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Abstract

The purpose of this paper is to characterize the optimal time paths of production
and water usage by an agricultural and an oil sector that have to share a limited water
resource. We show that for any given water stock, if the oil stock is sufficiently large,
it will become optimal to have a phase during which the agricultural sector is inactive.
This may mean having an initial phase during which the two sectors are active, then
a phase during which the water is reserved for the oil sector and the agricultural
sector is inactive, followed by a phase during which both sectors are active again. The
agricultural sector will always be active in the end as the oil stock is depleted and the
demand for water from the oil sector decreases. In the case where agriculture is not
constrained by the given natural inflow of water once there is no more oil, we show
that oil extraction will always end with a phase during which oil production follows
a pure Hotelling path, with the implicit price of oil net of extraction cost growing at
the rate of interest. If the natural inflow of water does constitute a constraint for
agriculture, then oil production never follows a pure Hotelling path, because its full
marginal cost must always reflect not only the imputed rent on the finite oil stock, but
also the positive opportunity cost of water. The case of oil and agriculture sharing a
water resource fixes ideas, but it constitutes just one example where a nonrenewable
resource sector must compete with another sector of the economy for the use of some
scarce input. Our analysis provides a framework to generalize the Hotelling rule of
nonrenewable resource depletion to the case where the marginal opportunity cost of
extracting the resource depends on the endogenous activity of some other sector of the
economy.

Key Words: Nonrenewable natural resources, renewable natural resources, optimal
order of use, Hotelling rule, oil, water, agriculture.
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1 Introduction

Several years of drought have recently exacerbated a dilemma faced by the province of

Alberta (Canada) concerning the sustainability of water usage by the various sectors of its

economy. The dilemma comes from the choices that must be made between conflicting uses

of a limited common water resource by important sectors of its economy. This is particularly

true of the agricultural and oil sectors, two of the mainstays of the Alberta economy and

two large water users.1 Water is an essential input for the agricultural sector, for irrigation

and other purposes. Water is also used intensively by Alberta’s important and growing oil

sector in order to enhance oil recovery.2 The optimal allocation of the scarce water resource

between those alternative uses poses a problem of intertemporal choice, given that both

water and oil are subject to dynamic constraints.

This Alberta situation is but one example where a nonrenewable resource sector, such

as oil, must compete with another sector of the economy for the use of some scarce input.

There are many instances where the exploitation of a nonrenewable resource will impact

on some scarce resource which is also a valuable input to other sectors of the economy.

Mining operations may use or pollute water or may be otherwise detrimental to the natural

environment, thus constraining the activities of other sectors that also depend on this water

or this natural environment; the common resource may be the absorption capacity of the

environment, being shared by two polluting industries, one of which exploits a nonrenewable

resource; economic development may irreversibly deplete the environmental base on which

depends the exploitation of a renewable resource, such as a fishery.3

This paper can be viewed as a generalization of the Hotelling rule (Hotelling, 1931) to

1See Griffiths and Woynillowicz (2003) for an overview of the consequences of the demand for water by
Alberta’s oil industry on the management of the province’s water resources.

2For a description of the different ways in which the use of water enters the oil recovery processes in
Alberta and for some summary data on water use by that industry, see Canadian Association of Petroleum
Producers (2002) and Alberta Environment (2004).

3Swallow (1990) provides an excellent example of such an interaction between a nonrenewable and a
renewable sector. He analyzes the case of the development of a coastal area which irreversibly changes the
character of a watershed on which also relies a fishery.
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cases where the nonrenewable resource sector shares a common constraint with other sectors

of the economy. As a result of this interdependence, the true opportunity cost of exploiting

the nonrenewable resource in question depends on the endogenous level of activity of those

other sectors. In some cases, this common constraint may be strictly static in nature, in the

sense that it applies to the flow of some common input. In other cases it may be dynamic in

nature, in the sense that that it applies to the stock of some renewable resource in addition

to the rate of renewal (or inflow) of this resource. This is specifically the case retained in this

paper. The framework used encompasses both types of constraints and can thus be easily

adapted to the analysis of either type of situation. The nonrenewable resource being subject

to eventual exhaustion, the question arises as to what is the optimal order in which the two

sectors should access this scarce input.

In order to fix ideas we will hereafter call the two sectors agriculture and oil and they

will share a water resource, as in the Alberta situation described above. Our purpose is to

characterize the optimal time paths of production and water usage of the two sectors. We

show that for any given initial water stock, these time paths will take different configurations

depending on the size of the initial oil stock and on whether or not the natural water recharge

imposes a long-run constraint on the agricultural sector. We are able to identify critical values

of the oil stock that determine the specific phases of the optimal paths. Ceteris paribus, the

larger the oil stock, the greater the pressure on the scarce water resource. We show that

for sufficiently large oil stocks, it will become optimal to have a phase during which the

agricultural sector is inactive. This may mean having a first phase during which the two

sectors are active, then a phase during which the water is reserved for the oil sector and

the agricultural sector is inactive, followed by a phase during which both sectors are active

again. The agricultural sector will always be active in the end as the oil stock is depleted

and the demand for water from the oil sector decreases. Agriculture becomes the only water

user once the oil stock is exhausted. It then may or may not be constrained by the natural

inflow of water. In the case where it is not, we show that oil extraction will always end with
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a phase during which the oil production path follows a pure Hotelling path, with the implicit

price of oil net of extraction cost growing at the rate of interest. Otherwise the oil production

path never follows a pure Hotelling path, because its full marginal cost must always reflect

not only the imputed rent on the finite oil stock, but also the positive opportunity cost of

water.

The problem analyzed here concerns the optimal order of use of the common water

resource as an input by a renewable and a nonrenewable sector. In this respect, it is related

to the literature on the optimal order of use over time of multiple pools of a natural resource

to serve a single market (Herfindahl (1967), Kemp and Long (1980), Lewis (1982), Kemp

and Long (1984), Hartwick, Kemp and Long (1986), Amigues et al. (1998), Favard (2002),

Holland (2003)). One particularity however is that the decision concerns the order of use

of a single common resource pool by multiple sectors of the economy, rather than multiple

resource pools by a single user. As such it is more closely related to Gaudet, Moreaux and

Salant (2001), who analyze the optimal order of use of many nonrenewable resource pools to

serve multiple markets, and to Chakravorty and Krulce (1994), Chakravorty, Roumasset and

Kinping (1997) and Chakravorty, Krulce and Roumasset (2005), where the analysis concerns

the optimal order of use of many differentiated resources for different purposes. However

none of those analyses can be applied directly to the problem studied in this paper, since

another one of its particularities is that the common resource is renewable and one of the

sectors using it as an input exploits a nonrenewable resource.

In the next section we present the model and derive some general propositions concerning

the rates of production of the two sectors. The optimal paths for the case where the natural

inflow of water constitutes a long-run constraint on agriculture are derived in Section 3.

In Section 4 we show how these paths are modified when the agricultural sector is not

constrained by the natural inflow of water. We then briefly conclude in Section 5.

4



2 The model

Consider an economy that produces an agricultural product and oil, both of which use water

as an input, drawn from a common source. The agricultural product can be produced

indefinitely, as long as the essential water input is available. Oil is a nonrenewable resource,

whose initial stock is fixed and therefore subject to exhaustion.

Let ya(t) denote agricultural production and ym(t) oil production at time t. The unit

cost of production in sector i, i = a, m, is ci > 0, excluding any imputed rents on water and

oil stocks. The gross social benefit derived from the production of sector i is ui(yi), which is

assumed to satisfy:

u′i(yi) > 0, u′′i (yi) < 0 ∀yi ≥ 0 and ui(0) = 0, ci < u′i(0) < +∞, u′i(∞) < ci. (1)

We further assume that

u′m(0) > cm +
km

ka

[u′a(0)− ca] (2)

where the right-hand side represents the marginal opportunity cost, excluding any imputed

rents, of producing the first unit of oil when no agriculture is being produced. The purpose

of these assumptions will become clear in due course.4

Sector i consumes net ki units of water per unit of production.5 Total net consumption

of water by sector i is therefore kiyi. The total stock of water available at time t is X(t) ≥ 0

and the given initial stock is X0 > 0. The stock of water is recharged by a natural inflow x̄.

The dynamics of the water stock, after withdrawal, is therefore given by:

Ẋ(t) = x̄− kaya(t)− kmym(t). (3)

4An essential property of the net benefit function of each sector i is its strict concavity in yi. For ease of
exposition, we choose to write it as ui(yi)− ciyi, that is with strictly concave gross benefit and linear costs,
as one way of neatly distinguishing benefits and costs. All of our results go through just as well with, for
instance, linear gross benefit and convex costs or, for that matter, any strictly concave net benefit function
that exhibits a unique interior maximum.

5The net consumption of water by a sector may differ from the gross consumption to the extent that a
fraction of the water used is returned to the water cycle. So if gross withdrawal per unit of output is hi and
a fraction αi is returned to the cycle, then ki = (1−αi)hi. Typically αm is relatively low and αa > αm (See
Griffiths and Woynillowicz (2003)).
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The oil stock to which the oil sector has access at time t is S(t) and its fixed initial stock

is S0 > 0. The oil stock dynamics is given by:

Ṡ(t) = −ym(t). (4)

When the water stock is drawn down to zero, the aggregate water consumption is con-

strained by the natural water inflow : kaya + kmym ≤ x̄. Each sector then faces an upper

bound to its production, given by ȳi = x̄/ki, which is the maximum output that can be

achieved in that situation when the other sector is inactive.

Denote by ŷi the level of output that would maximize the net benefit generated by sector i

if both water and oil were abundant, thus not justifying any scarcity rent. It is given by

u′i(ŷi) = ci. The assumptions on ui(yi) in (1) imply that ŷi > 0 and that it is well defined

and unique.

The planner’s problem can be formulated as that of choosing the time paths of ya(t) and

ym(t), for all t ≥ 0, so as to maximize:

∞∫
0

e−rt[ua(ya(t))− caya(t) + um(ym(t))− cmym(t)]dt

subject to

Ẋ(t) = x̄− kaya(t)− kmym(t), X(t) ≥ 0, X(0) = X0, given (5)

Ṡ(t) = −ym(t), lim
t→∞

S(t) ≥ 0, S(0) = S0, given (6)

ya(t) ≥ 0, ym(t) ≥ 0. (7)

where r is the rate of discount. Notice that contrary to the stock of oil, the stock of water

may be replenished by withdrawing less than the constant natural inflow. This explains why

it is necessary to impose explicitly that X(t) ≥ 0 for all t > 0 and not only at t = ∞, as for

S(t).

In order to take into account the pure state constraint X(t) ≥ 0, define the Lagrangian

function:

L(X, S, ya, ym, λm, λw, µ, t) = H(X, S, ya, ym, λm, λw, t) + µ(t)X(t)
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where the Hamiltonian is given by:

H(X, S, ya, ym, λm, λw, t) = e−rt[ua(ya)−caya+um(ym)−cmym]−λmym+λw[x̄−kaya−kmym].

Then the following conditions, along with (5), (6) and (7), are necessary:6

u′a(ya(t))

 = ca + ertλw(t)ka if ya(t) > 0

≤ ca + ertλw(t)ka otherwise.
(8)

u′m(ym(t))

 = cm + ert[λm(t) + λw(t)km] if ym(t) > 0

≤ cm + ert[λm(t) + λw(t)km] otherwise.
(9)

λ̇w(t)

 = 0 if X(t) > 0

= −µ(t) ≤ 0 otherwise.
(10)

λ̇m(t) = 0 (11)

lim
t→∞

λw(t) ≥ 0, lim
t→∞

λw(t)X(t) = 0, lim
t→∞

X(t) ≥ 0 (12)

lim
t→∞

λm(t) ≥ 0, lim
t→∞

λm(t)S(t) = 0, lim
t→∞

S(t) ≥ 0 (13)

The interpretation of these conditions is straightforward. The co-state variables λm and

λw are the present value shadow prices of the oil stock and the water stock respectively. The

right-hand sides of (8) and (9) represent the full marginal cost of agricultural production

and oil production respectively. Hence, condition (8) says that if the agricultural sector is

active, then gross marginal benefit from agriculture must be equal to the full marginal cost

of agricultural production as measured by the sum of ca and the current marginal shadow

costs of the water required. Similarly, condition (9) says that when the oil sector is active

its gross marginal benefit must equal its full marginal cost as measured by the sum of cm

and the current marginal shadow cost of the oil being depleted and the water being used.

From condition (11), we know that λm(t), the present value shadow price of oil, is con-

stant over time. This means that its current value must be growing at the rate of interest.

Henceforth we will simply write λm without the time argument to signify this. As for λw(t),

6See Seierstad and Sydsaeter (1987), Theorem 16, page 244, on the necessity of the transversality condi-
tions.
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the shadow value of water, we know from condition (10) that it must be constant while the

stock of water is positive and decreasing over time while the stock of water is zero. Hence-

forth, we will denote it simply λw over intervals of time where the stock of water is known

to be positive and explicitly as λw(t) otherwise. Note also that λw(t) must be continuous

at the point where X(t) becomes zero. If there was to be a jump in λw(t), as can occur

in problems subject to pure state constraints, it would have to be downward in the case at

hand.7 However this is excluded in our problem since, from (8) and (9), it would imply an

upward discontinuity in either ya(t) or ym(t) or both. This in turn would lead to a negative

water stock, an impossibility.

As can be seen from conditions (8) and (9), the full marginal opportunity cost of oil

extraction when both sectors are producing is cm + km

ka
[u′a(ya(t)) − cm] + ertλm. In other

words, the full marginal cost of extracting oil must take into account the fact that one must

sacrifice some water usage in the agricultural sector in order to do so. This is reflected in

the second term, a term which is absent in the usual Hotelling type nonrenewable resource

extraction problem. This means that unlike in the usual Hotelling type problem of resource

extraction, the full marginal opportunity cost of extracting the resource now depends on the

endogenous level of activity of another sector of the economy. Because of this we need to

reestablish the standard result that, under our assumptions, the resource will be extracted

at a positive rate until some finite date Tm, at which point its stock becomes fully depleted.

We do this in the first of the following three propositions.

Proposition 1 When assumption (2) is satisfied, (i) the oil stock will be fully depleted in

finite time; (ii) over any interval of time such that S(t) > 0, we will have ym(t) > 0.

Proof. We first show by contradiction that λm > 0. Suppose that λm = 0. Then

ym(t) > 0 for all t ∈ [0,∞). To see this assume ym(t) = 0 for some t1 ∈ [0,∞]. Then, by

condition (9), u′m(0) − cm ≤ λw(t1)e
rt1km and hence, by condition (8) and assumption (2),

ya(t1) = 0. It cannot be optimal to have ym(t) = 0 for all t ∈ [t1,∞), for then also ya(t) = 0

7See Léonard and Long (1992), Theorem 10.3.1, page 334-335.
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for all t ∈ [t1,∞). So there must be a t2 ≥ t1 such that ym(t) = 0 for t ∈ [t1, t2) and

ym(t2) > 0. But since neither sector would be producing along [t1, t2), the water stock will

be increasing and we will necessarily have X(t) > 0 and hence, by condition (10), λ̇w(t) = 0.

In view of the continuity of λw, this means that we cannot have ym(t2) > 0. Therefore

ym(t) > 0 for all t ∈ [0,∞) if λm = 0. Since by assumption u′′m(ym) < 0, at any date t

for which X(t) > 0 we will have ẏm(t) < 0. If on the other hand X(t) = 0, then either

ym(t) = ŷm (if λw(t) = 0) or kaya(t) + kmym(t) = x̄, in which case ym(t) > 0 from (8), (9)

and assumption (2). In any case, ym(t) is bounded away from zero. But this contradicts the

fact that S0 is finite. Therefore λm > 0. This immediately implies that ym(t) = 0 for all t

large enough, which proves part (i) of the proposition.

There remains to prove part (ii). Since the oil stock must be fully depleted, ym(t) will

necessarily become positive at some point in time. Suppose ym(t) = 0 for t ∈ [t1, t2) and

ym(t2) > 0. From (9) and the assumption that u′′m(ym) < 0 for all ym > 0, it follows that

λw(t2) < λw(t1). Hence, by condition (10), there must be a nondegenerate subinterval [θ, t2)

of [t1, t2) along which X(t) = 0. But then the initial conditions at t2 are the same as at θ,

since S(t2) = S(θ) and X(t2) = X(θ) = 0. Therefore, if ym(θ) = 0 was optimal, so must be

ym(t2) = 0, a contradiction.

Notice that we must also have ym(Tm) = 0. This is because the full marginal cost of oil

extraction (cm + ert[λm(t) + λw(t)km]) must reach the “choke price” (u′m(0)) at the exact

moment of exhaustion of the oil stock. Otherwise there would be an upward jump in the

implicit price of oil and it would always pay to delay exhaustion in order to benefit from

that jump.

We have thus established that whether there is water left in stock or not, as long as

there is oil left, oil production will not be interrupted. This means that condition (9) will be

satisfied with equality as long as the stock of oil is positive. However, whenever the shadow

value of water is positive the rate of extraction of oil will not be following a pure Hotelling

path, since the full marginal cost of oil must depend not only on λm, the shadow value of oil,
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but also on kmλw(t), the shadow value of the water required to extract the oil. As already

pointed out, the evolution of the shadow value of water will depend on whether the stock of

water is positive or zero (condition (10)). Therefore, whether the stock of water is positive

or not will also be crucial in determining the evolution over time of the rate of production

of oil and of agriculture, which leads to the next two propositions.

Proposition 2 Over any interval of time where X(t) > 0 and S(t) > 0, (i) if both sectors

are active, then ẏa(t) < 0 and ẏm(t) < 0 over that interval; (ii) if only the oil sector is active,

then ẏa(t) = 0 and ẏm(t) < 0.

Proof. When X(t) > 0 and S(t) > 0, from (10) and (11), λ̇w(t) = λ̇m(t) = 0 and hence,

differentiating (8) and (9) with respect to time, we get:

ẏa(t) =
rertkaλw

u′′a(ya(t))
< 0 (14)

ẏm(t) =
rert[λm + kmλw]

u′′m(ym(t))
< 0, (15)

which proves part (i) of the proposition. Part (ii) follows immediately from (15) and the fact

that if ya(t) = 0 over the interval in question, then ẏa(t) = 0 over that interval.

The explanation of this result is straightforward. The fact that the discounted shadow

prices of water and of oil are both constant when both stocks are positive means that the

full marginal cost of production will necessarily be increasing over time in both sectors. As

a consequence, if the sector is active — it will necessarily be the case of oil, as proven in

Proposition 1 — its rate of production must be decreasing over time since gross marginal

benefit is a decreasing function of production in both sectors. It is a different matter however

when the stock of water is zero, since then the full marginal costs of production will not

remain constant over time anymore.

Proposition 3 Over any interval of time where X(t) = 0 and S(t) > 0, (i) if both sectors

are active, then ẏa(t) > 0 and ẏm(t) < 0; (ii) if only the oil sector is active, then ẏa(t) = 0

and ẏm(t) = 0.
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Proof. If X(t) = 0 over some interval of time, then Ẋ(t) = 0 over that interval. This

means that kaya(t) + kmym(t) = x̄ and therefore:

kaẏa(t) + kmẏm(t) = 0. (16)

Differentiating (8) and (9) with respect to time and using (11), we find that:

ẏa(t) =
ertka[rλw(t) + λ̇w(t)]

u′′a(ya(t))
(17)

ẏm(t) =
ert{rλm + km[rλw(t) + λ̇w(t)]}

u′′m(ym(t))
. (18)

Substituting into (16), we find:

rλw(t) + λ̇w(t) =

−rkmλm

u′′m(ym(t))

k2
a

u′′a(ya(t))
+

k2
m

u′′m(ym(t))

< 0. (19)

Therefore ẏa(t) > 0, from (17), and ẏm(t) < 0, from (16), which proves part (i) of the

proposition. The proof of part (ii) follows immediately from the fact that if ya(t) = 0 over

the interval in question, then ym(t) = ȳm over that interval.

Thus when there is some oil left and both sectors depend strictly on the natural inflow

of water, oil production must be decreasing and agricultural production increasing. As a

corollary we get from (19) the rate of decrease of λw(t). It can be seen that it must be

decreasing at a rate less than the rate of interest, since rλw(t)+ λ̇w(t) < 0. This must be the

case, since otherwise both oil and agricultural production would be decreasing over time as

is evident from (17) and (18), which is incompatible with water usage being constant at x̄.

The intuition as to why the present value of the shadow price of water must be decreasing

to begin with when the stock of water is zero can be seen by imagining the case where

only the agricultural sector would be active. In that case agricultural production would be

equal to either ŷa or ȳa and would thus be constant over time. This means that the current

value of the shadow price of water, namely ertλw(t), would also have to be constant and

hence its present value, λw(t), would have to be decreasing exactly at the rate of interest if
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ya(t) = ȳa < ŷa, or would be equal to zero in the case where ya(t) = ŷa ≤ ȳa. When both the

agricultural and oil sectors are active, we must in addition take into account the fact that

water requirement from the oil sector will be decreasing over time.

It will be useful to distinguish henceforth between the case where ŷa > ȳa and that where

ŷa < ȳa. In the first case, discussed in the next section, water availability poses a long-run

constraint on agriculture. This is because, even in the absence of the oil sector, a water usage

of kaŷa would require more than the natural inflow of water and hence cannot be sustained

in the long run. In the second case, discussed in Section 4, a water usage of kaŷa can be

sustained indefinitely after the stock of oil has been depleted.

3 The natural water inflow poses a long-run constraint on agriculture

Let us now consider the case where ŷa > ȳa. It is useful to first characterize the two extreme

situations where there is only either an agricultural or an oil sector in operation. After

having done this, we turn to the analysis of the situation where the two sectors coexist. We

treat the initial oil stock as a pivotal parameter and define a number of critical values of

this stock that are important in determining the shapes of the optimal paths. These critical

values are then used to fully characterize the optimal paths.

3.1 Only the agricultural sector is active

If ŷa > ȳa and there is no oil sector, the optimal path can be sketched as follows. The water

stock will be exhausted in finite time Tw, since if X(t) > 0 for all t ≥ 0 we would have

λw constant, in view of condition (10), and the full marginal cost of agriculture would be

increasing forever. This means that we would eventually have ya(t) = 0, since u′a(0) is finite.

But since u′a(0) > ca, this cannot be optimal. Moreover, the water stock will remain zero

after Tw, since producing less than ȳa < ŷa could never be optimal in the absence of the oil

sector. Hence two phases can be distinguished. During the first phase, which ends at Tw,

the water stock is being exhausted. During that phase, the water stock is positive, so that
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λw is a constant, and condition (8) is satisfied with equality, meaning that:

u′a(ya(t)) = ca + ertλwka.

Agricultural production exceeds ȳa and is decreasing towards ȳa since u′′a(ya(t)) < 0 and λw

is constant. Because of continuity of production over time and exhaustion of the water stock,

the values of Tw and λw are obtained from:

u′a(ȳa) = ca + erTwλwka and

∫ Tw

0

(kaya(t)− x̄)dt = X0.

The second phase begins at Tw and has ya(t) = ȳa and X(t) = 0 for all t > Tw.

Once the existence of the oil sector is taken into account, these two phases will characterize

the agricultural production path after the oil stock is exhausted, provided it is exhausted

before the water stock. If the water stock is exhausted before the oil stock, then agricultural

production enters the second phase as soon as the oil stock is exhausted. Since the oil stock

is always exhausted in finite time, it follows that if ŷa > ȳa, the optimal path always ends

with a final phase during which ya = ȳa and X(t) = 0.8

3.2 Only the oil sector is active

Assume now there is no agricultural sector. Then two cases need to be distinguished, ac-

cording to whether the initial stock of water is abundant relative to the initial stock of oil

or not. In the first case, the stock of oil is exhausted before the stock of water and therefore

λw = 0, since by assumption there is no other use for water. We would therefore have a

pure Hotelling-type path, with the rate of extraction given by condition (9) satisfied with

equality, so that:

u′m(ym(t)) = cm + ertλm, (20)

with λm a constant from condition (11). Oil extraction decreases towards zero, with ẏm(t)

given by (15). The date of exhaustion of the oil stock, Tm, and λm are determined by:

u′m(0) = cm + erTmλm and

∫ Tm

0

ym(t)dt = S0.

8This assures that the transversality condition (12) is satisfied.
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This first case occurs if, for the values of Tm and λm just determined and ym(t) given by

(20), we have: ∫ Tm

0

(kmym(t)− x̄)dt ≤ X0, (21)

meaning that the water stock poses no constraint.

If (21) is not satisfied, so that water does pose a constraint, we have the second case,

which is characterized by three phases. In a first phase, the water stock is being exhausted

and, from condition (9):

u′m(ym(t)) = cm + ert[λm + λwkm], (22)

where λm and λw are both positive constants, by (11) and (10). Since u′′m(ym(t) < 0, the

rate of oil extraction is decreasing towards ȳm until the exhaustion of the water stock at

Tw. Then follows a second phase during which the oil extraction rate is constrained by the

natural inflow to ȳm. This phase ends at some date T̃ ≥ Tw defined by:

u′m(ȳm) = cm + er eT λm.

From that date on, there follows a Hotelling-type path like the one just described in the first

case. Notice that if (21) happened to be just satisfied with equality, then we are left with

the Hotelling-type path of the first case: the second phase collapses, since then λw = 0, and

Tm = Tw.

3.3 Both sectors are active

Consider now the situation where both sectors are present from the outset. We have already

established that since the oil stock will always be exhausted in finite time, the optimum will

be characterized by a final phase during which the water stock is zero since ŷa > ȳa. The

proposition that follows further establishes that once the water stock is exhausted, it will

never become positive again when ŷa > ȳa.

Proposition 4 If ŷa > ȳa, then once the stock of water is exhausted, it will never be replen-

ished.
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Proof. As just shown above, if ŷa > ȳa, the optimal path always ends with a phase

during which X(t) = 0. Therefore, if an interval of time during which X(t) = 0 is followed

by an interval of time during which X(t) > 0, there must follow a third interval of time

during which X(t) = 0. Suppose this were the case. Then it must be that S(t) > 0 at the

beginning of the second interval, for otherwise it is optimal to keep X(t) = 0 forever. By

Proposition 2, neither ya(t) nor ym(t) can be increasing during an interval where S(t) > 0

and X(t) > 0. But the assumed sequence of intervals necessitates that Ẋ(t) be at first

positive and then negative during the second interval, which means that total water usage

must increase from a level lower than x̄ to eventually a level higher than x̄. Therefore the

assumed sequence cannot be optimal.

In order to complete the characterization of the optimal paths for the case where both

sectors are present, it will now be useful to define a number of threshold levels on S0, the

initial stock of oil. These critical values of S0 will determine whether, for any given initial

water stock, X0:

i. the water stock is exhausted before the oil stock or not;

ii. there is a period of inactivity of the agricultural sector or not;

iii. there is initially a period of inactivity of the agricultural sector or not.

We will denote these threshold values of S0 by Ŝ0(X0), S̃0(X0) and S0(X0) respectively. We

now define, in order, each of those critical values.

3.3.1 The determination of Ŝ0(X0)

An important consideration for the characterization of the overall optimal paths is the iden-

tification of cases where the stock of water is exhausted before the stock of oil and vice versa.

To do this, we consider a hypothetical situation where both the stock of water and the stock

of oil are exhausted at exactly the same instant of time. This allows us to determine the

properties that must satisfy S0, for any given X0, in order for this to be the case and thus

define Ŝ0(X0).
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If the stock of water and the stock of oil were to be exhausted at exactly the same instant

of time, then Tw = Tm and: ∫ Tm

0

ym(t)dt = S0 (23)∫ Tm

0

[kaya(t)− x̄]dt + kmS0 = X0. (24)

From (10) and (11), we know that λm and λw are constant for all t ∈ [0, Tm] and from

conditions (8) and (9), we must have:

u′a(ya(t)) = ca + ertλwka, t ∈ [0, Tm] (25)

u′m(ym(t)) = cm + ert[λm + λwkm], t ∈ [0, Tm]. (26)

Furthermore, ya(t) = ȳa for all t ∈ [Tm,∞), as demonstrated above, and ym(Tm) = 0, since

the oil price (ca + ert[λm + λwkm]) must reach the choke price (u′m(0)) at the moment of

exhaustion of the oil stock. This means that:

u′a(ȳa) = ca + erTmλwka (27)

u′m(0) = cm + erTm [λm + λwkm]. (28)

From (23), (26) and (28) we can uniquely determine Tm, λm + λwkm and the entire path of

ym(t). Then λw and the path of ya(t) for t ∈ [0, Tm] follow from (25) and (27). Finally (24)

determines, for any X0, the level of S0 such that the simultaneous activity of both sectors

just solved for exactly exhausts X0 at Tm. This defines the threshold level Ŝ0(X0). It is

monotonically increasing in X0 and it must go through the origin, since otherwise we could

not have Tm = Tw at X0 = 0.

For Ŝ0(X0) thus defined, we may now state the following:

i. If S0 < (>) Ŝ0(X0), we will have Tw > (<) Tm.

ii. If S0 ≤ Ŝ0(X0) then ya(t) > 0 for all t ≥ 0 and ym(t) > 0 for all t < Tm.
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3.3.2 The determination of S̃0(X0)

Assume now S0 > Ŝ0(X0) and hence Tw < Tm. From Propositions 1, 2 and 3, we know that

ym(t) will be positive and decreasing for all t ∈ [0, Tm). From Propositions 2 and 3, we also

know that when ya(t) is positive it will be decreasing while X(t) is positive, and increasing

while X(t) is zero. This is consistent with the following two possibilities: either ya(t) is

positive for all t ∈ [0, Tm), switching from decreasing to increasing exactly at Tw, or ya(t) is

zero over some interval of time before it begins increasing. In order to fully characterize the

optimal paths, we need to identify the conditions on the initial stocks under which each of

those cases holds.

To do this, consider a scenario where the agricultural sector is active throughout the

interval of time over which the water stock is being exhausted, just becomes inactive at

the exact moment that the water stock is exhausted and immediately becomes active again.

Hence ya(t) > 0 for t ∈ [0, Tw), ya(Tw) = 0 ( with condition (8) just satisfied with equality)

and ya(t) > 0 for t ∈ (Tw,∞).

If ya(Tw) = 0, with (8) just satisfied with equality at t = Tw, and ya(t) > 0 for all t > Tw,

it is optimal to have X(t) = 0 for all t ≥ Tw (Proposition 4). From (3), we therefore have:

kaya(t) + kmym(t) = x̄, t ∈ [Tw,∞), (29)

from which it follows that ym(Tw) = ȳm. We also know that ym(Tm) = 0 and ym(t) > 0 for

t ∈ [Tw, Tm) (Proposition 1). The solution being interior in both sectors, we must therefore

have, from (8), (9) and (29):

u′a(x̄−
km

ka

ym(t))− ca = ertλw(t)ka, t ∈ [Tw, Tm] (30)

u′m(ym(t))− cm = ert[λm + λw(t)km], t ∈ [Tw, Tm], (31)

and hence, after eliminating λw(t):

u′m(ym(t))− cm −
km

ka

[u′a(x̄−
km

ka

ym(t))− ca] = ertλm, t ∈ [Tw, Tm]. (32)
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Knowing that ya(Tw) = 0, ym(Tw) = ȳm and ym(Tm) = 0, we therefore have:

u′m(ȳm)− cm −
km

ka

[u′a(0)− ca] = erTwλm (33)

u′m(0)− cm −
km

ka

[u′a(ȳa)− ca] = erTmλm (34)

For a given Tw, conditions (33) and (34) determine λm and Tm. The entire path of ym(t)

after Tw then follows from (32) and that of ya(t) from (29). Over the interval [Tw, Tm] the

resulting cumulative oil extraction, which we denote S̃, is:∫ Tm

Tw

ym(t)dt = S̃.

The paths thus derived are optimal if and only if S(Tw) = S̃.

This determines the stock of oil that should be left at the date the stock of water becomes

exhausted if this scenario is to be optimal for Tw and beyond. It remains to be determined

what must happen before Tw.

In order for the oil stock to be exhausted over the interval [0, Tm] and for the water stock

to be exhausted over the interval [0, Tw] it is necessary that:∫ Tw

0

ym(t)dt + S̃ = S0 (35)

and ∫ Tw

0

kaya(t)dt + km[S0 − x̄Tw − S̃] = X0. (36)

Over the interval [0, Tw], λm and λw are constant and the solution for both sectors is interior,

so that:

u′a(ya(t))− ca = ertλwka, t ∈ [0, Tw] (37)

u′m(ym(t))− cm = ert[λm + λwkm], t ∈ [0, Tw]. (38)

At t = Tw, we must have ym(Tw) = ȳm, since ya(Tw) = 0 by assumption. Hence:

u′a(0)− ca = erTwλwka (39)

u′m(ȳm)− cm = erTw [λm + λwkm]. (40)
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Conditions (35), (38) and (40) uniquely determine Tw, λm + λwkm and the path of ym(t)

over the interval of time [0, Tw]. Then λw and the path of ya(t) over the same interval are

determined from (39) and (37).

Finally, in order for this to constitute an optimal solution, the constraint (36) must also

be satisfied. This determines, for any X0, the level of S0 that will exactly exhaust the water

stock at Tw, determined above, and hence defines S̃0(X0). S̃0(X0) is monotonically increasing

in X0, with S̃0(0) = S̃. The scenario posited at the outset, namely ya(t) > 0 for t ∈ [0, Tw),

ya(Tw) = 0 and ya(t) > 0 for t ∈ (Tw,∞), will therefore be optimal if and only S0 = S̃0(X0).

If S0 < S̃0(X0), then there is relatively less pressure on water demand from the oil sector

than with S0 = S̃0(X0) and the left-hand side of (39) exceeds the right-hand side: u′a(0) >

ca + erTwλwka. Optimality then requires ya(Tw) > 0 . If on the other hand S0 > S̃0(X0),

then the demand for water from the oil sector pushes the shadow value of water up to a

level such that the nonnegativity constraint on ya(t) becomes strictly binding at Tw and

u′a(0) < ca + erTwλwka. The agricultural sector will therefore be inactive over a positive

interval of time instead of just at t = Tw.

Note that this interval must end at some date T̃ > Tw such that S(T̃ ) = S̃. The reason

for this follows from the definition of S̃. When X(t) = 0 and S(t) = S̃ we must have

ya(t) = 0 for the path to be optimal from that date on. But since oil extraction is positive,

then S(t) < S̃ beyond T̃ and hence ya(t) > 0. If we now denote by τ ∈ [0, Tw) the date at

which this interval begins, then for S̃0(X0) as just defined, we may state:

i. If S̃0(X0) > S0 > Ŝ0(X0) then Tw < Tm and ya(t) > 0 for all t ∈ [0,∞).

ii. If S0 > S̃(X0) then Tw < Tm and there exist an interval [τ, T̃ ] such that ya(t) = 0 for

all t ∈ [τ, T̃ ], with 0 ≤ τ < Tw < T̃ < Tm.

3.3.3 The determination of S0(X0)

In view of the results just established we still need to distinguish between the case where

τ = 0 and that where τ > 0. In order to do this, consider the following hypothetical situation:
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S0 > S̃0(X0), ya(t) = 0 for t ∈ [0, T̃ ), with the first-order condition (8) just satisfied with

equality at t = 0, and ya(t) > 0 for t ∈ [T̃ ,∞). So τ = 0. Then, since Tm > T̃ > Tw, the

water stock will be exhausted by the oil sector alone and hence:

km

∫ Tw

0

ym(t)dt = X0 + x̄Tw (41)

In addition, the following must hold:

u′a(0) = ca + λwka (42)

u′a(0) = ca + er eT λw(T̃ )ka (43)

u′a(ȳa) = ca + erTmλw(Tm)ka (44)

and

u′m(ȳm) = cm + erTw [λm + λw(Tw)km] (45)

u′m(ȳm) = cm + er eT [λm + λw(T̃ )km] (46)

u′m(0) = cm + erTm [λm + λw(Tm)km] (47)

u′(ym(t)) = cm + ert[λm + λw(t)km], t ∈ [0, Tw]. (48)

Furthermore, since λ̇w(t) = 0 for t ∈ [0, Tw) and λw(t) is continuous, we must have:

λw(Tw) = λw. (49)

Substituting in (45) to (48) for λw, er eT λw(T̃ ) and erTmλw(Tm) obtained from (42), (43) and

(44), we get:

u′m(ȳm) = cm + erTwλm + erTw
km

ka

[u′a(0)− ca] (50)

u′m(ȳm) = cm + er eT λm +
km

ka

[u′a(0)− ca] (51)

u′m(0) = cm + erTmλm +
km

ka

[u′a(ȳa)− ca] (52)

u′(ym(t)) = cm + ert[λm +
km

ka

[u′a(0)− ca]], t ∈ [0, Tw]. (53)
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Those four equations, together with (41) determine Tw, T̃ , Tm, λm and the path of ym(t) for

t ∈ [0, Tw]. Knowing Tw and Tm, the path of ym(t) for t ∈ (Tw, Tm] then follows from (9).

This scenario will constitute and optimum if and only if the total extraction over the

interval [T̃ , Tm] equals S̃, the total extraction over the interval (Tw, T̃ ) equals (T̃ − Tw)ȳm,

and the total extraction over the interval [0, Tm] equals S0. Hence we must have in addition:

X0 + x̄Tw

km

+ (T̃ − Tw)ȳm + S̃ = S0. (54)

This defines S0(X0). The function S0(X0) is monotonically increasing in X0, with S0(0) =

S = T̃ ȳm + S̃.

If S̃0(X0) < S0 < S0(X0), the water demand from the oil sector puts relatively less

pressure on the value of water than when S0 = S0(X0). As a result u′a(0) > ca + λwka. It

therefore becomes optimal for the agricultural sector to be active during a positive interval

of time [0, τ ], where τ < T̃ denotes the time at which

u′a(0) = ca + erτλwka. (55)

The agricultural sector then becomes inactive and remains so until the oil stock reaches S̃,

at time T̃ . On the other hand, if S0 > S0(X0), then u′a(0) < ca + λwka and the agricultural

sector is inactive from the start and remains so until T̃ .

We may therefore state:

i If S(X0) > S0 > S̃(X0) then Tw < Tm and there exist an interval [τ, T̃ ] such that

ya(t) = 0 for all t ∈ [τ, T̃ ], with 0 < τ < Tw < T̃ < Tm.

ii If S0 > S(X0), then Tw < Tm and there exist an interval [0, T̃ ] such that ya(t) = 0 for

all t ∈ [0, T̃ ], with 0 < Tw < T̃ < Tm.

3.4 The optimal paths

The threshold values Ŝ0(X0), S̃0(X0), S̃, S0(X0) and S just defined now allow us to fully

characterize the optimal paths in (X(t), S(t))-space. For any given X0 > 0, the optimal
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paths of the agricultural sector and of the oil sector have the following properties, where

y∗a(t) and y∗m(t) denote the interior solution to (8) and (9) respectively:

If S0 ≥ S0(X0):

ya(t) =


0 for t ∈ [0, T̃ ];

ȳa − km

ka
ym(t) > 0 for t ∈ (T̃ , Tm);

ȳa for t ∈ [Tm,∞).

ym(t) =


y∗m(t) > 0 for t ∈ [0, Tw);

ȳm for t ∈ [Tw, T̃ ];

y∗m(t) > 0 for t ∈ (T̃ , Tm);
0 for t ∈ [Tm,∞).

If S0(X0) > S0 > S̃0(X0):

ya(t) =


y∗a(t) > 0 for t ∈ [0, τ);

0 for t ∈ [τ, T̃ ];

ȳa − km

ka
ym(t) > 0 for t ∈ (T̃ , Tm);

ȳa for t ∈ [Tm,∞).

ym(t) =


y∗m(t) > 0 for t ∈ [0, Tw);

ȳm for t ∈ [Tw, T̃ ];

y∗m(t) > 0 for t ∈ (T̃ , Tm);
0 for t ∈ [Tm,∞).

If S0 = S̃0(X0):

ya(t) =


y∗a(t) > 0 for t ∈ [0, Tw);
0 for t = Tw;
ȳa − km

ka
ym(t) > 0 for t ∈ (Tw, Tm);

ȳa for t ∈ [Tm,∞).

ym(t) =

{
y∗m(t) > 0 for t ∈ [0, Tm);
0 for t ∈ [Tm,∞).

If S̃0(X0) > S0 > Ŝ0(X0):

ya(t) =


y∗a(t) > 0 for t ∈ [0, Tw);
ȳa − km

ka
ym(t) > 0 for t ∈ (Tw, Tm);

ȳa for t ∈ [Tm,∞).

ym(t) =

{
y∗m(t) > 0 for t ∈ [0, Tm);
0 for t ∈ [Tm,∞).
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If Ŝ0(X0) ≥ S0:

ya(t) =

{
y∗a(t) > 0 for t ∈ [0, Tw);
ȳa for t ∈ [Tw,∞).

ym(t) =

{
y∗m(t) > 0 for t ∈ [0, Tm);
0 for t ∈ [Tm,∞).

Figure 1 illustrates the optimal paths in (X(t), S(t))-space for different values of S0 and a

given X0.

The case of S0(X0) > S0 > S̃0(X0) offers a rather rich structure and is well suited to

illustrate the time paths of the different implicit current value prices. In that case, there are

five distinct phases, as depicted in Figure 2.

In the first phase, during the interval [0, τ), the stock of water is positive and both sectors

are active, with (ya(t), ym(t)) = (y∗a(t), y
∗
m(t)). During this phase, the full marginal cost of

production of the agricultural sector, ca + kae
rtλw, is increasing. It reaches the agricultural

choke price, u′a(0), at t = τ , at which time the agricultural sector stops producing.

Then begins the second phase, which lasts throughout the interval [τ, Tw). Since the full

marginal cost of agriculture continues to increase over that interval, the agricultural sector

remains inactive and we have (ya(t), ym(t)) = (0, y∗m(t)).

At time Tw, the water stock is exhausted. From that point on, the water stock will remain

at zero (Proposition 4) and total water consumption becomes constrained by x̄, the natural

water inflow. Although the shadow value of water then begins decreasing, the full marginal

cost of agricultural production is higher than the choke price and will remain so for some

time.

We therefore have a third phase, over the interval [Tw, T̃ ], during which (ya(t), ym(t)) =

(0, ȳm). The implicit price of oil remains constant over that interval, at u′m(ȳm) = cm +

ert[λm + λw(t)km], since water consumption is constrained to x̄ and hence oil production is

constrained to ȳm. Note that since ya(τ) = ya(T̃ ) = 0, it must be the case that λw(T̃ ) =

e−r(eT−τ)λw(τ), with λw(τ) = λw, the constant discounted shadow value of water over the

interval [0, Tw]. The new shadow value of water is decreasing during that third phase,
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because, as the oil stock decreases, so does the pressure on water demand. At time T̃ ,

the full marginal cost of agriculture becomes just low enough for agricultural production to

resume.

Then begins a fourth phase, during which (ya(t), ym(t)) = (ȳa − km

ka
y∗m(t), y∗m(t)) until

the oil stock is exhausted, at Tm. Over the interval (T̃ , Tm), the full marginal cost of oil

production is increasing and eventually reaches the choke price for oil at Tm, when u′m(0) =

cm + erTm [λm + λw(Tm)km]. The full marginal cost of agriculture is decreasing during this

phase, until at Tm we have u′a(ȳa) = ca + erTmλw(Tm)ka.

In the final phase there is no more oil, so there remains only the agricultural sector.

Therefore (ya(t), ym(t)) = (ȳa, 0) for all t ∈ [Tm,∞) and the implicit price of agriculture is

constant at u′a(ȳa).

The other cases are now easily characterized. If S0 ≥ S0(X0), the price paths have exactly

the same configuration as in Figure 2. Only now the pressure on water demand from the oil

sector is so high that τ = 0 and the first phase collapses: the agricultural sector is inactive

from the beginning and remains inactive until time T̃ .

If S0 = S̃0(X0), then τ = Tw = T̃ , which means that the second and third phases collapse.

The agricultural sector is active throughout except for an instant, at Tw. We therefore have

a phase ending at Tw during which the water stock is being exhausted, with both sectors

active and the full marginal cost of production increasing in both sectors. This is followed by

a phase ending at Tm during which the remaining oil stock is being exhausted, still with both

sectors active, but now with the full marginal cost of agriculture decreasing and that of oil

still increasing, although at a slower rate due to the fact that λw(t) is now decreasing. The

final phase has the agricultural sector producing indefinitely at the full capacity permitted

by the natural water inflow and the price of agriculture constant. This case is a borderline

case. It separates the cases where, given the initial water stock, the size of the initial oil

stock dictates that the agricultural sector should remain inactive during some period of time,

from those cases where it does not.
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When S0 < S̃0(X0), then the initial oil stock is not sufficiently large, relative to the

water stock, for it to be optimal to interrupt agricultural production in order to favor oil

production. Therefore the agricultural sector will always be active, τ = Tw = T̃ , and there

are only three phases, as in the case when S0 = S̃0(X0).

Two subcases of S0 < S̃0(X0) need to be distinguished. If S̃0(X0) > S0 > Ŝ0(X0), then the

water stock will be exhausted before the oil stock. The three phases are characterized, on the

production side, by: (ya(t), ym(t)) = (y∗a(t), y
∗
m(t)) during the interval [0, Tw); (ya(t), ym(t)) =

(ȳa− km

ka
y∗m(t), y∗m(t)) during the interval [Tw, Tm); (ya(t), ym(t)) = (ȳa, 0) during the interval

[Tm,∞). As for the implicit price paths, both are increasing during the interval [0, Tw),

while the water stock is being depleted, but decreasing for agriculture and increasing for oil

during the interval [Tw, Tm), at which point begins the final phase, with the implicit price of

agriculture given by u′a(ȳ) for all t ≥ Tm.

On the other hand, if S0 < Ŝ0(X0), the initial oil stock is small enough that it is optimal to

exhaust it before the water stock. Then the three phases are characterized on the production

side by: (ya(t), ym(t)) = (y∗a(t), y
∗
m(t)) during the interval [0, Tm); (ya(t), ym(t)) = (y∗a(t), 0)

during the interval [Tm, Tw); (ya(t), ym(t)) = (ȳa, 0) during the interval [Tw,∞). During the

first of those phases, the full marginal costs and hence the implicit prices are increasing

in both sectors, until there is no more oil. Since the water stock is still positive at that

point, the shadow value of water remains constant at λw and therefore the implicit price of

agriculture keeps increasing, until the water stock is exhausted. This occurs at Tw, when

u′a(ȳa) = ca + erTwλwka. Then follows the usual final phase, with the price of agriculture

constant at u′a(ȳa) for all t ≥ Tw.

4 The natural water inflow poses no constraint on agriculture

Consider now the case where ŷa < ȳa. In this case water availability poses no constraint on

the agricultural sector and, if there were no oil sector, the shadow value of water would be

zero. From condition (8) we then have u′a(ya(t)) = ca and hence ya(t) = ŷa for all t ≥ 0.
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This will obviously be the case for all t ≥ Tm, once the existence of an oil sector is taken

into account.9

If there were no agricultural sector, then exactly the same two cases as in Section 3.2

need to be distinguished. In one case, water is abundant, λw = 0, and we have a pure

Hotelling-type path for the oil sector. In the other case, water is scarce and the optimal

path would be characterized by the same three phases derived in Section 3.2.

Now let the two sectors be present from the outset. All the threshold levels introduced

in Section 3.3 remain pertinent and can be similarly defined. Clearly, if S0 < Ŝ0(X0), so

that Tw > Tm, then water availability is never a constraint for either sector and λw = 0 for

all t > 0. We then have ya(t) = ŷa and oil production follows the same Hotelling-type path

as if there were no agricultural sector.

It is not necessary however that Tm < Tw in order for water to have no value. Indeed,

assume S0 > Ŝ0(X0), so that Tm > Tw, and consider a hypothetical situation where ya(t) = ŷa

for all t ∈ [0, Tm] and where λm, Tm and y∗m(t) solve:

u′(ym(t)) = cm + ertλm, t ∈ [0, Tm],

u′(0) = cm + erTmλm,

and ∫ Tm

0

ym(t)dt = S0.

For this to constitute the optimal solution, S0 must be such that it also satisfies:

Tm[kaŷa − x̄] + kmS0 = X0. (56)

Denote the level of S0 required to satisfy (56) by SH
0 (X0). Then for any initial oil stock

S0 ≤ SH
0 (X0), λw = 0, the optimal oil production path is a pure Hotelling-type path and

ya(t) = ŷa for all t > 0. On the other hand, if S0 > SH
0 (X0), then water is scarce and λw > 0.

9Since ŷa < ȳa, this means that the water stock will be replenished once the oil stock is exhausted. It
would be natural to impose an upper bound on the stock of water. We have chosen to ignore this issue here,
since, if any excess can simply be wasted or freely disposed of, the existence of this upper bound will have
no impact on the nature of the optimal paths. Note that in this case, since the stock of water is positive in
the end, the transversality condition (12) will be satisfied with the shadow value of water becoming zero.
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Since the oil stock is continuously decreasing over the interval [0, Tm) (Proposition 1) and

ym(Tm) = 0, for any S0 > SH
0 (X0), the stock of oil must eventually reach SH

0 (X0) at some

date TH < Tm. When the oil stock reaches SH
0 (X0), water becomes abundant and λw(t)

becomes zero and remains at zero for all t ≥ TH . This means that the final phase, during

which agriculture is the only active sector, with ya(t) = ŷa for all t ∈ [Tm,∞), is necessarily

preceded by a phase during which ya(t) = ŷa and oil production follows a pure Hotelling-type

path, with ym(t) = y∗m(t) < x̄− ka

km
ŷa.

Figure 3 depicts the implicit price paths for the case where S0(X0) > S0 > S̃0(X0).

The first three phases are exactly the same as in Section 3. The first phase, for t ∈ [0, τ),

has (ya(t), ym(t)) = (y∗a(t), y
∗
m(t)), with the full marginal cost of both oil and agricultural

production increasing. At t = τ , the full marginal cost of agricultural production reaches

the choke price from below and the agricultural sector ceases to produce. The second phase,

for t ∈ [τ, Tw), has (ya(t), ym(t)) = (0, y∗m(t)). Oil production becomes constrained by the

natural inflow of water just as the water stock becomes exhausted, t = Tw. The third phase,

for t ∈ [Tw, T̃ ), has (ya(t), ym(t)) = (0, ȳm). The full marginal cost of water is decreasing

during that phase and reaches the agricultural choke price from above at t = T̃ , after which

point agricultural production resumes.

During the fourth phase, for t ∈ (T̃ , Tm), both sectors are active. This phase can now be

divided into two sub-phases. The first sub-phase occurs during the interval (T̃ , TH), when

the natural water inflow constitutes a binding constraint on total water consumption. The

optimal production paths are (ya(t), ym(t)) = (y∗a(t), ȳm − ka

km
y∗a(t)). By Proposition 3, oil

production is decreasing and agricultural production is increasing towards ŷa. The second

sub-phase occurs during the interval [TH , Tm). Total water consumption is not constrained

by the natural water inflow, λw(t) = 0 and the optimal production paths are given by

(ya(t), ym(t)) = (ŷa, y
∗
m(t)), with y∗m(t) < ȳm − ka

km
ŷa. Thus oil production follows a pure

Hotelling-type path during that sub-phase. The fifth phase is the final phase, with ya(t) = ŷ

for all t ∈ [Tm,∞).
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As with the paths depicted in Figure 2 of Section 3, for any given X0 the paths depicted

in Figure 3 contain all the other possible path configurations as special cases, depending on

S0. If S0 > S0(X0), then τ = 0 and the agricultural sector is inactive from the beginning

and remains inactive until t = T̃ . If S0 < S̃0(X0), the five phases corresponding to the case

where S0(X0) > S0 > S̃0(X0) described in Figure 3 collapse into three phases, since then

τ = Tw = T̃ and the agricultural sector is always active. The optimal paths during those

three phases are exactly as in the case where ŷa > ȳa, except for the fact that now the next

to last phase will always be composed of the two sub-phases described above. The second of

those two sub-phases is always characterized by a pure Hotelling-type path, due to the fact

that water availability does not constitute a constraint beyond TH when ŷa < ȳa.

5 Conclusion

We have analyzed the problem faced by an economy in which a nonrenewable resource sector,

such as oil, and a reproducible good sector, such as agriculture, must share as an essential

input some renewable resource, such as water. The optimal allocation over time of the scarce

resource between the two sectors poses a dynamic optimization problem involving two state

variables: the stock of oil and the stock of water. We have been able to fully characterize

the solution to this problem in order to show how, for a given initial stock of water, the

production paths and the water usage of the two sectors depend on the size of the initial

stock of oil and on whether or not the natural inflow of water constitutes a constraint on the

agricultural sector in the long run, when there is no more oil left.

A striking result is that the optimal paths may involve abandoning agriculture after some

time, in order to reserve the water for the oil sector during an interval of time, at the end of

which agricultural activity resumes. This can occur whether the water resource constitutes

a long-run constraint on agriculture or not. It will occur when the demand pressure on the

value of water from the oil sector is such that the full marginal cost of agriculture reaches the

agricultural choke price from below before the water stock is exhausted. We have identified,
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for any given initial stock of water, the critical range inside which the initial oil stock must

fall in order for this to be a characteristic of the optimal paths. If the initial oil stock is

above that critical range, then the full marginal cost of agriculture is initially higher than

the agricultural choke price and the agricultural sector is inactive from the outset. If the

initial oil stock is below that critical range, then both sectors are always active, as long as

the oil is not fully depleted. Once the oil stock is depleted, the agricultural sector produces

indefinitely at the level that equates gross marginal benefit to marginal cost of production,

as in a static equilibrium, unless its production is constrained by the natural inflow of water.

Another feature of the solution is that the optimal path of the oil sector does not generally

follow a pure Hotelling-type path, with the implicit price of oil net of extraction cost growing

at the rate of interest. This is because the full marginal opportunity cost of oil production

must account not only for the rent imputed on the finite oil stock but also that imputed on

the stock of water, which in turn depends on the level of activity of the agricultural sector.

Our model thus provides a framework for generalizing the Hotelling rule to cases where the

full marginal cost of extracting the nonrenewable resource depends on the endogenous level

of activity of another sector of the economy that shares a common availability constraint on

an essential input. In the particular problem analyzed in this paper, only in the case where

the natural inflow of water does not pose a long-run constraint on agricultural production

will there be a phase during which oil production follows a pure Hotelling path. In that case,

this will occur once the oil stock falls below a certain critical value, beyond which water

becomes abundant, being a constraint neither for the oil nor for the agricultural sector. But

even then, the whole path will always be characterized by other phases where it does not

follow a pure Hotelling rule.
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