies ∂Ŵ
∂m

> 0 for m ≤ 0.
Unsurprisingly, the result on profit is more ambiguous. Indeed, while the

competition weakening effect described in the case without on-net pricing
is still present, it is now lower than before and moreover mitigated by the
impact of tariff-mediated network effects. Total profit can be written as:

2Π̂ =

µ
1

2σ
+

mq̂

2
+ v̂ − v

¶
+ L̂T

³
F̂L +mq̂

´
. (23)

The term within parentheses is maximal for a negative value of m, as shown
by Gans and King (2001) and Dessein (2003). The last term is more complex.
Still, we can establish:

Proposition 7 If at m = 0,

L∗T

Ã
1−

γ∗
¡
1 + γ∗

2

¢
1− μ0 (FL∗)

!
>
1

2
, (24)

then total profit increases with m for m close to zero.

Proof. See Appendix A.3.

The right-hand side of condition (24) is proportional (by a factor 1/q (c)) to
the reduction in profit due to tariff mediated network effects. In the absence
of light users, there is no other effect: the condition is then violated and the
operators favour a termination fee below cost. The left-hand side captures
the additional effects arising from the presence light users: increasing the ter-
mination fee above cost i) has a positive impact on the subscription fee F̂H

through the competition-softening effect (see equation (19)); ii) boosts the
termination profits generated by light users; iii) but intensifies the competi-
tion for light users. As long as γ∗ is not too large, the increase in termination
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profits is not fully competed away on the retail market, so that the over-
all additional effect is positive. It then dominates the negative impact of
tariff-mediated network effects when there are enough light users.
Note that, if μ0 > −1/2, the left-hand side becomes negative when the

participation of light users is quite inelastic (γ∗ large). In this case, an
increase in termination profits triggers a strong intensification of the retail
competition for light users, which outweighs the positive effects. This may
occur with on-net pricing and not without because, as pointed in proposition
5, the reduction in light users’ subscription fee is stronger with on-net pricing
than without.

The result does not extend easily to larger departures from cost-based
termination fees, due to the impact on the volume of traffic. We can however
extend it when the latter is not too sensitive to usage prices. To see this,
suppose that:

• the individual usage demand is inelastic:

q (p) =

½
q̄ if p ≤ p̄,
0 if p > p̄,

where p̄ > c and q̄ > 0; and

• light users subscription demand is linear:

D
¡
FL
1 , F

L
2

¢
= α− βFL

1 + γβFL
2 ,

where β > 0 and 0 ≤ γ < 1.
We show in Appendix A.4 that the operators’ total profit is then equal

to:

2Π̂ =
1

2σ
−mq̄

2
+

2

(2− γ)2β

³
α+ β (1− γ)

³
1 +

γ

2

´
mq̄
´µ

α+ β

µ
1− 3γ

2

¶
mq̄

¶
.

This profit is concave for γ > 2/3, in which case condition (24), which
(using L∗T = 2α/(2− γ) for m = 0 and μ0 = − (1− γ)) boils down here to

2α

2− γ

4− 4γ − γ2

2− γ
> 1, (25)

is necessary and sufficient for the operators to favour a positive termination
mark-up.
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For γ < 2/3, the profit is convex and it is then optimal for the operators
to favour either bill-and-keep (m = −cT , where cT < c is the termination
cost) or the maximal sustainable termination mark-up, m = p̄ − c (which
coincides here with mM); we show in the Appendix that, if p̄− c > cT , then
condition (25) ensures that the latter option dominates, which leads to:

Corollary 1 If individual usage is inelastic, with p̄−c > cT , and light users’
demand is linear, then the welfare-maximizing termination fee exceeds the
profit-maximizing one, which is above cost under condition (25).

Proof. See Appendix A.4.

Proposition 6 already shows that, when light users’ participation is elastic,
insisting on cost-based termination fees is no more socially desirable with
on-net pricing than without. The above corollary shows moreover that, when
on-net pricing is prevalent, any price cap regulation is socially detrimental (if
it is binding) when usage is inelastic and light users’ participation demand
is linear.
Condition (25) moreover ensures that the profit-maximizing termination

fee is also above cost. This condition is satisfied as long as light users’ partic-
ipation is elastic (γ not too large),21 and their population is large enough.22

When for example the operators have a local monopoly over their own clien-
tele of light users (γ = 0), the condition is satisfied if the equilibrium pro-
portion of light users at m = 0 exceeds one third of the total customer base.
Finally, for γ < 2/3, an additional mild condition (namely, p̄ − c > cT ,

which is likely to be satisfied as the marginal cost of termination is very small
in practice) then ensures that the operators favour the maximal termination
fee (p̄ − c, which coincides here with mM); we show in appendix that this
maximal termination fee coincides in that case with the socially optimal one.

4 Endogenous utility from reception

We now extend the analysis to the case where light users’ utility varies with
the volume of calls received. We first derive analytically the equilibrium fees
for light and heavy users. We then use numerical simulations to show that
the main insights derived in the benchmark case remain valid in this extended
setting.

21The left-hand side of (25) is positive as long as γ < 2
√
2− 2 ' 0.83.

22Since scaling the demand D by a multiplicative factor does not affect the equilibrium
prices, the condition is indeed easier to satisfy when there are many light users.
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4.1 Market equilibrium

We now assume that receiving a volume of calls q from a particular subscriber
gives light users a utility uL(q). Hence, in the absence of on-net pricing, the
total reception utility of a light user is V L = HiuL(q (pi))+HjuL(q (pj)); the
demand from light users for network i is then given by Li = D(FL

i , F
L
j , V

L),23

with D3 ≡ ∂D/∂V L ≥ 0. Heavy users are modeled as before; however, the
usage price pi now influences the surplus wi offered by network i not only
through the direct effect on v (pi), but also indirectly through the the impact
of the number of calls on the utility and thus the participation of light users.
As in the benchmark model, operator i’s profit is equal to

Πi = Hi

£
(1 + LT ) (pi − c) q (pi)− (Hj + Lj)mq (pi) + FH

i

¤
+(Hi + Li)Hjmq (pj) + LiF

L
i .

We will again first optimize with respect to pi, adjusting FH
i so as to keep

the market shares H1 and H2 constant, but accounting now for the impact
of calls on light users’ participation:

∂Πi

∂pi

¯̄̄̄
Hi,FL

i

= Hi

∙µ
1 + LT +

∂LT

∂pi
(pi − c)−m

∂Lj

∂pi

¶
q(pi)

+ ((1 + LT )(pi − c)− (Hj + Lj)m) q
0 (pi) +

∂FH
i

∂pi

¸
+Hj

∂Li

∂pi
mq(pj) +

∂Li

∂pi
FL
i ,

where ∂Lj
∂pi

= ∂Li
∂pi

= 1
2
∂LT
∂pi

(since L1 and L2 depend on pi only through V L).
Furthermore, since

Hi =
1

2
+ σ (wi − wj) =

1

2
+ σ (1 + LT ) [v (pi)− v (pj)]− σ

¡
FH
i − FH

j

¢
,

keeping market shares constant now requires

∂FH
i

∂pi
= −(1 + LT )q(pi) +

∂LT

∂pi
[v(pi)− v(pj)].

Therefore, the above first-order condition, evaluated at a symmetric equilib-
rium (p1 = p2 = p, FL

1 = FL
2 = FL∗ and H1 = H2 = 1/2), yields

p∗ = c+
m

2
− ∂LT

∂pi

(p∗ − c)q(p∗) + FL∗

(1 + L∗T )q
0 (p∗)

,

23Under uniform prices, light users’ utility from reception does not depend on the net-
work to which they subscribe: V L

1 = V L
2 = V L; we thus add only one argument in the

demand function.
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or, using ∂LT
∂pi

= D3u
0
Lq
0(p∗),

p∗ = c+
m

2
−D3u

0
L

(p∗ − c)q (p∗) + FL∗

1 + LT
. (26)

Compared to the benchmark model, the last term is new and accounts for the
negative impact of usage prices on calls and thus on light users’ participation;
in particular, the numerator is the profit derived from light users, which
includes the fixed fee FL∗ they pay as well as the retail profit they generate
through the on-net calls they receive.24

For p1 = p2 = p∗, Hi = 1/2 + σ
¡
FH
j − FH

i

¢
; differentiating Πi with

respect to FH
i then yields, at a symmetric equilibrium:

∂Πi

∂FH
i

= −σ
∙
(1 + LT )(p

∗ − c)q(p∗)− (1
2
+ Lj)mq(p∗) + FH

i

¸
+
1

2
[−σmq(p∗) + 1] + σ[

1

2
+ Li]mq(p∗)− 1

2
σmq(p∗).

The equilibrium fee is therefore such that

FH∗ =
1

2σ
+ (L∗T − 1)

mq∗

2
− (1 + L∗T )(p

∗ − c− m

2
)q∗. (27)

This condition is similar to the one obtained in the benchmark model, except
for the last term: the retail price now departs from the average marginal cost,
which alters the gain from attracting heavy users; if for example the price is
below average marginal cost, then each call emitted generates a loss and, as
a result, the equilibrium fee increases.
We now turn to light users; differentiating Πi with respect to FL

i leads to

∂Πi

∂FL
i

= Hi

∙
∂LT

∂FL
i

(p∗ − c)q∗ − ∂Lj

∂FL
i

mq∗
¸

+Hj
∂Li

∂FL
i

mq∗ +
∂Li

∂FL
i

FL
i + Li.

As ∂Li
∂FL

i
= D1 and

∂Lj
∂FL

i
= D2 = −γD1, the symmetric equilibrium fee for light

users, FL
1 = FL

2 = FL, is such that

FL∗ = μ∗ − (1− γ∗)(p∗ − c)q∗

2
− (1 + γ∗)mq∗

2
, (28)

24In a symmetric equilibrium, the termination profits associated with the off-net calls
received by light users cancel each other.
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where μ∗ = −D/D1 and γ∗ = −D2/D1 are evaluated at the equilibrium.
Finally, plugging (28) into (26) leads to

p∗ = c+
m

2
+
1

2

D3

D1
u0L

L∗T
1 + L∗T

∙
1 +

1 + γ∗

2μ∗
(p∗ − c−m)q∗

¸
. (29)

This condition allows us to show that, at least for m small, the equilibrium
usage price lies below cost:

Proposition 8 For termination fees close to the marginal cost, when light
users’ demand depends on the volume of calls received the equilibrium usage
prices lie below cost (i.e., p∗ < c).

Proof. For m = 0, condition (29) boils down to:

p∗ = c− λ

∙
1 +

1 + γ∗

2μ∗
(p∗ − c)q∗

¸
,

where λ ≡ −1
2
D3

D1
u0L

L∗T
1+L∗T

> 0 (as D1 < 0 and D3, u
0
L > 0), and thus

p∗ − c =
−λ

1 + 1+γ∗

2μ∗ λq
∗ < 0.

By continuity, p∗ < c for m close to 0.

4.2 Private and social optimal values of m

We now show that the main insights derived in the benchmark model re-
main valid. As it is not possible to obtain analytical results, we illustrate
this through numerical simulations. To do so, we adopt the following linear
functional forms:

1. q(p) = b (a− p);

2. D
¡
FL
1 , F

L
2 , V

L
¢
= α−βFL

1 +γβFL
2 +(1− γ)βV L, and uL (q) = uLq.25

We calibrate the model to be consistent with french data from second
quarter of 2005, interpreting heavy users as post-paid and light users as
pre-paid subscribers. The number of post-paid and pre-paid contracts were
respectively 28,55 millions and 16,84 millions, which, normalizing the pop-
ulation of heavy users to 1, gives L∗T = 16, 84/28, 55 = 0.59. The monthly

25This corresponds to Di = α− β(FL
i − uLq) + γβ(FL

j − uLq), where FL
i − uLq can be

interpreted as an hedonic price.
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volume of mobile-to-mobile calls were 5094 millions of minutes (mn), which
yields a volume of calls per user (1 + L∗T )q

∗ = 178 mn/month and thus on
average q∗ = 112 mn/month received by a subscriber. Following de Bilj and
Peitz (2004) and ARCEP (2008), we assume a cost c = 2 euro cents (cts)
equally divided between origination and termination.
To determine the parameters of the demand for calls q (.), we follow the

methodology of Harbord and Hoernig (2011). The termination fee for Orange
and SFR were 12.5 cts, which corresponds in our model to a price p∗ =
2+(12.5− 1) /2 = 7, 75 cts. Using q (p∗) = q∗ and assuming a price-elasticity
of usage (equal to −p∗q0 (p∗) /q (p∗) = bp∗) of 0.5, we can determine the
coefficients a and b, which yields (expressing the price in euros) q (p) =
722(0.23− p).
For the parameters of the demand D (.), we first note that, for uL = 0,

the elasticity of the aggregate demand of light users to the price, evaluated
at symmetric prices, is ε = 2 (1− γ) βPL/L∗T , where P

L is the total price.26

We thus adjust the parameter β as a function of the replacement ratio γ and
of the elasticity ε, evaluated at a total price PL = 10 euros and L∗T = 0.59:

β =
0.59

20

ε

1− γ
.

For instance, assuming an elasticity of 1 and a replacement ratio γ = 0.5
yields a value of β = 0.059. Finally, we set the parameter α so as to maintain
L∗T = 0.59 in the benchmark case without reception utility; that is, using (7)
and the linear specification of the demand:

α = (2− γ)
L∗T
2
− (1− γ) β

3 + γ

4
mq∗,

where L∗T , m and q∗ are set at the calibrated values.

In the simulation we use several values of the elasticity of the aggregate
demand of light users, ε, and of the replacement ratio γ. As for the range
of uL, note first that it is the monetary equivalent of 1 mn of call. For the
calibrated values, the surplus that heavy users derive from calling can be
written as vH = (1 + L∗T ) (q

∗)2 /2b = 13.80 euros, whereas light users’ surplus
from reception is 112uL. To maintain things comparable while allowing for a
substantial utility from reception, we vary uL from 0 to 0.15 euro/mn; note
that for uL = 0.15 euro/mn, light users’s utility from reception is 16.8 euros,
and is thus larger than the utility that heavy users derive from calling.

26As we normalized fixed costs to zero, in our model FL represents in fact the margin
and not the price.
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We first present the impact of the termination mark-up on the equilibrium
profit and welfare, both in the benchmark case where light users’ reception
utility is fixed (Figure 1, where uL = 0) and in the case where it varies with
the volume of calls received (Figure 2, where uL = 0.1).

Profit and welfare for uL = 0.

Profit and welfare for uL = 10 cts/mn.

These Figures show that the main insights of the benchmark model carry
over to the extended setting: the equilibrium profit and welfare are both
maximal for a positive termination mark-up (m > 0), although the optimal
values are smaller when light users’ utility is sensitive to the volume of calls
received. When uL = 0, increasing m makes light users very valuable, induc-
ing a reduction in their subscription fees and an increase in their welfare. But
increasing m has also an impact on the usage price p, and therefore on the
number of calls received, which harms light users when uL becomes positive.
This is why the privately and socially optimal values of m are smaller for
uL = 10 cts.
In the next table, we show how the privately and socially optimal levels

of the termination mark-up m (in cents) varies with uL for different values
of ε and γ.
Adding the termination cost of 1 ct/mn to the mark-up, the profit-

maximizing termination fee ranges from the monopoly level 22 cts/mn to
14.3 cts/mn and thus remains quite large even for a significant marginal util-
ity from reception. The welfare-maximizing termination fee is consistently
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ε = 1 and γ = 0.5 ε = 0.5 and γ = 0.5 ε = 1 and γ = 0.7
Profit Welfare Profit Welfare Profit Welfare
max m max m max m max m max m max m

uL = 0 21.0 9.9 21.0 8.7 21.0 9.6
uL = 5 cts 18.8 7.6 19.0 6.5 18.6 7.2
uL = 10 cts 16.4 5.0 16.8 4.1 15.9 4.4
uL = 15 cts 13.9 2.1 14.6 1.5 13.3 1.3

below the level of 12.5 cts/mn that was effective in 2005 in France, although
it remains significantly above cost.
The table confirms that it is beneficial (both for the operators and so-

ciety) to decrease m when light users react to the number of calls received.
The table also shows that the socially optimal value of m decreases when
the aggregate light users demand becomes less elastic. As mentioned above,
raising the termination fee has both a positive impact on participation and
a depressing effect on usage. When the participation of light users is only
slightly elastic, the negative impact of a price increase on usage tends to pre-
vail and the socially optimal termination fee is smaller. This reasoning does
not hold for the profit-maximizing level, because firms care about light users’
participation rather than about their utility. Thus, a lower elasticity of light
users’ participation may result into a higher profit-maximizing termination
mark-up, due to a lower effect of usage on participation.
For a given value of the elasticity ε, the replacement ratio γ can be in-

terpreted as a measure of competition. As more competition implies that a
larger share of termination revenue is transferred to light users, firms have
less incentive to raise the termination fee when γ increases. Moreover, as
the difference between the private and the socially optimal light users sub-
scription prices is smaller, the negative impact of a price increase on usage
prevails and the socially optimal termination fee also decreases with γ.

5 Conclusion

This paper revisits the theoretical analysis of termination fees in communi-
cation networks. We show that the insights of the existing literature, which
suggest profit-maximizing fees at or below cost, rely critically on the related
assumptions of fixed participation and full pass-through, as well as on the
homogeneity of calling patterns. When instead the elasticity of subscription
and the intensity of usage are negatively correlated across users, as empiri-
cal observation suggests, then the profit-maximizing reciprocal termination
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fee is always above cost in the absence of on-net pricing, and can still be
so with on-net pricing; in addition, the welfare-maximizing termination fee
is also above cost, although it is below the former one in the absence of
termination-based price discrimination.27

Our results thus imply that, while some cap on termination fees is desir-
able, the regulated cap should be above termination costs. The optimal cap
depends on factors such as the proportion of light users and their demand
elasticity. Thus local market conditions matter, suggesting for instance that,
in the context of the European regulation of mobile telephony markets, some
discretion should be left to national regulators.
By stressing the critical role of demand heterogeneity for regulatory de-

bates, the analysis also points to the need for better empirical facts on the
composition of the demand and on the participation elasticities of the various
categories of users of telecommunication services.

27In our 2010 working paper, we also study the robustness of these insights when taking
fixed-to-mobile termination into consideration, or when accounting for a small demand for
calls by light users.
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A Appendix to section 3

A.1 Proof of proposition 3

Differentiating (12) at m = 0 yields (using dp∗

dm
= 1

2
and dt

dm

¯̄
m=0

= q (c) =
−v0 (c)):

dSH∗

dm

¯̄̄̄
m=0

= (1 + L∗T )
v0 (c)

2
+D0

T (F
L∗)

dFL∗

dm

¯̄̄̄
m=0

v (c)− (1− L∗T )
v0 (c)

2

= L∗Tv (c)

Ã
D0

T

¡
FL∗

¢
DT (FL∗)

dFL∗

dm

¯̄̄̄
m=0

+
v0 (c)

v (c)

!
,

fromwhich the expression (14) follows since
D0
T (FL∗)

DT (FL∗)
, dFL∗

dm

¯̄̄
m=0

= dFL∗

dt

¯̄̄
t=0

q (c)

and v0(c)
v(c)

are all negative.

A.2 Proof of proposition 5

By construction, for m = 0 there is no difference in prices: p∗ = p̂ = c, and
thus F̂H = FH∗ and F̂L = FL∗. Furthermore, from (5) and (19) we have:

FH∗ − F̂H =
L∗T − 1
2

mq∗ − L̂T

2
mq̂ + v − v̂,

where L̂T denotes the equilibrium number of users under price discrimination,
and thus:

∂(FH∗ − F̂H)

∂m

¯̄̄̄
¯
m=0

=
L∗T − 1
2

q(c)− L∗T
2
q(c) + q(c) =

q(c)

2
> 0.

Consider now the fees charged to light users. From (8)we have (using dt
dm

¯̄
m=0

=

q (c)) ∂FL∗

∂m

¯̄̄
m=0

= − 3+γ(FL∗)
1−μ0(FL∗)

¯̄̄̄
m=0

q(c)
4
, whereas differentiating (21) yields:

∂F̂L

∂m

¯̄̄̄
¯
m=0

= −
1 + γ(FL∗)

2

1− μ0(FL∗)

¯̄̄̄
¯
m=0

q (c) . (30)

Therefore,
∂
³
FL∗ − F̂L

´
∂m

¯̄̄̄
¯̄
m=0

=
1 + γ(FL∗)

1− μ0(FL∗)

¯̄̄̄
m=0

q (c)

4
,

which is positive under Assumption B.
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A.3 Proof of proposition 7

Using LT = 2D
³
F̂L, F̂L

´
, we have:

∂
³
2Π̂
´

∂m

¯̄̄̄
¯̄
m=0

= −q
2
+
¡
LT + 2 (1− γ)D1F

L
¢ ∂F̂L

∂m
+ LT q,

where q = q (c) and LT and γ = γ(FL) are evaluated at FL = FL∗ (0) =
F̂L (0). FL is characterized by (21):

FL = μ
¡
FL
¢
= − D

D1
= − LT

2D1
.

This in turn yields:

LT + 2 (1− γ)D1F
L = γLT .

From (30), we have:
∂F̂L

∂m

¯̄̄̄
¯
m=0

= −
¡
1 + γ

2

¢
q

1− μ0(FL)
,

and thus:

1

q

∂
³
2Π̂
´

∂m

¯̄̄̄
¯̄
m=0

= −1
2
+ LT

Ã
1−

γ
¡
1 + γ

2

¢
1− μ0(FL)

!
.

A.4 On-net pricing with inelastic usage for heavy users
and linear demand for light users

From (23), and using q (c) = q (c+m) = q̄ and v − v̂ = mq̄, we have:

2Π̂ =
1

2σ
+

mq̄

2
−mq̄ + L̂T

³
F̂L +mq̄

´
=

1

2σ
− mq̄

2
+ L̂T

³
F̂L +mq̄

´
,

where
L̂T = 2

³
α− (1− γ)βF̂L

´
and F̂L is characterized by (21), which yields:

F̂L =

α
β
−
³
1 +

γ

2

´
mq̄

2− γ
. (31)
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This leads to:

2Π̂ =
1

2σ
− mq̄

2
+
2

β

⎛⎝α+ β (1− γ)
³
1 +

γ

2

´
mq̄

2− γ

⎞⎠
⎛⎜⎜⎝α+ β

µ
1− 3γ

2

¶
mq̄

2− γ

⎞⎟⎟⎠
=

1

2σ
− mq̄

2
+

2

(2− γ)2β

³
α+ β (1− γ)

³
1 +

γ

2

´
mq̄
´µ

α+ β

µ
1− 3γ

2

¶
mq̄

¶
.

We thus have:

d2
³
2Π̂
´

dm2
=

µ
2

3
− γ

¶
(1− γ) (2 + γ)

(2− γ)2
3βq̄2,

so that this profit is concave if γ > 2/3, in which case (24) ensures that the
operators favor a positive termination mark-up.
For γ < 2/3, the profit is convex and is thus maximal at m = p̄ − c or

m = −cT . The difference between the value at p̄− c and at −cT is equal to:

− (p̄− c+ cT ) q̄

2

+2

α

µ
4− 4γ − γ2

2

¶
(p̄− c+ cT ) q̄ + β (1− γ)

µ
2 + γ

2

¶µ
2− 3γ
2

¶£
(p̄− c)2 − c2T

¤
q̄2

(2− γ)2

= (p̄− c+ cT )
q̄

2

∙
2α

2− γ

4− 4γ − γ2

2− γ
− 1 + 2β (1− γ) (2 + γ)

(2− γ)2

µ
2− 3γ
2

¶
(p̄− c− cT ) q̄

¸
,

which is positive for γ < 2/3 if p̄− c− cT > 0 and 2α
2−γ

4−4γ−γ2
2−γ > 1.

Using (22), we have:

Ŵ =

∙³
1 + L̂T

´
v − 1

8σ

¸
+
h
ŜL + L̂T F̂

L
i
,

where ∂ŜL

∂F̂L = −L̂T , L̂T = 2
³
α− (1− γ)βF̂L

´
and F̂L is given by (31).

Therefore:
dŴ

dm
=
³
v + F̂L

´ dL̂T

dm
,

where v = (p̄− c) q̄ and

dL̂T

dm
= (1− γ)

2 + γ

2− γ
βq̄ > 0.
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It follows that total welfare is concave in m (d
2Ŵ
dm2 =

dF̂L

dm
dL̂T
dm

< 0) and that it
is maximal for mW = min

©
m̂W , p̄− c

ª
, where

m̂W ≡ 2β (2− γ) (p̄− c) q̄ + α

β (2 + γ) q̄
> 0.

m̂W decreases with γ and, for γ = 2/3, we have:

m̂W
¯̄
γ= 2

3

> 2
β (2− γ) (p̄− c) q̄

β (2 + γ) q̄

¯̄̄̄
γ= 2

3

= p̄− c.

If follows that, for γ ≤ 2/3, total welfare is maximal for m = p̄− c.

Profits and welfare are thus both maximal for m = p̄− c when γ ≤ 2/3;
we now focus on the case γ > 2/3. Total profit is then concave in m and,
under condition (25) is maximal for mΠ = min

©
m̂Π, p̄− c

ª
, where

m̂Π ≡ 2α (4− 4γ − γ2)− (2− γ)2

(1− γ) (3γ − 2) (2 + γ) 2βq̄
> 0.

We first show that m̂W > p̄ − c whenever m̂Π ≥ p̄ − c; indeed, the latter
condition implies

α ≥ (1− γ) (3γ − 2) (2 + γ) 2βq̄ (p̄− c) + (2− γ)2

2 (4− 4γ − γ2)
>
(1− γ) (3γ − 2) (2 + γ)

4− 4γ − γ2
β (p̄− c) q̄,

and thus:

m̂W − (p̄− c) >

Ã
2
β (2− γ) q̄ + (1−γ)(3γ−2)(2+γ)

4−4γ−γ2 βq̄

β (2 + γ) q̄
− 1
!
(p̄− c)

=
γ (3γ − 2) (2− γ)

(2 + γ) (4− 4γ − γ2)
(p̄− c) ,

which is positive since m̂Π ≥ p̄− c (> 0) implies 4− 4γ − γ2 > 0.
We now show that m̂W > m̂Π whenever m̂Π < p̄ − c; indeed, the latter

condition implies

2α (4− 4γ − γ2)− (2− γ)2

2β (2 + γ) (1− γ) (3γ − 2) < (p̄− c) q̄,

and thus:

m̂W − m̂Π > 2
β (2− γ)

2α(4−4γ−γ2)−(2−γ)2

2β(2+γ)(1−γ)(3γ−2) + α

β (2 + γ) q̄
− 1

2β (2 + γ) q̄

2α (4− 4γ − γ2)− (2− γ)2

(1− γ) (3γ − 2)

=
2− γ

(1− γ) (2 + γ)2
2− γ + 2αγ

2βq̄

> 0.
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Since m̂W > 0, and m̂Π < p̄ − c by assumption, it follows that mW =
min

©
m̂W , p̄− c

ª
> mΠ = max

©
m̂Π,−cT

ª
.

To summarize, we find that:

• If γ ≤ 2
3
: mW = p̄− c ≥ mΠ and, under condition (25), mΠ = p̄− c;

• If γ > 2
3
:mW = min

©
m̂W , p̄− c

ª
≥ mΠ and, under condition (25),mΠ =

min
©
m̂Π, p̄− c

ª
≥ 0.

B Details of the numerical simulations

With the linear functional forms, profits and surpluses are given by:

2Π∗ = (1 + L∗T ) (p
∗ − c) q∗ + FH∗ + L∗TF

L∗,

SL∗ =

¡
α+ (1− γ)βuLq

∗ − (1− γ)βFL∗
¢2

(1− γ)β
=

(L∗T )
2

4 (1− γ)β

SH∗ = (1 + L∗T )
q∗2

2b
− FH∗ − 1

8σ
,

W ∗ = (1 + L∗T )

µ
q∗2

2b
+ (p∗ − c)q∗

¶
+

(L∗T )
2

4 (1− γ)β
+ L∗TF

L∗ − 1

8σ
.

Conditions (27) and (28) allow us to express the equilibrium subscription
fees as functions of the equilibrium price p∗ and participation L∗T :

FH∗ =
1

2σ
− (1 + L∗T ) (p

∗ − c) q∗ + L∗Tmq∗,

FL∗ =
L∗T
2β
− 1− γ

2
(p∗ − c) q∗ − 1 + γ

2
mq∗,

where q∗ = b (a− p∗). The latter expression moreover allows us to express
L∗T as a function of p

∗:

L∗T = 2α+ 2 (1− γ)βuLq
∗ − (1− γ)β2FL∗

= 2α+ 2 (1− γ)βuLq
∗ − (1− γ) [L∗T − (1− γ)β (p∗ − c) q∗ − (1 + γ)βmq∗]

=
2α+ 2 (1− γ)βuLq

∗ + (1− γ)2 β (p∗ − c) q∗ + (1− γ2)βmq∗

2− γ
(32)

Finally, multiplying (29) by (1 + L∗T ) yields:

(1 + L∗T )
³
p∗ − c− m

2

´
= −1− γ

2
uL [L

∗
T + (1 + γ)β(p∗ − c−m)q∗] ,
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which, using (32), provides a cubic equation characterizing the equilibrium
price p∗. When uL is close to zero, this cubic equation has three solutions:
one close to c + m/2 and the others close to the solutions to LT = −1.
As participation should be positive, the only acceptable solution is the one
that is close to c +m/2, which corresponds to the second root of the cubic
equation. It is this solution that is used in the simulations.
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