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Abstract: Suppose a principal can only sign public bilateral contracts with

agents who have private information on their costs of producing goods on his

behalf. The principal may manipulate what he learns by contracting with

an agent when dealing with others. Introducing this possibility significantly

simplifies optimal mechanisms. It restores both the continuity of the princi-

pal’s and the agents’ payoffs and that of the optimal mechanism with respect

to the correlation in the agents’ types. Correlation remains useful to bet-

ter extract the agents’ information rent even though it no longer allows full

extraction. In private values contexts, a Revelation Principle with bilateral

contracting identifies the set of implementable allocations by means of sim-

ple non-manipulability constraints. Equipped with this tool, we characterize

optimal non-manipulable mechanisms in various environments. Those mech-

anisms trade off the marginal benefit of production against some generalized

virtual costs whose expressions generalize that found at zero correlation.
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1 Introduction

Over the last thirty years, mechanism design has been the most powerful tool to under-

stand how complex organizations and institutions are shaped. By means of the Revelation
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Principle,4 this theory characterizes the set of implementable allocations in contexts where

information is decentralized and privately known by agents of the organization. Once this

first step of the analysis is performed, and a particular optimization criterion is speci-

fied at the outset, one can derive an optimal incentive feasible allocation and look for

particular institutions (mechanisms) that may implement this outcome.

In the canonical framework for Bayesian collective choices,5 the principal can agree

with his privately informed agents on a grand-mechanism ruled under the aegis of a single

mediator (third-party, “machine” or Court of Law). This mediator first collects messages

from these agents and second send them recommendations on how to play actions as

requested by the mechanism. This paper modifies this mechanism design paradigm to take

into account the principal’s limited ability to rely on such centralized grand-mechanism.

A mechanism is now viewed as a set of separate bilateral contracts linking the principal

with each of his agents, each of those contracts being ruled by a separate mediator. What

the principal learns when contracting with an agent can be manipulated by the principal

himself if he finds it useful in his relationships with others.

The analysis of bilateral contracting is an important step towards improving the match

between the theory of mechanism design and the concerns expressed by scholars in more

applied fields. Prominent economists like Aoki (1984) and Williamson (1985) have for

instance repeatedly pushed the view that the firm should be better considered as a nexus

of bilateral contracts rather than a single grand-contract. Those bilateral contracts link

various stakeholders of the firms (creditors, shareholders, customers, workers, regulators,

etc...) with its management. Thanks to his central role at the nexus of all those contrac-

tual relationships, the management finds new strategic possibilities. For instance, each

worker contracts separately with the firm, but what he communicates to the management

on his own performances is by and large not observed by his peers. Nevertheless, these

performances of a given worker can be used strategically by the principal as a subjec-

tive measure to determine the compensations of his peers. These strategic manipulations

might in turn impact on the agents’ incentives.

To analyze such nexus of contracts in an abstract mechanism design environment, the

set of incentive feasible mechanisms should account for the fact that the principal might

manipulate what he learns from his relationship with a given agent when contracting

with others. The broad goal assigned to this paper is precisely to understand how those

manipulations affect contract design. Taking into account such manipulations simplifies

significantly the characterization of incentive feasible allocations. It also allows us to reach

more palatable conclusions on the design of contracts relative to those obtained when

assuming that only a centralized grand-mechanism can be enforced. In more details, our

4Gibbard (1973) and Green and Laffont (1977) among others.
5Myerson (1982 and 1991, Chapter 6.4) for instance.
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main results are as follows.

Characterization of non-manipulable allocations. In a private values setting (i.e.,

when the agents’ private information does not enter directly into the principal’s objec-

tives), a Revelation Principle under bilateral contracting fully describes the set of incentive

feasible allocations. For a given implementation concept characterizing the agents’ be-

havior (Bayesian-Nash or dominant strategy) there is no loss of generality in restricting

the analysis to direct revelation mechanisms which are not manipulated by the principal.

Non-manipulability constraints affect nevertheless contract design. To see how, con-

sider an organization with one principal and two agents A1 and A2, each running a different

project on the principal’s behalf. Agents have private information on their costs. Assume

also that there is no productive externality between projects (technologies are separa-

ble) but informational externalities do exist (costs are correlated). Private information is

costless for the principal if he can design a grand-mechanism in such context.6 However,

this is no longer true when only bilateral contracts are feasible. The principal can always

claim that A1’s performances conflict with those of A2 and punish both accordingly. To

avoid such manipulations, the compensation of an agent must be less sensitive to what the

principal has learned from the other. When agents work on separable projects with only

informational externalities, non-manipulability is obtained with simple sell-out contracts

that give to the principal a payoff independent of the agent’s output.

Optimal mechanisms and the rent/efficiency trade-off. Insisting on non-manipulability

restores a genuine trade-off between rent extraction and efficiency even when the agents’

types are correlated. Although the scope for yardstick competition is now more lim-

ited than with a centralized grand-mechanism, correlated information is still useful when

writing bilateral contracts. Correlation makes it easier to extract information rents.

With separable projects, the optimal mechanism trades off the marginal efficiency of

the agents’ productions with virtual marginal costs that generalize those found in inde-

pendent types environments. Allowing for more general production externalities between

the agents’ activities, we characterize non-manipulable contracts and show how they gen-

eralize the sell-out contracts found with separable projects.

Continuity of payoffs and mechanisms. When a grand-mechanism can be used,

privately informed agents get no rent if their types are correlated whereas they do so if

types are independent. This lack of continuity of the optimal mechanism with respect to

the information structure is a weakness in view of the so-called “Wilson Doctrine” which

points out that mechanisms should be robust to small perturbations of the modeling.

Taking into account non-manipulability constraints restores such continuity. Not only

6Crémer and McLean (1985, 1988), McAfee and Reny (1992), Riordan and Sappington (1988), John-
son, Pratt and Zeckhauser (1990), d’Aspremont, Crémer and Gerard-Varet (1990), Matsushima (1991).
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the principal’s and the agents’ payoffs vary continuously with the correlation but also the

optimal mechanism keeps the same structure. To illustrate, sell-out contracts are optimal

for separable projects both at zero and at a positive correlation.

Simple bilateral contracting. A simple bilateral contract uses only the corresponding

agent’s information and not what the principal might learn from others. Such mechanisms

are non-manipulable. In Bayesian environments with separable projects, such simple

bilateral contracts are dominated by non-manipulable bilateral mechanisms which use

that information. By contrast, if dominant strategy and ex post participation constraints

are imposed or if collusion between agents matters, simple bilateral contracts are optimal.

Organization of the paper. Section 2 presents the model. Section 3 develops a simple

example highlighting the fact that the principal’s manipulations might constrain signifi-

cantly mechanisms. Section 4 proves the Revelation Principle with bilateral contracting.

Equipped with this tool, we characterize optimal mechanisms for separable projects (Sec-

tion 5), and general production externalities (Section 6.1). A particular attention is given

to production in teams (Section 6.2.1) and multi-unit auctions (Section 6.2.2). For these

two cases, the optimal non-manipulable mechanisms are then derived assuming discrete

types. Section 7 analyzes various extensions allowing for dominant strategy (Section 7.1),

collusion between agents (Section 7.2), secret contracts (Section 7.3) and sequential con-

tracting (Section 7.4). Section 8 discusses the relationship of our work with the relevant

literature. Section 9 proposes alleys for further research. All proofs are in an Appendix.

2 The Model

Preferences. We consider an organization with a principal (P ) and n agents (Ai for

i = 1, ..., n). Agent Ai produces a good in quantity qi on the principal’s behalf. Let

q = (q1, ..., qn) (resp. t = (t1, ..., tn)) denote the vector of goods (resp. transfers) which

belongs to a set Q = Πn
i=1Qi where Qi ⊂ R+ is compact and convex (resp. T = Πn

i=1Ti ⊂
Rn). By a standard convention, A−i denotes the set of all agents except Ai and similar

notations are used below for other variables.

The principal and his agents have quasi-linear utility functions defined respectively as:

V (q, t) = S̃(q)−
n∑

i=1

ti and Ui(q, t) = ti − θiqi.

The principal’s surplus function S̃(·) is increasing in each of its arguments qi and concave in

q. This formulation encompasses three cases of interest which will receive more attention

in the sequel, specifically in organizations involving only two agents.

Separable projects. S̃(·) is separable in both q1 and q2, i.e., S̃(q1, q2) = S(q1) + S(q2) for
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some function S(·) that is increasing and concave with the Inada condition S ′(0) = +∞,

S(0) = 0 and S ′(+∞) = 0.

Perfect substitutability. S̃(·) depends on the total production q1 + q2 only: S̃(q1, q2) =

S(q1 + q2) for some increasing and concave S(·) which still satisfies the above conditions.

Perfect complementarity. S̃(·) can then be written as S̃(q1, q2) = S(min(q1, q2)) where

S(·) satisfies again the above conditions.

With separable projects, the only externality between agents is informational and

comes from the possible correlation of their costs. Perfect substitutability arises instead in

the context of multi-unit auctions. Perfect complementarity occurs in team productions.

Information. Ai has private information on his efficiency parameter θi. A vector of types

is denoted θ = (θ1, ..., θn) ∈ Θn. Importantly, we consider a private values environment,

i.e., the agents’ private information does not enter directly into the principal’s objective.7

Continuous distributions. For most of the paper, we will consider continuous distributions

and efficiency parameters belong to a set Θ = [θ, θ̄]. Types are then jointly drawn from

the common knowledge non-negative, bounded and atomless density function f̃(θ) whose

support is Θn. Assuming, for simplicity, symmetric distributions,8 we will denote the

marginal density, the cumulative distribution and the conditional density respectively as

f(θi) =

∫

Θn−1

f̃(θi, θ−i)dθ−i, F (θi) =

∫ θi

θ

f(θi)dθi and f̃(θ−i|θi) =
f̃(θi, θ−i)

f(θi)
.

Discrete distributions. In order to get closed form solutions in some problems studied

below, we shall sometimes assume that each agent’s type belongs to Θ = {θ, θ̄} (denote

∆θ = θ̄−θ). The common knowledge distribution of types is still symmetric for simplicity

and, in the case of two agents, probabilities for the different type realizations are defined

as

p̃(θ, θ) = ν2 + α, p̃(θ̄, θ) = p̃(θ, θ̄) = ν(1− ν)− α, p̃(θ̄, θ̄) = (1− ν)2 + α.

The marginal distribution is p(θ) = ν, p(θ̄) = 1 − ν and we assume a non-negative

correlation coefficient p̃(θ, θ)p̃(θ̄, θ̄)− p̃(θ̄, θ)p̃(θ, θ̄) = α ∈ [0, ν(1− ν)].

Benchmark. For separable projects, the (symmetric) first-best output requested from

each agent trades off the marginal benefit of production against its marginal cost:

S ′(qFB(θi)) = θi, i = 1, ..., n. (1)

With correlated types, this first-best outcome can be either obtained (generically with

discrete types) or arbitrarily approached (with a continuum of types) when it is possible

7The consequences of this assumption on some of our results will be discussed later.
8All our results could be straightforwardly adapted to asymmetric distributions.
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to enforce a direct revelation grand-mechanism of the form {tFB
i (θ̂i, θ̂−i), q

FB(θ̂i)}(θ̂i,θ̂−i)∈Θn

that makes each agent’s payment depend on the whole array of reports. In contrast with

intuition, there is no efficiency/rent extraction trade-off in such correlated environments.

With independent types, agents obtain costly information rents and a genuine trade-

off between efficiency and rent extraction arises. The marginal benefit of production must

balance its virtual marginal cost. With separable projects and a continuous distribution,

the (symmetric) second-best output is given by the so-called Baron-Myerson outcome:9

S ′(qBM(θi)) = θi +
F (θi)

f(θi)
, ∀θi ∈ Θ = [θ, θ̄].10 (2)

Remark 1 The Baron-Myerson outcome is also obtained, even if types are correlated,

when the principal uses with each agent a simple bilateral contract of the form {ti(θ̂i), qi(θ̂i)}θ̂i∈Θ.

Such contract depends only on this particular agent’s announcement on his type. The

discrepancy between (1) and (2) measures then the efficiency loss incurred when a grand-

mechanism is replaced by such simple bilateral contracts.

3 A Simple Example

To give some overview of the analysis we develop below, let us consider the case of

separable projects with only two symmetric agents having types drawn in a discrete type

distribution as defined in Section 2.

Suppose that the principal offers a direct and truthful grand-mechanism. This grand-

mechanism stipulates production of the first-best outputs with the following payments

tFB
i (θi, θ−i) = S(qFB(θi))− h(θi, θ−i) i = 1, 2.

This mechanism yields payoff h(θi, θ−i) to the principal from his relationship with agent

Ai when the agents’ reports are (θi, θ−i). The grand-mechanism is truthful and extracts

all the agents’ information rent provided that h(·) satisfies the following two Bayesian

incentive and two binding participation constraints (for types θ and θ̄ respectively)

(
ν +

α

ν

)
h(θ̄, θ) +

(
1− ν − α

ν

)
h(θ̄, θ̄) ≥ S(qFB(θ̄))− θqFB(θ̄),

(
ν − α

1− ν

)
h(θ, θ) +

(
1− ν +

α

1− ν

)
h(θ, θ̄) ≥ S(qFB(θ))− θ̄qFB(θ),

9Baron and Myerson (1982).
10When the Monotone Hazard Rate Property holds, i.e., d

dθ

(
F (θ)
f(θ)

)
≥ 0, qBM (θi) is indeed the optimal

output. Otherwise, bunching may arise (Guesnerie and Laffont 1984, Laffont and Martimort 2002,
Chapter 3). For a discrete distribution with two types, such bunching does not arise in our framework.
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(
ν +

α

ν

)
h(θ, θ) +

(
1− ν − α

ν

)
h(θ, θ̄) = S(qFB(θ))− θqFB(θ),

(
ν − α

1− ν

)
h(θ̄, θ) +

(
1− ν +

α

1− ν

)
h(θ̄, θ̄) = S(qFB(θ̄))− θ̄qFB(θ̄).

Using Farkas’ Lemma, it is straightforward to show that such h(·) exists as soon as types

are correlated (i.e., α > 0). Moreover, the above constraints imply also that

h(θ̄, θ)− h(θ̄, θ̄) ≥ ν(1− ν)

α
∆θqFB(θ̄) > 0.11 (3)

Implicit in the description of such direct revelation grand-mechanism is the fact that

there exists a mediator M who first collects the agents’ messages (θ̂i, θ̂−i) and second

enforces for agent Ai an output qFB(θ̂i) and a payment tFB
i (θ̂i, θ̂−i) as requested.

Suppose now that the organization is no longer ruled by such a single grand-mechanism

but by two bilateral contracts (thereafter called sub-mechanisms), {tFB
i (θ̂i, θ̃−i), q

FB(θ̂i)}(θ̂i,θ̃−i)∈Θ2

(i = 1, 2). Each of those bilateral contracts is under the aegis of a different mediator Mi

(i = 1, 2). Sub-mechanisms work as follows. Agents A1 and A2 first announces their

respective types θ̂1 and θ̂2 in the sub-mechanism they respectively play. Those reports are

learned by the principal who then makes a report θ̃−i back to mediator Mi on what he

has learned in the relationship with A−i. Those reports by the principal are manipulable.

Given the pattern of communication, the principal cannot commit not to manipulate θ̃−i

to reduce agent Ai’s payment tFB
i (θ̂i, θ̃−i) = S(qi(θ̂i, θ̃−i)) − h(θ̂i, θ̃−i). Indeed, (3) shows

for instance that the principal wants to claim that a type θ̄ agent Ai faces a type θ agent

A−i to reap greater revenues. With bilateral contracting, such claims by the principal

towards different mediators do not conflict as long as agent Ai and mediator Mi have no

way (even an indirect one) to observe and thus check agent A−i’s own report to M−i.

Several interesting insights can already be gleaned from this example.

1. To avoid the principal’s manipulations, Ai’s payments could be made independent

of the principal’s claim θ̃−i, i.e., we could impose that

h(θi, θ) = h(θi, θ̄) ∀θi ∈ Θ = {θ, θ̄}.

Imposing a priori this non-manipulability constraint, and still requiring that each

agent’s output depends only on his own type, brings us back to the traditional

screening model for bilateral relationships. The Baron-Myerson outcome with out-

puts qBM(θ) = qFB(θ) and qBM(θ) given by

S ′(qBM(θ̄)) = θ̄ +
ν

1− ν
∆θ (4)

11Indeed, it cannot be that h(θ̄, θ) = h(θ̄, θ̄) = S(qFB(θ̄))− θ̄qFB(θ̄). If it was so, the Bayesian incentive
compatibility of a type θ would be violated as it can be easily seen.
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is then optimal. No use of A−i’s information is made to contract with Ai with such

simple bilateral contracts. We will see below that this solution is too extreme. Op-

timal non-manipulable contracts require generally less stark distortions on outputs.

2. Under bilateral contracting, A−i’s output cannot be used to regulate the relation-

ship between Ai and the principal. Indeed, the fact that Ai and Mi cannot observe

A−i’s own report to M−i requires also that the latter’s output q−i is itself non-

observable (and thus non-verifiable) from their point of view. Otherwise, they could

have indirectly inferred A−i’s own report from observing his realized output and

matching this information with what the principal learns from Ai. In such con-

texts, menus of nonlinear prices of the form {Ti(qi, θ̂i)}θ̂i∈Θ form a quite attractive

set of mechanisms to focus on.12 With such menus, everything happens then as if

Ai chooses first a particular nonlinear scheme Ti(qi, θ̂i) by reporting θ̂i. After hav-

ing learned those reports by both agents, the principal finally chooses the outputs

(qi(θ̂i, θ̂−i), q−i(θ̂i, θ̂−i)) to maximize his overall payoff from both relationships.

3. This interpretation in terms of nonlinear prices makes it also clear what sort of lim-

its on commitment arises when moving from a grand-mechanism to a pair of bilateral

sub-mechanisms. Suppose indeed that a pair of menus {Ti(qi, θ̂i), T−i(q−i, θ̂−i)}(θ̂i,θ̂−i)∈Θ2

was offered under the aegis of a single mediator M. With such centralized mech-

anism, this mediator commits to implement (qi(θ̂i, θ̂−i), q−i(θ̂i, θ̂−i)) upon receiving

reports (θ̂i, θ̂−i). Instead, such commitment is no longer possible under bilateral con-

tracting. We will see below that focusing on non-manipulable mechanisms amounts

in fact to imposing the sequential rationality requirement that the principal opti-

mally chooses outputs ex post, i.e., after having learned the agents’ reports.13

4 Characterizing Non-Manipulable Mechanisms

4.1 Mechanisms

Let us describe more formally the class of mechanisms available in a bilateral contract-

ing environment. A bilateral contract with a given agent can, in full generality, use the

principal’s report on any information that he may get by contracting with others. Ma-

nipulations by the principal may arise because what a given agent communicates to the

principal is not observed by others who will only learn that information from the principal.

Formally, any general mechanism is now a pair (g(·),M) where g(·) is an outcome

12Section 4.4 shows that a Taxation Principle applies so that it is essentially the unique such set.
13The reader will recognize that this sequential rationality is also a feature of all the common agency

literature. We develop this relationship in our discussion of the literature (Section 8).
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function and M = Πn
i=1Mi is the product space of the respective communication spaces

Mi available to agent Ai to communicate with the principal. To capture the fact that the

principal plays different sub-mechanisms with each of his agents, the outcome function

g(·) is itself decomposed into n different outcome functions g(·) = (g1(·), ..., gn(·)). Each

sub-mechanism gi(·) maps M = Mi×M−i into the set ∆(Qi×Ti) of (possibly random)

allocations for agent Ai. When playing the sub-mechanism (gi(·),M), Ai sends message

mi to a mediator Mi. Such communication is observed by P . Then, the principal sends a

message m̂−i to Mi on whatever information he may have learned in observing the reports

made by agents A−i in the sub-mechanisms (g−i(·),M). Finally, the requested transfer

ti(mi, m̂−i) and output qi(mi, m̂−i) for agent Ai are implemented.14 Because of production

and/or informational externalities, Ai’s allocation should depend in full generality on the

report m̂−i made by the principal on the messages m−i sent by other agents A−i and

observed by that principal.15

Remark 2 Standard mechanism design assumes that a unique mediator M keeps one

party’s message secret from the other when running a centralized grand-mechanism. In-

stead, we suppose that, although agent Ai only observes the messages mi he sends to

the mediator Mi ruling the sub-mechanism gi(·), P observes the whole array of messages

m = (m1, ..., mn) before communicating back to mediators in each sub-mechanism. This

assumption is justified whenever mediators are not machine but may have their own finan-

cial objectives and may collude with the principal to share information they have gathered

from the agents. Alternatively, this amounts to assuming that the only possible mediator

available is the principal himself.16 Under both interpretations, mediators make whatever

information they learned from each agent available to the principal.17 Finally, we also

assume that agent Ai and the mediator Mi do not observe either the report m−i made

by A−i into g−i(·) or the realized trades (q−i, t−i) and infer from this (at least partially)

14When allocations are random, qi(mi, m̂−i) and ti(mi, m̂−i) are viewed as distributions of outputs and
transfers. With obvious notations, payoffs should be understood as expectations over those distributions.

15Because of bilateral contracting, the principal may a priori send different messages concerning what
he learned from a third agent in two different sub-mechanisms.

16Because there is no single benevolent mediator having access to all the agents’ reports, the principal
is left with a strategic role at a nexus of all communication channels. This “incomplete contracting”
assumption is standard in the literatures on vertical contracting or on common agency (see Martimort,
2007). Along the same lines, we also rule out any cheap talk communication among agents that could
help those agents replicate the existence of a missing mediator (Barany 1992, Forges 1990, Gerardi 2002).

17Suppose alternatively that mediators design private communication channels with each agent and
keep their reports secret. There would be no scope for the principal communicating back in each sub-
mechanism because he would not have observed the agents’ reports in other sub-mechanisms. Only simple
bilateral contracts (see Remark 3 below for their exact definition) are then feasible. Those simple bilateral
contracts are most of the time suboptimal (as we show below) since they do not allow the principal to
benefit from any informational or production externalities between agents. In other words, if the principal
could choose ex ante between having separate mediators running sub-mechanisms entertaining private
communication only or having sub-mechanisms making agents’ reports available to him, he would choose
the latter mode of bilateral contracting.
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whether the claim m̂−i that the principal has made fits with the reports m−i made by A−i.
18

Remark 3 A simple bilateral contract corresponds to an outcome function g∗i (·) which

only maps agent Ai’s communication space Mi into ∆(Qi × Ti). With such contract,

there is no scope for using what the principal has learned from observing A−i’s messages

to improve Ai’s allocation. Those contracts are clearly non-manipulable.

Remark 4 For minimal departure from standard mechanism design, we assume that

the mechanism (g(·),M) is publicly observable by all agents. Assuming private sub-

mechanisms, i.e., that Ai does not observe the sub-mechanisms (g−i(·),M), introduces

a second dimension of private information in our model: the principal being now privately

informed on contractual deals made with them. We investigate this issue in Section 7.3.

4.2 Timing

Summarizing, the contracting game unfolds as follows. First, agents privately learn their

respective efficiency parameters. Second, the principal offers a mechanism (g(·),M) to

the agents. Third, agents simultaneously accept or refuse their respective sub-mechanisms

(gi(·),M). If agent Ai refuses, he gets a payoff normalized to zero. Fourth, agents simul-

taneously send messages mi in their respective sub-mechanisms gi(·). Fifth, the principal

reports in his contractual relationship with Ai a message m̂−i on what he has learned

from contracting with A−i. Finally, agent Ai’s outputs and transfers are implemented

according to the messages (mi, m̂−i) and the outcome function gi(·).
The equilibrium concept is perfect Bayesian equilibrium (thereafter PBE).19

Remark 5 We consider that contracting with each agent is simultaneous. We further

discuss sequential contracting in Section 7.4.

4.3 Revelation Principle

We now fully characterize the set of allocations that can be achieved as equilibria of the

overall contracting game where the principal offers any possible mechanism (g(·),M) in

18One could think of less extreme situations where each agent may get a signal correlated with what
the others are privately reporting to the principal. Of course, if this signal is public and verifiable,
contingent mechanisms could be written to help circumvent the privacy problem. However, if this signal
is only privately observed and can be manipulated, such contingent mechanisms lose again their force. In
Section 6.2.1, we analyze a team production context with perfect complementarity in the agents’ efforts.
There the realized output plays the role of an ex post information on others’ reports that limits the
principal’s set of feasible manipulations.

19Except in Section 7.1 where dominant strategy implementation characterizes the agents’ behavior.
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this private values context.

For any agents’ reporting strategy m∗(·) = (m∗
1(·), ..., m∗

n(·)), let sup m∗
i (·) denote the

support of m∗
i (·), i.e., the set of messages mi that are sent with positive probability by

Ai given m∗
i (·). For a given mechanism with bilateral contracting (g(·),M) accepted

by all types of agents, a continuation equilibrium induced by such mechanism at the

communication stage is described as follows.

Lemma 1 Fix any arbitrary mechanism (g(·),M) accepted by all types of agents. A

continuation equilibrium is a pair {m∗(·), m̂∗(·)} such that:

• The agents’ strategy vector m∗(θ) = (m∗
1(θ1), ...,m

∗
n(θn)) from Θn into M = Πn

i=1Mi

forms a Bayesian equilibrium given the principal’s optimal manipulation m̂∗(·)

m∗
i (θi) ∈ arg max

mi∈Mi

Eθ−i

(
ti(mi, m̂

∗
−i(mi,m

∗
−i(θ−i)))− θiqi(mi, m̂

∗
−i(mi, m

∗
−i(θ−i)))|θi

)
;

(5)

• The principal’s optimal manipulation m̂∗(·) = (m̂∗
−1(·), ..., m̂∗

−n(·)) from M on Πn
i=1M−i

satisfies ∀m = (m1, ..., mn) ∈M

(m̂∗
−1(m), ..., m̂∗

−n(m))

∈ arg max
(m̂−1,...,m̂−n)∈Πn

i=1M−i

S̃(q1(m1, m̂−1), ..., qn(mn, m̂−n))−
n∑

i=1

ti(mi, m̂−i). (6)

Given a mechanism (g(·),M), a continuation equilibrium induces an allocation a(θ) =

g(m∗(θ), m̂∗(m∗(θ))) which maps Θn into ∆(Q × T ). In this private values context,

updated beliefs held by the principal following the agents’ reports m∗(θ) do not influence

his optimal manipulation. This can be seen more precisely on equation (6) which is

written ex post, i.e., for each realization of the agents’ reports.20

The following definitions are useful.

Definition 1 A mechanism (g(·),M) is non-manipulable if and only if m̂∗
−i(m) = m−i,

for all m ∈ sup m∗(·) and i at a continuation equilibrium.21

Definition 2 A direct mechanism (ḡ(·), Θn) is truthful if and only if m∗(θ) = (θ1, θ2, ..., θn),

for all θ ∈ Θ at a continuation equilibrium.

20Assuming private values simplifies significantly the analysis by avoiding any signaling issue when
agents communicate their types.

21Our concept of non-manipulability is weak and does not impose the more stringent requirement that
the mechanism is non-manipulable at all continuation equilibria.

11



Proposition 1 Revelation Principle with Bilateral Contracting. In a private

values context, any allocation a(·) achieved at a continuation equilibrium of any arbitrary

mechanism (g(·),M) with bilateral contracting can also be implemented through a truthful

and non-manipulable direct mechanism (ḡ(·), Θn).

With such direct revelation mechanisms, the agents’ Bayesian incentive compatibility

constraints are written as usual:

E
θ−i

(ti(θi, θ−i)− θiqi(θi, θ−i)|θi) ≥ E
θ−i

(
ti(θ̂i, θ−i)− θiqi(θ̂i, θ−i)|θi

)
∀(θi, θ̂i) ∈ Θ2. (7)

The following non-manipulability constraints stipulate that the principal does not mis-

represent what he has learned from others’ reports in his relationship with any agent:

S̃(q(θ))−
n∑

i=1

ti(θ) ≥ S̃(q1(θ1, θ̂−1), ..., qn(θn, θ̂−n))−
n∑

i=1

ti(θi, θ̂−i), ∀(θ, θ̂−1, ..., θ̂−n). (8)

In the sequel, we analyze the impact of the non-manipulability constraints (8) on

optimal mechanisms in different contexts involving two agents. Those constraints become

S̃(q(θ))−
2∑

i=1

ti(θ) ≥ S̃(q1(θ1, θ̂2), q2(θ̂1, θ2))−
2∑

i=1

ti(θi, θ̂−i), ∀(θ, θ̂1, θ̂2). (9)

4.4 Taxation Principle

As suggested in Section 3, we could have started with nonlinear prices as primitives of our

analysis, i.e., sub-mechanisms gi(·) mapping Θ into Ti = {Ti(·) : Qi → Ti}. Everything

happens then as if Ai picks first one such nonlinear price within the family {Ti(qi, θ̂i)}θ̂i∈Θ

by sending a report θ̂i, and the principal optimally chooses afterwards the particular

output qi and the corresponding transfers Ti(qi, θ̂i) that this agent receives. In other

words, the constraints imposed by the non-manipulability of the mechanisms are akin to

assuming that the principal can commit to offer menus of nonlinear prices {Ti(·, θ̂i)}θ̂i∈Θ to

his agents in the first place but cannot commit to a particular output schedule {q(θ̂)}θ̂∈Θn .

Outputs will be chosen after the agents’ reports are known.

Focusing on sub-mechanisms of the form {Ti(qi, θ̂i)}θ̂i∈Θ is in fact without loss of gen-

erality under bilateral contracting. Starting indeed from any non-manipulable direct rev-

elation sub-mechanism {ti(θ̂i, θ̃−i), q(θ̂i, θ̃−i)}(θ̂i,θ̃−i)∈Θ2 , we may define the nonlinear price

Ti(qi, θi) as Ti(qi, θi) = ti(θi, θ−i) for qi = qi(θi, θ−i). This definition is non-ambiguous

since (8) implies that any θ−i such that qi(θi, θ−i) = qi corresponds to the same trans-

fer ti(θi, θ−i) = ti. Written in terms of those nonlinear prices, the non-manipulability

12



constraints (8) become

q(θ) ∈ arg max
q∈Q

S̃(q)−
n∑

i=1

Ti(qi, θi). (10)

This condition captures the opportunism on the principal’s side. Once the nonlinear

prices have been chosen by the agents and only then, the principal chooses how much

they should produce.

5 Separable Projects

Let us start with the simplest setting with only two agents working each on a different

project without any production externality between those projects. The principal’s gross

surplus function is separable and writes as S̃(q1, q2) =
∑2

i=1 S(qi). This case provides a

useful benchmark to understand how non-manipulability constraints affect contract design

when only informational externalities between agents matter.

From the non-manipulability constraints (9), we immediately get for any pair (θ−i, θ
′
−i):

S(qi(θi, θ−i))− ti(θi, θ−i) ≥ S(qi(θi, θ
′
−i))− ti(θi, θ

′
−i) ≥ S(qi(θi, θ−i))− ti(θi, θ−i).

Therefore, there exists a function Hi(θi) such that:

S(qi(θi, θ−i))− ti(θi, θ−i) = Hi(θi) (11)

This direct mechanism can be transformed into a nonlinear price Ti(qi, θi) = ti(θi, θ−i) for

qi(θi, θ−i) = qi. Such nonlinear price corresponds to a simple sell-out contract of the form

Ti(qi, θi) = S(qi)−Hi(θi). (12)

With such scheme, agent Ai pays upfront a fixed-fee Hi(θi) to produce on the principal’s

behalf. The principal, once informed on all agents’ reports, chooses an output and agent

Ai gets the corresponding benefit S(qi) on the project he is running. The principal’s

payoff coming from his relationship with Ai is Hi(θi) which does not depend on the

agent’s output. These fixed-fees are chosen so that the mechanism is Bayesian incentive

compatible and all types, even the least efficient one, participate.22

Let us denote by Ui(θi) the information rent of an agent Ai with type θi:

Ui(θi) = E
θ−i

(S(qi(θi, θ−i))− θiqi(θi, θ−i)|θi)−Hi(θi). (13)

22Shutting down the least efficient types is never optimal given the Inada condition S′(0) = +∞.
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Individual rationality implies:

Ui(θi) ≥ 0 ∀i, ∀θi ∈ Θ. (14)

Bayesian incentive compatibility requires:

Ui(θi) = arg max
θ̂i∈Θi

E
θ−i

(
S(qi(θ̂i, θ−i))− θiqi(θ̂i, θ−i)|θi

)
−Hi(θ̂i) ∀i, ∀θi ∈ Θ. (15)

What is remarkable here is the similarity of this formula with the Bayesian incentive

constraint that would be obtained had types been independently distributed. In that case,

the agent’s expected payment is independent of his true type and can also be separated

in the expression of the incentive constraint exactly as the function Hi(·) in (15). This

renders the analysis of the set of non-manipulable incentive compatible allocations close

to what modelers are used to do in standard mechanism design with independent types.

Assume for simplicity that qi(·) is differentiable.23 Simple revealed preferences argu-

ments show that Hi(·) is also differentiable. The local first-order condition for Bayesian

incentive compatibility becomes

Ḣi(θi) = E
θ−i

(
(S ′(qi(θi, θ−i))− θi)

∂qi

∂θi

(θi, θ−i)|θi

)
∀i, ∀θi ∈ Θ. (16)

Consider any output schedule qi(·) which is monotonically decreasing in θi and downward

distorted below the first-best. From (16), Hi(·) is necessarily also decreasing in θi. Less

efficient types produce less and pay lower up-front payments. The incentive constraint

(16) captures the trade-off faced by a type θi agent. By overreporting, this agent pays a

lower up-front payment but he also produces less and enjoys a lower expected surplus.

To highlight the trade-off between efficiency and rent extraction, it is useful to rewrite

Bayesian incentive compatibility conditions in terms of the agents’ information rent.

Equation (16) becomes:

U̇i(θi) = −E
θ−i

(qi(θi, θ−i)|θi) + E
θ−i

(
(S(qi(θi, θ−i))− θiqi(θi, θ−i))

f̃θi
(θ−i|θi)

f̃(θ−i|θi)
|θi

)
. (17)

To better understand the right-hand side of (17), consider an agent with type θi

mimicking a less efficient type θi + dθi. By doing so, the θi agent produces the same

amount than the θi + dθi one but at a lower marginal cost. This gives to type θi a

first source of information rent which is worth the first term on this right-hand side. By

23Because conditional expectations depend on Ai’s type, one cannot derive from revealed preferences
arguments that qi(·) (resp. E(qi(·)|θi)) is itself monotonically decreasing in θi. However, it is possible to
use the envelope theorem in its integral form (Milgrom and Segal, 2002) to characterize the rent obtained
by the agents without assuming differentiability of qi(·). Differentiability is used here only to get better
intuition on (16). See the proof of Proposition 2 for details.
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mimicking the θi + dθi type, a θi agent Ai affects also how the principal interprets the

other agent’s report to adjust Ai’s own production. The corresponding marginal rent

is the second term on the right-hand side of (17). It may in fact be either positive or

negative. Some intuition for that sign is provided below after having derived the optimal

mechanism.

Finally, the local second-order condition for incentive compatibility can be written as:

−E
θ−i

(
∂qi

∂θi

(θi, θ−i)|θi

)
+ E

θ−i

(
(S ′(qi(θi, θ−i))− θi)

∂qi

∂θi

(θi, θ−i)
f̃θi

(θ−i|θi)

f̃(θ−i|θi)
|θi

)
≥ 0

∀i = 1, 2, ∀θi ∈ Θ. (18)

A regular incentive problem is such that the agent’s first-order condition (16) is both

necessary and sufficient for the optimality of a truthful strategy and the right-hand side of

(17) is negative so that countervailing incentives do not arise and participation constraints

bind only at θ̄.

The optimal non-manipulable allocation {(qi(θ), Ui(θi))i=1,2} solves:

(P) : max
{(qi(θ),Ui(θi))i=1,2}

E
θ

(
2∑

i=1

S(qi(θ))− θiqi(θ)− Ui(θi)

)
subject to (14) to (18).24

To get sharp predictions on the solution, we need to generalize to environments with

correlated information the well-known assumption of monotonicity of the virtual cost:

Assumption 1 Generalized virtual costs. The generalized virtual cost ϕ(θi, θ−i) =

θi +
F (θi)

f(θi)

1+
f̃θi

(θ−i|θi)

f̃(θ−i|θi)

F (θi)

f(θi)

is strictly increasing in θi and decreasing in θ−i.

The monotonicity of ϕ(θi, θ−i) in θi ensures that optimal outputs are non-increasing with

own types, a condition which is neither sufficient nor necessary for implementability as it

can be seen from (18) but which remains a useful ingredient for it. Assumption 1 implies

also the Monotone Likelihood Ratio Property (MLRP) ∂
∂θ−i

(
f̃θi

(θ−i|θi)

f̃(θ−i|θi)

)
≥ 0 for all θ ∈ Θ2.

Also, we assume that there is an upper bound on the possible level of correlation

expressed by the following condition:

24With correlated types, the local second-order conditions (18) are not sufficient to guarantee global
incentive compatibility even if the agents’ utility function satisfies a Spence-Mirrlees condition. However,
this is the case if the correlation is small enough as requested by Assumption 2 below. See the proof of
Proposition 2 in the Appendix for details.

15



Assumption 2 Small correlation.
∣∣∣∣∣
f̃θi

(θ−i|θi)

f̃(θ−i|θi)

∣∣∣∣∣ ≤ min

{
f(θi)

F (θi)
,

qBM(θi)

S(qFB(θi))− θiqFB(θi)

}
for all θ ∈ Θ2,

and

max
(θi,θ−i)∈Θ2

∣∣∣f̃θi
(θ−i|θi)

∣∣∣ ≤ min
θi∈Θ

f(θi)
(min(θi,θ−i)∈Θ2 f̃(θ−i|θi))

2

2 max(θi,θ−i)∈Θ2 f̃(θ−i|θi)
.

Assumption 2 ensures that the incentive problem is regular as defined above.25

Proposition 2 Assume that Assumptions 1 and 2 both hold, continuous types and projects

are separable (i.e., ∂2S̃
∂q1∂q2

= 0). The agents’ incentive problems are regular and the optimal

non-manipulable Bayesian mechanism entails:

• A downward output distortion qSB(θi, θ−i) which satisfies the following “modified Baron-

Myerson” formula

S ′(qSB(θi, θ−i)) = ϕ(θi, θ−i), (19)

with “no distortion at the top” qSB(θ, θ−i) = qFB(θ, θ−i), ∀θ−i ∈ Θ and the following

monotonicity conditions

∂qSB

∂θ−i

(θ) ≥ 0 and
∂qSB

∂θi

(θ) < 0;

• Agents always get a positive rent except for the least efficient ones

USB
i (θi) ≥ 0 (with = 0 at θi = θ̄).

25As an example, consider the bivariate normal distribution truncated on [θ0 − λσ2, θ0 + λσ2]2 with
density

f̃(θ1, θ2) =
C(ρ, λσ2)

2πσ2(1− ρ2)
1
2
exp

[
− 1

2(1− ρ2)

(
(θ1 − θ0)2

σ2
+

(θ2 − θ0)2

σ2
− 2

ρ

σ2
(θ1 − θ0)(θ2 − θ0)

)]
.

The case ρ = 0 corresponds to independent types. For ρ small enough, we have up to terms of order at
least ρ2 : C(ρ, λσ2) = (Φ(λ)− Φ(−λ))−2 + o(ρ2) where Φ(x) is the cumulative of the standard normal
distribution. Using this property, we derive successively:

f̃(θ1, θ2) =
1

2πσ2 (Φ(λ)− Φ(−λ))2
exp

[
− (θ1 − θ0)2

2σ2
− (θ2 − θ0)2

2σ2

](
1 +

ρ

σ2
(θ1 − θ0)(θ2 − θ0)

)
+ o(ρ2)

and

f̃(θ1) =
1

(2πσ2)
1
2 (Φ(λ)− Φ(−λ))

exp

(
− (θ1 − θ0)2

2σ2

)
+ o(ρ2),

i.e., each cost is approximatively distributed according to a truncated normal distribution. Finally, the
likelihood ratio

f̃θ1(θ2|θ1)
f̃(θ2|θ1)

=
ρ

σ2
(θ2 − θ0) + o(ρ2),

satisfies MLRP and conditions in Assumption 2 are verified when ρ is small enough.
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As already stressed, Bayesian incentive constraints with non-manipulability look very

similar to what they are with independent types. This suggests that the trade-off between

efficiency and rent extraction that occurs under independent types carries over here also

even with correlation. This intuition is confirmed by equation (19) which highlights the

output distortion capturing this trade-off.

With independent types, the right-hand sides of (2) and (19) are the same. The

principal finds useless the report of an agent to better design the other agent’s incentives.

He must give up some information rent to induce information revelation anyway. Outputs

are distorted downward to reduce those rents and the standard Baron-Myerson distortions

follow. The optimal mechanism with separable projects and independent types can be

implemented with simple bilateral contracts which are de facto non-manipulable. Non-

manipulability has no bite in this case.

Whatever the correlation between types, non-manipulability imposes that the princi-

pal’s payoff remains constant over all possible transfer-output pairs offered to an agent.

This still allows the principal to link agent Ai’s payment to what he learns from agent

A−i’s report as long as Ai’s output varies accordingly. By doing so, the principal may

still be able to use the benefits of correlated information. Simple bilateral contracts are

not optimal.

To understand the nature of the output distortions and the role of the correlation, it

is useful to compare the solution found in (19) with the standard Baron-Myerson formula

(2) which corresponds also to the optimal mechanism had the principal offered (non-

manipulable) simple bilateral contracts to his agents. Using (17), we observe that the

second term on the right-hand side is null for a simple bilateral contract implementing

the Baron-Myerson outcome qBM(θi) since E
θ−i

(
f̃θi

(θ−i|θi)

f̃(θ−i|θi)

∣∣θi

)
= 0. By having Ai’s output

depend on θ−i, one departs from the Baron-Myerson outcome, and the principal can use

A−i’s report to reduce Ai’s information rent. Suppose indeed that the principal starts from

the simple bilateral Baron-Myerson contract with Ai but slightly modifies it to improve

rent extraction once he has learned A−i’s type. By using A−i’s report the principal should

infer how likely it is that Ai lies on his type.

From (MLRP) there exists θ∗−i(θi) such that
f̃θi

(θ−i|θi)

f̃(θ−i|θi)
≥ 0 if and only if θ−i ≥ θ∗−i(θi).

Hence, the principal’s best estimate of Ai’s type is θi if he learns θ−i = θ∗−i(θi) from A−i.

Everything happens as if A−i’s report did not bring more information on Ai’s type. The

only principal’s concern remains reducing the first-term on the right-hand side of (17)

and the optimal output corresponds to the Baron-Myerson outcome. Think now of an

observation θ−i > θ∗−i(θi). Such signal is “good news” and makes the principal think that

Ai has not exaggerated his cost parameter and there is less need for distorting output.

The distortion with respect to the first-best outcome is less than with the Baron-Myerson

17



output. Instead, a signal θ−i < θ∗−i(θi) is “bad news” and goes against Ai’s report if

he exaggerates his type. This requires punishing Ai by increasing the output distortion

beyond the Baron-Myerson solution.

6 General Environments

6.1 Characterizing Non-Manipulability

With separable projects, non-manipulability constraints are also separable and it was

straightforward to derive the form of non-manipulable schemes. With production exter-

nalities, things are more complex. We now derive second-best distortions in those more

general environments. For simplicity, we still focus on the case of two agents and start

this analysis with the case of continuous types before moving to the analysis of discrete

types models in specified environments.

Suppose that the principal wants to implement the vector of outputs q(θ) = (q1(θ), q2(θ))

in a non-manipulable way. Assume that the following properties hold for such outputs:

Assumption 3 q(θ) = (q1(θ), q2(θ)) is continuously differentiable and satisfies:

∂2S̃

∂qi∂q−i

(q(θ))
∂qi

∂θ−i

(θ)
∂q−i

∂θ−i

(θ) ≥ 0 for i = 1, 2, ∀θ ∈ Θ2. (20)

For substitutes, condition (20) holds when a given agent’s output decreases with his own

cost and increases with that of his peer. For complements, the output of an agent should

decrease with both costs.

As it will appear clear in Lemma 2 below, (20) is indeed a local second-order condition

ensuring that non-manipulating reports is the optimal strategy for the principal at least

locally.26

Assumption 4 q(θ) = (q1(θ), q2(θ)) satisfies:∣∣∣∣
∂q−i

∂θ−i

(θ)

∣∣∣∣ ≥
∣∣∣∣

∂qi

∂θ−i

(θ)

∣∣∣∣ ∀θ ∈ Θ2. (21)

26This condition is thus quite similar to those found in standard principal-agent problems to ensure
that telling the truth is the optimal strategy for the agent, at least locally. Note that, in such standard
screening problems, a single-crossing assumption on the agent’s utility function is enough to derive the
almost everywhere differentiability of the screening variable with respect to the agent’s type. Here
instead, when dealing with the non-manipulability of his report θ̂−i vis-à-vis agent Ai, computing the
cross-derivative of the principal’s objective can only be done once it is assumed that the screening variable
q−i(θ) is continuously differentiable with respect to θ−i. This leads us to restrict a priori to differentiable
schedules instead of deriving this property from revealed preferences arguments or from the envelope
theorem as in the case of separable projects. A similar trick is repeatedly used in the common agency
literature (Stole 1991, Martimort 1992).
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Assumption 4 simply means that the own-impact of an agent’s cost parameter on his

output is greater than its impact on the other agent’s output.

Next lemma provides a local characterization of non-manipulable allocations with

continuously differentiable schedules.

Lemma 2 Assume that q(θ) satisfies Assumptions 3 and 4. The following necessary

first-order conditions for the non-manipulability constraints (8) are also locally sufficient:

∂S̃

∂qi

(q(θ))
∂qi

∂θ−i

(θ) =
∂ti
∂θ−i

(θ) ∀θ ∈ Θ2. (22)

Turning to the global optimality of the principal’s non-manipulating strategy, we have:

Lemma 3 Assume that q(θ) satisfies Assumptions 3 and 4. A sufficient condition for

global optimality of the principal’s non-manipulating strategy is:

∂2S̃

∂q1∂q2

(q1, q2) = λ ∈ R ∀(q1, q2) ∈ Q2.27 (23)

Integrating (22) immediately yields the following expressions of the transfers:

ti(θ) =

∫ θ−i

θ

∂S̃

∂qi

(q(θi, x))
∂qi

∂θ−i

(θi, x)dx−Hi(θi) for i = 1, 2 (24)

where Hi(θi) is some arbitrary function. For a given output schedule q(θ) satisfying

Assumptions 3 and 4, non-manipulable transfers are thus determined up to some functions

Hi(·). The transfers obtained in (24) generalize the sell-out contracts obtained with

separable activities to the case of production externalities.

To understand the new distortions involved with a production externality, it is use-

ful thinking of the case of a small production externality (i.e.,
∣∣∣ ∂2S̃
∂q1∂q2

(q1, q2)
∣∣∣ = |λ| small

enough). The principal can still offer sell-out contracts ti(θ) = S̃(qi(θ), 0)−Hi(θi) with lit-

tle modifications of the information rents left to the agents and little changes in allocative

efficiency compared to the case without externality. However, these sell-out schemes are

now manipulable. To see how, define the principal’s payoff when informed on θ = (θi, θ−i)

and choosing a manipulation θ̂ = (θ̂i, θ̂−i) as:

V (θ̂, θ) = S̃(qi(θi, θ̂−i), q−i(θ̂i, θ−i))−
2∑

i=1

ti(θi, θ̂−i).

27This class contains of course quadratic surplus functions but is much larger.
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When Assumption 3 holds, we get:

∂V

∂θ̂−i

(θ̂, θ)|θ̂=θ =

(
∂S̃

∂qi

(qi(θ), q−i(θ))− ∂S̃

∂qi

(qi(θ), 0)

)
∂qi

∂θ−i

(θ) = λq−i(θ)
∂qi

∂θ−i

(θ) < 0 when λ 6= 0.28

(25)

Equation (25) shows that the principal has roughly two strategies if he wants to

limit the scope for manipulating θ̂−i. The first one consists in reducing A−i’s output.

At the extreme, this would mean committing himself to always deal only with Ai, a

non-manipulable but also highly inefficient contract when agents exert complementary

activities. The second strategy consists in making Ai’s output qi less sensitive to θ−i like

in a simple bilateral contract. Which strategy is preferred depends on types realizations

and the nature of the externality. We now turn to necessary conditions that must be

satisfied by the optimal mechanism in such settings with production externality before

giving some hints on the nature of those distortions.

Proposition 3 Assume that (23) is satisfied, that (20) and (21) hold for that solution

and the agents’ incentive problems are regular, the optimal non-manipulable output qSB(θ)

solves the system of partial derivative equations

For i = 1, 2, f̃(θ)

((
1 +

F (θi)

f(θi)

f̃θi
(θ−i|θi)

f̃(θ−i|θi)

)(
∂S̃

∂qi

(qSB(θ))− θi

)
− F (θi)

f(θi)

)

= λ

(
F (θ−i)

(∫ θi

θ

f̃θ−i
(x|θ−i)dx

)
∂qSB

−i

∂θi

(θ)− F (θi)

(∫ θ−i

θ

f̃θi
(x|θi)dx

)
∂qSB

−i

∂θ−i

(θ)

)
(26)

with the boundary conditions

∂S̃

∂qi

(qSB(θ, θ−i)) = θ and
∂S̃

∂q−i

(qSB(θ, θ−i)) = ϕ(θ−i, θ) i = 1, 2. (27)

The hyperbolic system of first-order partial derivative equations (26) generalizes the

Baron-Myerson formula to the case of production externalities. Finding its solutions

satisfying the boundary conditions (27) which determine outputs at θ1 = θ and θ2 = θ

requires numerical methods. In the Appendix, we nevertheless propose a way to approx-

imate such solution near the boundary defined by (27) when λ 6= 0.29 The idea is to

28This is so since, with substitutes ∂qi

∂θ−i
(θ) > 0 but ∂S̃

∂q−i
(qi(θ), q−i(θ)) − ∂S̃

∂q−i
(qi(θ), 0) < 0 when

q−i(θ) > 0 whereas it is the reverse for complements.
29Even when S̃(·) and f̃(·) are both real analytic, the Cauchy-Kowalevski Theorem (see John (1982)

for instance) cannot be directly used to ensure that a solution to (26) exists which is real analytic close

to the boundary defined by (27) since indeed the coefficients of ∂qSB
−i

∂θi
(θ) and ∂qSB

−i

∂θ−i
(θ) into (26) are both

zero simultaneously when the right-hand side of (26) vanishes.
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find approximations of the characteristic curves associated to the system (26) close to the

boundary (θ, θ−i) to solve explicitly the system at least locally. We then check ex post

that Assumptions 3 and 4 both hold for the solution when λ is small enough.

The system (26) with the boundary conditions (27) help of course to recover the so-

lutions we already found for separable projects. Beyond that case, non-manipulability

constraints force now the principal to take into account any impact of his output choice

for agent Ai on the transfer he gives to A−i and this introduces the new terms on the

right-hand side of (26). However, as in the case of separable projects, non-manipulability

does not matter for independent types. The optimal solution is then the second-best out-

come not taking into account the possibility of manipulations. It corresponds to outputs

distortions given by the familiar Baron-Myerson conditions:

∂S̃

∂qi

(qSB(θ)) = θi +
F (θi)

f(θi)
.

In order to give more insights on the nature of these distortions, assume that S̃(·) is

quadratic and writes as S̃(q) = µ(q1 + q2) − 1
2
(q2

1 + q2
2) + λq1q2, where |λ| < 1 to ensure

strict concavity of S̃(·). Denote l =
f̃θi

(θ|θ)
f̃(θ|θ) the likelihood ratio at (θ, θ). This can be

viewed as an index of the correlation across types. Assuming strict (MLRP), we have

l < 0. Any real analytic solution to (26)-(27) close to (θ, θ) (which lies on the boundary

surfaces defined in (27)) can be approximated locally as follows.

Corollary 1 Assume that S̃(·) is quadratic as above and f(·) is real analytic with − f ′(θ)
2f(θ)

=

m. Locally around (θ, θ), any symmetric real analytic solution to (26)-(27) admits the fol-

lowing approximation:

qSB
i (θi, θ−i)− qFB(θ, θ) = − 1

1− λ2

(
(θi − θ) + (l −m)(θi − θ)2

)

+
λ

1− λ2

(−2(θ−i − θ) + (l −m)(θ−i − θ)2
)− 2λl

1− λ2
(θi − θ)(θ−i − θ) + o(||θ− θ||2) (28)

where lim||θ−θ||→0
o(||θ−θ||2)
||θ−θ||2 = 0.

From (28), Assumptions 3 and 4 hold for the optimal output qSB(θ) at least locally

around (θ, θ). To understand the nature of the output distortions away from the first-best,

it is necessary to decompose it into three elements. First, there is the generalized virtual

cost effect that comes on the first bracketed term on the right-hand side of (28). This term

survives when there is no production externality and is only due, as in Section 5, to the

fact that costs are replaced by generalized virtual costs in evaluating the rent/efficiency

trade-off under non-manipulability. Within that bracket, the negative term − (l−m)
1−λ2 (θi−θ)2
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captures how correlation affects optimal outputs. Because learning from agent A−i that his

type is close to θ can only be bad news when Ai reports himself a type θi above θ, this first

effect leads to an exacerbated downward distortion of qSB
i (θi, θ−i). This term is reduced in

absolute value when correlation diminishes. The next bracketed term captures the impact

of the production externality that would arise if the right-hand side of (26) was set at zero.

This indirect effect of production externality comes from the fact that, as the generalized

virtual cost effect distorts the output of a given agent, substitutability or complementarity

imply further distortion of the other agent’s output. For instance, with substitutes the

downward distortion of A−i’s output due to the generalized virtual cost effect leads to

raise Ai’s output and that all the more that the correlation increases. Finally, the last

term on the right-hand side of (28) captures the impact of the production externality

on the principal’s incentives to manipulate: a direct effect of production externality. It

represents the extra distortions needed to move sell-out contracts towards being non-

manipulable. This last term increases output distortions around (θ, θ) for substitutes.

Indeed, manipulations vis-à-vis Ai are better fought by making Ai’s output less sensitive

to A−i’s cost. Distortions are instead reduced with complements because manipulations

are then better fought by making outputs less sensitive to A−i’s cost. Note finally that, as

the correlation increases (in the sense of having |l| bigger), the direct effect of production

externality on output distortions is magnified.

6.2 Specific Results with Discrete Types

The difficulty in finding explicit solutions to the system (26)-(27) suggests to investigate

now the nature of optimal non-manipulable mechanisms in discrete types environments

where such solutions could be found by simply assessing the role of a finite number of

non-manipulability constraints. To analyze incentives for manipulation and their conse-

quences on contract design, we study two polar settings of interest: the case of perfect

complements and the case of perfect substitutes. As in the case of separable projects, our

goal here is to first derive implications of the non-manipulability constraints in such sim-

ple environments when characterizing the set of incentive-feasible allocations and, second,

to find the corresponding optimal mechanism.

6.2.1 Teams

Consider a team where agents exert efforts q1 and q2 which are perfect complements in the

production process. Denote by q = min(q1, q2) the final output and by S(q) the principal’s

surplus (S ′(0) = +∞, S ′ > 0, S ′′ < 0 with S(0) = 0).30 Any symmetric mechanism

30The Inada condition again ensures that it is worth always contracting with both agents so that the
issue of “shutting-down” the worst types again does not arise.

22



is characterized by an output schedule with three possible elements {q(θ̄, θ̄), q(θ̄, θ) =

q(θ, θ̄), q(θ, θ)} and a four-uple of transfers {t(θ̄, θ̄), t(θ̄, θ), t(θ, θ̄), t(θ, θ)}.
Now the principal’s ability to manipulate reports towards both agents is constrained

by the fact that, assuming there is no waste of their individual inputs, agents observe the

final output on which their individual contracts can be written. Given these constraints

on output observability, some manipulations are not possible. For instance, pretending

that (θ̂1, θ̂2) = (θ, θ̄) when (θ1, θ2) = (θ, θ) is not feasible given that such report would

require implementing q(θ, θ̄) vis-à-vis A1 and a possibly different output q(θ, θ) vis-à-vis

A2. The only two relevant non-manipulability constraints (8) are:

S(q(θ, θ))− 2t(θ, θ) ≥ S(q(θ, θ̄))− 2t(θ, θ̄) (29)

S(q(θ̄, θ̄))− 2t(θ̄, θ̄) ≥ S(q(θ̄, θ))− 2t(θ̄, θ). (30)

Constraint (29) comes from the fact that the principal can always report to an efficient

agent that the other is not even when both are. Constraint (30) captures the fact that

the principal can always report to an inefficient agent that the other is efficient even when

both are not. Since the principal can only lie to both agents at the same time, it is worth

noticing that those constraints correspond to “global” deviations.

Proposition 4 Assume that the correlation coefficient α is small enough. The optimal

symmetric non-manipulable mechanism for a team is such that (30) is binding. Optimal

outputs are given by:

S ′(qSB(θ, θ)) = 2θ,

S ′(qSB(θ, θ̄)) = θ+θ̄+
ν

1− ν

(
1 + α 3−2ν

ν2

1− α 1−2ν
ν(1−ν)

)
∆θ, S ′(qSB(θ̄, θ̄)) = 2θ̄+

2ν

1− ν

(
1− α

ν(1−ν)

1 + α 2ν
(1−ν)3

)
∆θ.

(31)

Observe that, in the limit of zero correlation, the optimal outputs above again converge to-

wards the Baron-Myerson outcome in a team production context. The marginal efficiency

of production is then equal to the sum of the agents’ virtual costs, i.e.,

S ′(qSB
0 (θ, θ̄)) = θ + θ̄ +

ν

1− ν
∆θ, S ′(qSB

0 (θ̄, θ̄)) = 2θ̄ +
2ν

1− ν
∆θ.

Because of perfect complementarity, these Baron-Myerson outputs entail thus a double

distortion 2ν
1−ν

∆θ when both agents are inefficient whereas there is only a simple distortion
ν

1−ν
∆θ with one efficient agent only.

Starting from this benchmark, the principal would like to use the types correlation to

reduce the rent of an efficient type. This can be done by reducing the payment t(θ̄, θ) that
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this agent could get by lying on his type when facing an efficient agent since such event is

rather unlikely with a positive correlation. At the same time, satisfying the participation

constraint of an inefficient agent requires also to raise t(θ̄, θ̄). Altogether those changes

in payments make it attractive to manipulate reports so that (30) necessarily binds and

payments satisfy

S(q(θ̄, θ̄))− S(q(θ̄, θ)) = 2t(θ̄, θ̄)− 2t(θ̄, θ).

Relaxing this constraint requires moving qSB(θ̄, θ̄) up closer to the first-best and qSB(θ, θ̄)

down closer to zero at the optimum as it is captured by (31). Those distortions are more

important as the coefficient correlation α increases.

6.2.2 Multi-Unit Auctions

Consider an auction context with agents producing perfect substitutes in quantities q1

and q2 on the principal’s behalf. The principal’s surplus from consuming q = q1 + q2 units

of the good is S(q), with the Inada conditions S(0) = S ′(+∞) = 0, S ′(0) = +∞, S ′′ < 0.

The first-best outcome is such that each agent produces the quantities defined as follows:

S ′(2qFB(θ, θ)) = S ′(qFB(θ, θ̄)) = θ, qFB(θ̄, θ) = 0, S ′(2qFB(θ̄, θ̄)) = θ̄.

Under asymmetric information, any symmetric mechanism is now characterized by a

four-uple of non-negative quantities for each individual agent {q(θ̄, θ̄), q(θ̄, θ), q(θ, θ̄), q(θ, θ)}
and a four-uple of corresponding transfers {t(θ̄, θ̄), t(θ̄, θ), t(θ, θ̄), t(θ, θ)}.

To extract the agents’ information rent, the principal would like again to punish the

inefficient agent in case of conflicting reports by setting t(θ̄, θ) sufficiently low. However,

this cannot be possible when the non-manipulability constraints in state (θ̄, θ̄) are consid-

ered. Non-manipulability imposes first the following local non-manipulability constraint

corresponding to the case where the principal only manipulates report towards one of the

two agents:

S(2q(θ̄, θ̄))− 2t(θ̄, θ̄) ≥ S(q(θ̄, θ̄) + q(θ̄, θ))− t(θ̄, θ̄)− t(θ̄, θ). (32)

Second, non-manipulability in state (θ̄, θ̄) imposes also the global non-manipulability con-

straint corresponding instead to the case where the principal manipulates simultaneously

his reports towards both agents:

S(2q(θ̄, θ̄))− 2t(θ̄, θ̄) ≥ S(2q(θ̄, θ))− 2t(θ̄, θ). (33)

We expect to find an optimal output schedule such that the production of an agent is

greater as the other becomes less efficient which implies in particular q(θ̄, θ) ≤ q(θ̄, θ̄).

Because the surplus function S(·) is concave, (33) is then automatically satisfied when
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(32) already holds. In contrast with the case of perfect complements (Section 6.2.1), the

relevant non-manipulability constraint is now local.

Intuition built by looking at the form taken by the efficient allocation suggests a kind

of “winner-takes-it-all” solution such that the good is entirely produced by the efficient

agent only when the other reports being inefficient, i.e. q(θ̄, θ) = 0. When (32) is binding,

transfers must then satisfy the following condition that, again, generalizes the expression

of sell-out contracts to the multi-unit auction context:

S(2q(θ̄, θ̄))− S(q(θ̄, θ̄)) = t(θ̄, θ̄)− t(θ̄, θ). (34)

Proposition 5 Assume that the correlation coefficient α is small enough. The optimal

symmetric non-manipulable multi-unit auction is such that (32) is binding. Optimal out-

puts are given by:

S ′(2qSB(θ, θ)) = S ′(qSB(θ, θ̄)) = θ, qSB(θ̄, θ) = 0,

S ′(2qSB(θ̄, θ̄)) = θ̄ +
ν

1− ν

(
1− α

ν(1−ν)

1 + α(2−ν)
(1−ν)3

)
∆θ

+
α

(1− ν)3 + α(2− ν)
(S ′(qSB(θ̄, θ̄))− S ′(2qSB(θ̄, θ̄))) (35)

In the limiting case of zero correlation, the optimal non-manipulable auction above

converges towards the optimal auction with independent types and no manipulability

constraints. This latter auction implements in particular the following output when both

agents are inefficient:

S ′(2qSB
0 (θ̄, θ̄)) = θ̄ +

ν

1− ν
∆θ.

Depending on the exact shape of the surplus S(·) and the size of ∆θ, the optimal quantity

qSB(θ̄, θ̄) is either greater or smaller than qSB
0 (θ̄, θ̄). Correlation might be used to better

extract more rent and increase efficiency so that qSB(θ̄, θ̄) moves towards the first-best.

This is captured by the asymmetric information distortion (the second term on the right-

hand side of (35)) which decreases with α. However, more correlation also relaxes the

non-manipulation constraint (34) which requires more output distortion as captured by

the third term on the right-hand side of (35).

7 Extensions

This Section discusses the robustness of our findings to alternative assumptions on con-

tracting possibilities.
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7.1 Dominant Strategy and Simple Bilateral Contracting

Let us come back to the case of continuous types. Section 5 showed that, in a Bayesian

setting, any information learned by the principal when contracting with a given agent is

used to regulate another agent when types are correlated. We now strengthen the im-

plementation concept and require that agents play dominant strategies in the mechanism

offered by the principal. We ask whether it makes optimal non-manipulable mechanisms

look more like a set of simple bilateral contracts: an extreme case of non-manipulability.

Notice first that the notion of non-manipulability is independent of the implementation

concept used to describe the agents’ behavior. Our framework can be easily adapted to

dominant strategy implementation.

Proposition 6 Revelation Principle for Dominant Strategy Implementation

with Bilateral Contracting. In a private values context, any allocation a(·) achieved

at a dominant strategy equilibrium of any arbitrary mechanism (g(·),M) with bilateral

contracting can alternatively be implemented as a truthful and non-manipulable dominant

strategy equilibrium of a direct mechanism (ḡ(·), Θn).

Non-manipulability being independent of the implementation concept, transfers are

still defined as in (11) when projects are separable. Strengthening also the participation

condition, we obtain:

Proposition 7 Assume that projects are separable (i.e., ∂2S̃
∂q1∂q2

= 0), the mechanism

is implemented in dominant strategy and satisfy ex post participation constraints. The

optimal non-manipulable such mechanism can be achieved with a pair of simple bilateral

contracts
{

tBM
i (θ̂i), q

BM
i (θ̂i)

}
θ̂i∈Θ

implementing the Baron-Myerson output for each agent.

Non-manipulability and dominant strategy implementation are two different concepts

with different implications. These restrictions justify simple bilateral contracts only when

taken in tandem. In that case, informational externalities can no longer be exploited and

the principal cannot do better than offering simple bilateral contracts. Therefore, the

Baron-Myerson outcome is optimal even with correlated types.

Remark 6 Simple bilateral contracts are suboptimal if we do not impose non-manipulability

even under dominant strategy implementation and ex post participation. Insisting only on

dominant strategy and ex post participation, the optimal quantities are given by Baron-

Myerson formulae taking into account the fact that the principal uses the correlation of
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types to update his beliefs accordingly. We get:

S ′(qi(θi, θ−i)) = θi +
F̃ (θi | θ−i)

f̃(θi | θ−i)
.

The optimal such mechanism yields thus a strictly higher payoff than a pair of bilateral

contracts when types are correlated.

7.2 Horizontal Collusion and Simple Bilateral Contracting

We now investigate the possibility that agents may collude and how such collusion may

interact with non-manipulability to “simplify” contracts. Again, we focus on the case of

separable projects and, following Laffont and Maskin (1980), suppose that agents learn

each other’s types when colluding. The corresponding collusion-proofness conditions are

helpful to show the following result.

Proposition 8 Assume that agents work on separable projects and can collude:

• The optimal mechanism described in Proposition 2 is not collusion-proof;

• The only differentiable output schedules qi(θi, θ−i) which are such that qi(θi, θ−i) ≤
qFB(θi) (with equality at θi = θ only) and ∂qi

∂θ−i
(θi, θ−i) ≥ 0 and implementable by a

collusion-proof non-manipulable mechanism are such that ∂qi

∂θ−i
(θi, θ−i) = 0. The optimal

mechanism within this class is a pair of simple bilateral contracts implementing the Baron-

Myerson outcome qBM(θi).

The optimal mechanism characterized in Proposition 2 when agents do not collude

makes the output of any given agent depend also on the report of the other. From

the coalition’s viewpoint, reporting truthfully is not optimal however. Indeed, given

that agent Ai produces below the first-best for that mechanism, the coalition would like

that he overstates his report because revealing such information has a positive effect on

A−i’s payoff. This points at the difficulty in reconciling non-manipulability and collusion-

proofness unless the principal gives up any attempt to make the contract of an agent

depend on information he learns from the other. Under some weak conditions, the only

possibility left is to offer simple bilateral contracts.

7.3 Secret Contracts

Our analysis so far focused on the case where the mechanisms offered by the principal

are public. This assumption allowed us to focus on the role of privacy in communication

only. An extra degree of privacy arises when the principal offers secret mechanisms to
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each agent. In this case, not only the particular choice of A−i within the menu he receives

but this menu itself is not observed by Ai.

In the case of separable projects, non-manipulability still imposes that

S(qS
i (θi, θ−i))− tSi (θi, θ−i) = HS

i (θi), (36)

for some functions HS
i (·) where (tSi (θi, θ−i), q

S
i (θi, θ−i)) is the direct mechanism31 offered to

Ai in the game with secret bilateral contracts. Importantly, with separable projects, the

offer made to agent A−i does not influence the principal’s incentives not to manipulate the

report he makes to agent Ai on what he has learned from A−i when (36) holds. Therefore,

whether contracts are public or secret does not change the incentives faced by agent Ai

either; his conjectures about the offer made to A−i following any non-equilibrium offer

that he may have himself receive do not intervene in his reasoning. Therefore, we can

immediately replicate the analysis made in Section 5.

Proposition 9 When projects are separable (i.e., ∂2S̃
∂q1∂q2

= 0), the equilibrium outcomes

of the game with public contracts and of the game with secret contracts coincide.

7.4 Sequential Contracting

The model of bilateral contracting we developed so far has the principal making simulta-

neous offers to the agents. One important question is whether the principal could gain by

instead contracting sequentially with each agent in turn. To simplify, let us focus on the

case of separable projects with two agents. One potential benefit of sequential bilateral

contracting is to relax some of the non-manipulability constraints faced by the principal.

Intuitively, when the principal contracts with the second agent, he can condition his offer

on all information already obtained from the first one. This replaces the problem of ex

post manipulation by a problem of interim manipulation vis-à-vis the second agent.

The analysis of sequential bilateral contracting nevertheless raises a number of is-

sues linked to the information leakages that may arise depending on the exact timing

chosen for such games. In general dynamic contracting environments, it is for instance

no longer warranted that the usual form of the Revelation Principle applies so that the

first agent A1 finds it optimal to tell the truth.32 Moreover, the contracting sub-game

with A2 becomes now an informed principal problem. From the Unscrutability Princi-

ple,33 we know that such informed principal would like to offer a menu of sub-mechanisms

31In this setting, the restriction to direct mechanisms is without loss of generality, see the proof of
Proposition 9 in the Appendix.

32Bester and Strausz (2001).
33Myerson (1983).
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{t2(θ̃1, θ̂2), q2(θ̃1, θ̂2)}(θ̃1,θ̂2)∈Θ2 delaying all information revelation till after A2’s acceptance.

This simultaneous revelation of the principal and A2’s information stands in contrast with

what is feasible with simultaneous bilateral contracting where the principal reports always

after both agents. The contracting possibilities underlying the use of the Unscrutability

Principle come thus definitively closer to what is feasible under a centralized mechanism.

In contrast, we could keep a more symmetric approach between the simultaneous and

the sequential timings by still allowing the principal to report to A2 what he has learned

from A1 only after A2’s own report. We would then be obviously back to the same non-

manipulability constraints than under simultaneous contracting and our previous analysis

would carry over.

To make what we believe is a more relevant comparison between the simultaneous and

sequential contracting games, consider the following timing. First, agents privately learn

their types. Second, the principal offers to A1 a sub-mechanism {t1(θ̂1, θ̃2), q1(θ̂1, θ̃2)}(θ̂1,θ̃2)∈Θ2 .

Third, A1 reports θ̂1 in this sub-mechanism; this message is observed by the principal.

Fourth, the principal offers to A2 a sub-mechanism {t2(θ̂2), q2(θ̂2)}θ̂2∈Θ.34 Fifth, A2 re-

ports θ̂2 in this sub-mechanism. Sixth, the principal uses the information learned from

A2 to report θ̃2 in A1’s sub-mechanism. Finally, production and transfers occur.

To establish our next result, we need to ensure that the virtual type of A2, computed

once the realization of θ1 is known, is increasing in θ2 to guarantee that the incentive

problem with respect to A2 is well-behaved.

Assumption 5 The function θ2 + F̃ (θ2|θ1)

f̃(θ2|θ1)
is increasing in θ2 for all θ1.

In this setting, we can prove that the unique equilibrium is fully revealing,35 i.e.,

such that both agents report truthfully in their sub-mechanisms, the principal does not

manipulate his report on A2 in A1’s sub-mechanism and reveals his information on A1’s

report through his contract to A2. Moreover, we have:

Proposition 10 When projects are separable and Assumption 5 holds, the principal’s

expected profit in the sequential bilateral contracting game is lower than in the simultaneous

contracting game.

34Equivalently, the principal offers to A2 a nonlinear price t2(q2) and let A2 choose the quantity q2. In
this sequential game, the strategy space available to P in the relationship with A2 is therefore different
from what is available in the simultaneous game. With such mechanism, all communication between the
principal and A2 on what he has learned by contracting with A1 takes place through the mere offer of
the contract t2(q2).

35Up to some arbitrary out-of equilibrium beliefs.
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8 Relationships with the Literature

This paper is linked to several trends of the mechanism design literature reviewed below.

Partial Commitment. Our modeling of the principal’s limited inability to commit to

a grand-mechanism leads to a tractable characterization of non-manipulable mechanisms

with bilateral contracting by means of a simple Revelation Principle. More generally, mod-

els with partial commitment require giving up such simple approach and might involve

partially revealing strategies (Bester and Strausz 2000 and 2001, Krishna and Morgan

2006). This difficulty is avoided in our context because we focus on private values envi-

ronments where the principal’s utility function does not directly depend on the agents’

types. Hence, agents do not manipulate their reports to the principal to affect his be-

liefs about their types and influence his optimal manipulations. Whatever information is

learned by the principal with an agent, non-manipulability requires that it is truthfully

revealed to others. Non-manipulability constraints can thus be interpreted as incentive

compatibility constraints with respect to the endogenous private information that the

principal learns from the agents. This is reminiscent of the posterior implementability

concept developed by Green and Laffont (1987) in which agents’ equilibrium strategies

are best-responses to each other even after they learned information revealed by the play

of the mechanism itself. However, non-manipulability concerns the principal’s behavior.

Finally, Baliga, Corchon and Sjöstrom (1997) investigate implementation when the

mediator himself is a player and reacts to whatever information privately informed agents

may report by choosing a decision. Formally, the mechanism design game is transformed

into a signaling game. We are less extreme in modeling the principal’s lack of commitment

and still allow some commitment to bilateral contracts.

Mechanism design in correlated environments. Results on the irrelevance of private

information in correlated information environments (Crémer and McLean 1985, 1988, Ri-

ordan and Sappington 1988, Johnson, Pratt and Zeckhauser 1990, d’Aspremont, Crémer

and Gerard-Varet 1990, Matsushima 1991 and McAfee and Reny 1992) have already been

attacked on various fronts. A first approach is to introduce risk-aversion and wealth

effects (Robert 1991, Eso 2004), limited liability (Demougin and Garvie 1991), ex post

participation constraints (Demski and Sappington 1988, Dana 1993), or limited enforce-

ability (Compte and Jehiel 2009). In our paper instead, the benefits of using correlated

information is undermined by non-manipulability constraints on the principal’s side.

A second line of research argues that correlation may not be as generic as suggested

by the earlier literature. Neeman (2004) points out that the type of an agent should

not simultaneously determine his beliefs on others and be payoff-relevant. Bergemann

and Morris (2005) model higher order beliefs and show that robust implementation may
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amount to ex post implementation. Chung and Ely (2007) show that a maxmin principal

may want to rely on dominant strategy implementation. These approaches yield somewhat

extreme results since Bayesian mechanisms are given up. Bilateral contracting between

the principal and his agents also relaxes the common knowledge requirements assumed in

standard mechanism design but it does so in a simple and tractable way that preserves

the properties of Bayesian implemtation.36 As a result, Bayesian implementation keeps

much of its force. Resolution techniques to derive optimal mechanisms are also similar to

those already well-known for independent types.

Full surplus extraction in correlated environments may also be limited when agents

collude (Laffont and Martimort 2000). Key to this collusion possibility is the fact that

agents can coordinate their strategies. This coordination is certainly harder when agents

contract separately with their principal. Our focus on bilateral contracting points at

another polar case which leaves less scope for horizontal collusion between agents but

introduces the possibility of manipulations by the principal.37

Subjective evaluations. There is a literature on the design of incentive contracts be-

tween a principal and his agents in moral hazard contexts where the principal’s evaluation

of the agents’ performance is subjective, i.e., private information of the principal himself

(McLeod 2003, Fuchs 2007). One possible solution to restore double-edged incentives is

“burning money.” Another solution suggested by Rahman and Obara (2007), is to use cor-

related strategy as the implementation concept. In our model, both the option of “burning

money” and that of appointing another mediator making secret recommendations rely on

the ability of the principal not to collude with a third-party. With such collusion, those

solutions lose their bites and we are back to the same analysis as that undertaken in

this paper. In this respect, our paper, by allowing for multiple agents, informational and

production externalities, and continuous types goes beyond the findings in Strausz (2006)

who analyzes also the principal’s incentives to manipulate an informative signal vis-à-vis

a unique agent.38

Contractual externalities with bilateral contracts. The IO literature on bilateral

contracting (O’Brien and Shaffer 1992, McAfee and Schwartz 1994, Segal 1999) analyzes

complete information environments where a manufacturer (principal) can contract with

his retailers (agents) only through simple bilateral contracts. The focus is on the prin-

cipal’s opportunistic behavior that arises when he strikes each of those bilateral deals

independently and the retailers’ payoffs depend on each others’ contracting variables with

36Readers accustomed with the moral hazard literature know that correlation between the agents’
performances may be used to better design incentives without of course voiding the agency problem of
its interest. Our results have the same flavor.

37In a moral hazard context, Gromb and Martimort (2007) study the consequences for organizational
design of vertical collusion between the principal and each of his agents.

38We thank R. Strausz for making us aware of this paper after earlier drafts of ours were completed.
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the principal. Although, we share with this literature some common concerns in studying

the opportunistic behavior of a principal, this is in a different context. Our paper deals in-

stead with informational externalities across agents. Since non-manipulability constraints

depend only on the principal’s payoff, introducing payoff externalities between agents

would not change our analysis. Moreover, for most of our analysis above, mechanisms are

public and, the principal’s opportunistic behavior comes from his possibilities to manip-

ulate communication and not to sign independent secret deals.

Common agency. Our modeling of the principal’s lack of commitment is reminiscent

of the common agency literature.39 This similarity should come at no surprise. In our

framework, the key issue is to prevent the principal’s opportunistic behavior vis-à-vis

each of his agents. Under common agency, the same kind of opportunistic behavior

occurs, with the common agent reacting to his principals’ offers and making optimal

output choices once he knows whose contracts have been offered. Beside the allocation of

bargaining powers between parties, there is another difference between common agency

and the environment described in this paper. The principal has more commitment power

here since he can design sub-mechanism in a first stage and restrict the possible choice of

the uninformed agents within menus.40 Although a priori minor, this difference simplifies

the analysis. This instilled minimal level of commitment allows us to maintain much

of the optimization techniques available in standard mechanism design without falling

into the technical difficulties faced when characterizing Nash equilibria in the context of

multi-contracting mechanism design, in particular the multiplicity of equilibria.41

9 Conclusion

Considering bilateral contracts paves the way to a theory which responds to some of the

most often heard criticisms addressed to the mechanism design methodology. Even in

correlated information environments, insisting on non-manipulability restores a genuine

trade-off between efficiency and rent extraction. This leads to a second-best analysis

that stresses the role of virtual generalized costs even in correlated environments. In

several contexts of interest (separable projects, auctions, team productions, more gen-

eral production externalities), we analyzed this rent/efficiency trade-off and characterized

optimal non-manipulable mechanisms.

39Bernheim and Whinston (1986), Stole (1991), Martimort (1992, 2007), Mezzetti (1997), Martimort
and Stole (2002, 2009), Peters (2001). Most often private information is modeled on the common agent’s
side in this literature, an exception being Martimort and Moreira (2009).

40Martimort and Moreira (2009) study a common agency game where informed principals are not
restricted when choosing the contracts they use with a common uninformed agent.

41Martimort (2007) argues that one should look for minimal departures of the centralized mechanism
design framework which go towards modeling multi-contracting settings but avoid this difficulty. The
non-manipulability constraints we developed here can be viewed as such departure.
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Several extensions would be worth pursuing.

First, each of these particular settings studied above certainly deserves further analysis

either by modifying information structures and preferences or by focusing on organiza-

tional problems coming from the analysis of real world institutions in particular contexts

(political economy, regulation, vertical restraints in a IO context, etc..).

Second, introducing a bias in the principal’s preferences towards either agent could

also raise interesting issues. First by making the principal’s objective function somewhat

congruent with that of one of the agents, one goes towards a simple modeling of vertical

collusion and favoritism. Second, this congruence may introduce interesting aspects re-

lated to the common values elements that arise in such environment and that have been

set aside by our focus on a private values setting.

Third, it would be worth investigating further what is the scope for horizontal collusion

between agents in the environments depicted in this paper. Collusion may justify the

restriction to bilateral contracting in the first place. Indeed, bilateral contracting implies

private communication between agents and their principal which might make it more

difficult for them to enforce any collusive agreement. This should be contrasted with

the case of grand-mechanisms that would not control horizontal communication between

agents and would allow the agents to collude on their reporting strategies when public.

Such analysis could lead to an interesting trade-off between the cost of the principal’s

opportunism under bilateral contracting and the fact that collusion might be easier with

more centralized and transparent procedures.

Fourth, it might be worth extending our analysis of sequential contracting games to

the case of production externalities. Such general investigation might lead to interesting

insights on optimal contracting modes in environments with limited commitment.

In practice, the degree of transparency of communication in an organization may

be intermediate between what arises either with bilateral contracting or with a more

centralized grand-mechanism. Reputation on the principal’s side for not manipulating

information might certainly help but the extent by which it is so remains to be studied.
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Appendix

Proof of Lemma 1. Take any arbitrary mechanism (g(·),M) = ((g1(·),M), ..., (gn(·),M))

for any arbitrary communication space M = Πn
i=1Mi. Consider also a perfect Bayesian

continuation equilibrium of the overall contractual game induced by (g(·),M). Such

continuation PBE is a triplet {m∗(·), m̂∗(·), dµ(θ|m)} that satisfies:

• Agent Ai with type θi reports a private message m∗
i (θi) to the principal. The strategy

m∗(θ) = (m∗
1(θ1), ..., m

∗
n(θn)) forms a Bayesian-Nash equilibrium among the agents. The

corresponding equilibrium conditions are stated in (5) .

• P updates his beliefs on the agents’ types following Bayes’ rule whenever possible, i.e,

when m ∈ supp m∗(·). Otherwise, beliefs are arbitrary. Let denote dµ(θ|m) the updated

beliefs following the observation of a vector of messages m.
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•Given any such vector m (either on or out of the equilibrium path) and the corresponding

posterior beliefs, the principal reports the messages (m̂∗
−1(m), ..., m̂∗

−n(m)) which maxi-

mizes his expected payoff, i.e.,

(m̂∗
−1(m), ..., m̂∗

−n(m))

∈ arg max
(m̂−1,...,m̂−n)∈Πn

i=1M−i

∫

Θn

{
S̃(q1(m1, m̂−1)), ..., qn(mn, m̂−n))−

n∑
i=1

ti(mi, m̂−i)

}
dµ(θ|m).

(A.1)

Because we are in a private values context where the agents’ types do not enter directly

into the principal’s utility function, expectations do not matter and (A.1) can be rewritten

more simply as (6).

Proof of Proposition 1. Consider the agents’ Bayesian incentive compatibility condi-

tions that must be satisfied by m∗(·). For Ai, we have for instance

m∗
i (θi) ∈ arg max

m̃i∈Mi

E
θ−i

(
ti

(
m̃i, m̂

∗
−i(m̃i,m

∗
−i(θ−i))

)− θiqi

(
m̃i, m̂

∗
−i(m̃i,m

∗
−i(θ−i))

) |θi

)
.

The proof of a Revelation Principle will now proceed in two steps. In the first one, we

replace the mechanism (g(·),M) by another mechanism (g̃(·),M) which is not manipu-

lable by the principal. In the second step, we replace (g̃(·),M) by a direct, truthful and

still non-manipulable mechanism (ḡ(·), Θn).

Step 1. Consider the new mechanism (g̃(·),M) defined as:

t̃i(mi,m−i) = ti(mi, m̂
∗
i (mi,m−i)) and q̃i(mi,m−i) = qi(mi, m̂

∗
−i(mi,m−i)) for i = 1, ..., n.

(A.2)

Lemma 4 (g̃(·),M) is not manipulable by the principal, i.e., m̂∗
−i(m) = m ∀m ∈ M

given that g̃(·) is offered.

Proof. Fix any m = (m1, ...,mn) ∈M. By (6), we have:

S̃(q1(m1, m̂
∗
−1(m)), .., qn(mn, m̂∗

−n(m)))−
n∑

i=1

ti(mi, m̂
∗
−i(m))

≥ S̃(q1(m1, m̃−1), ..., qn(mn, m̃−n))−
n∑

i=1

ti(mi, m̃−i) ∀(m̃−1, ..., m̃−n).

In particular, we get:

S̃(q1(m1, m̂
∗
−1(m)), .., qn(mn, m̂∗

−n(m)))−
n∑

i=1

ti(mi, m̂
∗
−i(m))
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≥ S̃(q1(m1, m̂
∗
−1(m1,m

′
−1)), ..., qn(mn, m̂

∗
−n(mn,m′

−n)))−
n∑

i=1

ti(mi, m̂
∗
−i(mi,m

′
−i)). (A.3)

Then, using the definition of g̃(·) given in (A.2), (A.3) ensures that ∀(m′
−1, ..m

′
−n):

S̃(q̃(m))−
n∑

i=1

t̃i(m) ≥ S̃(q̃1(m1,m
′
−1), .., q̃n(mn,m′

n))−
n∑

i=1

t̃i(mi,m
′
−i). (A.4)

Given that g̃(·) is played, the best manipulation made by the principal is m̂∗
−i(m) = m

for all m. g̃(·) is not manipulable by the principal.

It is straightforward to check that the new mechanism g̃(·) still induces an equilibrium

strategy vector m∗(θ) = (m∗
1(θ1), ...,m

∗
n(θn)) for the agents. Indeed, m∗(·) satisfies by

definition the following Bayesian-Nash constraints:

m∗
i (θi) ∈ arg max

mi∈Mi

E
θ−i

(
ti(mi, m̂

∗
−i(mi,m

∗
−i(θ−i)))− θiqi(mi, m̂

∗
−i(mi,m

∗
−i(θ−i)))|θi

)

which can be rewritten as:

m∗
i (θi) ∈ arg max

mi∈Mi

E
θ−i

(
t̃i(mi,m

∗
−i(θ−i))− θiq̃i(mi,m

∗
−i(θ−i))|θi

)
. (A.5)

Hence, m∗(·) is a Bayesian-Nash equilibrium of the new mechanism g̃(·).
Step 2. Consider now the direct revelation mechanism (ḡ(·), Θn) defined as:

t̄i(θ) = t̃i(m
∗(θ)) and q̄i(θ) = q̃i(m

∗(θ)) for i = 1, ..., n. (A.6)

Lemma 5 ḡ(·) is truthful in Bayesian incentive compatibility and not manipulable.

Proof. First consider the non-manipulability of the mechanism ḡ(·). From (A.4), we get:

S̃ (q̄(θ))−
n∑

i=1

t̄i(θ) ≥

S̃
(
q̃1(m

∗
1(θ1), m

′
−1), .., q̃n(m∗

n(θn),m′
n)

)−
n∑

i=1

t̃i(m
∗
i (θi),m

′
−i) ∀m′

−i ∈M−i. (A.7)

Taking m′
−i = m∗

−i(θ
′
−i), (A.7) becomes

S̃ (q̄(θ))−
n∑

i=1

t̄i(θ) ≥

S̃(q̄1(θ1, θ
′
−1), .., q̄n(θn, θ

′
−n))−

n∑
i=1

t̄i(θi, θ
′
−i) ∀(θ′−1, ..., θ

′
−n). (A.8)

Hence, ḡ(·) is non-manipulable.
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Turning to (A.5), it is immediate to check that the agents’ Bayesian incentive con-

straints can be written as:

θi ∈ arg max
θ̂i∈Θ

E
θ−i

(
t̄i(θ̂i, θ−i)− θiq̄i(θ̂i, θ−i)|θi

)
. (A.9)

Proof of Proposition 2. Let us define

Ũi(θ̂i, θi) = E
θ−i

(
S(qi(θ̂i, θ−i))− θiqi(θ̂i, θ−i)|θi

)
−Hi(θ̂i).

Ũi(θ̂i, ·) is differentiable for all θ̂i. Without loss of generality we can restrict attention to

quantity schedules that are bounded above by q̄ large enough. Therefore there exists an

integrable function b(θi) such that

∣∣∣∣∣
∂Ũi

∂θi

(θ̂i, θi)

∣∣∣∣∣ =

∣∣∣∣∣Eθ−i

(
qi(θ̂i, θ−i)− (S(qi(θ̂i, θ−i))− θiqi(θ̂i, θ−i))

f̃θi
(θ−i|θi)

f̃(θ−i|θi)

∣∣∣θi

)∣∣∣∣∣ ≤ b(θi),

for all θ̂i and almost all θi. We can now apply Theorem 2 in Milgrom and Segal (2002, p.

586) to ensure that

Ui(θi) = Ui(θ̄) +

∫ θ̄

θi

E
θ−i

(
qi(x, θ−i)− (S(qi(x, θ−i))− xqi(x, θ−i))

f̃θi
(θ−i|x)

f̃(θ−i|x)

∣∣∣x
)

dx.

Therefore, we obtain:

E
θi

(Ui(θi)) = Ui(θ̄)

+

∫ θ̄

θ

f(θi)

(∫ θ̄

θi

E
θ−i

(
qi(x, θ−i)− (S(qi(x, θ−i))− xqi(x, θ−i))

f̃θi
(θ−i|x)

f̃(θ−i|x)

∣∣∣x
)

dx

)
dθi.

Integrating by parts yields

E
θi

(Ui(θi)) = Ui(θ̄) + E
θ

(
F (θi)

f(θi)

(
qi(θ)− (S(qi(θ))− θiqi(θ))

f̃θi
(θ−i|θi)

f̃(θ−i|θi)

))
. (A.10)

First, let us suppose that (14) is binding only at θi = θ̄. Of course minimizing the agents’

information rent requires to set Ui(θ̄) = 0 when the right-hand side in (17) is negative;

something that will be checked later. Inserting (A.10) into the principal’s objective func-

tion and optimizing pointwise yields (19).

Monotonicity conditions. Assumption 1 and strict concavity of S(·) immediately imply

that ∂qSB

∂θ−i
(θi, θ−i) ≥ 0 and ∂qSB

∂θi
(θi, θ−i) < 0.
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Monotonicity of USB(θi). This monotonicity is ensured whenever the following sufficient

condition holds

qSB(θi, θ−i) ≥
(
S(qSB(θi, θ−i))− θiq

SB(θi, θ−i)
) f̃θi

(θ−i|θi)

f̃(θ−i|θi)
(A.11)

since then integrating over θ−i yields that the right-hand side of (17) is negative and thus

Ui(θi) is non-increasing as supposed. Note that (A.11) holds when
f̃θi

(θ−i|θi)

f̃(θ−i|θi)
≤ 0. When

instead
f̃θi

(θ−i|θi)

f̃(θ−i|θi)
> 0, we have qFB(θi) > qSB(θi, θ−i) > qBM(θi). Therefore, a sufficient

condition for (A.11) is

f̃θi
(θ−i|θi)

f̃(θ−i|θi)
≤ qBM(θi)

S(qFB(θi))− θiqFB(θi)

as requested in Assumption 2.

Second-order conditions. For qSB(θi, θ−i) the local second-order condition (18) becomes

E
θ−i




∂qSB

∂θi
(θi, θ−i)

1 +
f̃θi

(θ−i|θi)

f̃(θ−i|θi)

F (θi)
f(θi)

∣∣∣θi


 ≥ 0

which holds since ∂qSB

∂θi
(θi, θ−i) ≤ 0 from Assumption 1 and 1 +

f̃θi
(θ−i|θi)

f̃(θ−i|θi)

F (θi)
f(θi)

> 0 from

Assumption 2.

Global incentive compatibility. Observe that

∂USB

∂θ̂i

(θ̂i, θi) = E
θ−i

(
(S ′(qSB(θ̂i, θ−i))− θi)

∂qSB

∂θ̂i

(θ̂i, θ−i)|θi

)
− ḢSB(θ̂i).

Taking into account the first-order condition (16), we get:

∂USB

∂θ̂i

(θ̂i, θi)

= E
θ−i

(
(S ′(qSB(θ̂i, θ−i))− θi)

∂qSB

∂θ̂i

(θ̂i, θ−i)|θi

)
−E

θ−i

(
(S ′(qSB(θ̂i, θ−i))− θ̂i)

∂qSB

∂θ̂i

(θ̂i, θ−i)|θ̂i

)

=

∫ θ̄

θ

∂qSB

∂θ̂i

(θ̂i, θ−i)





θ̂i − θi +

F (θ̂i)

f(θ̂i)

1 +
f̃θi

(θ−i|θ̂i)

f̃(θ−i|θ̂i)

F (θ̂i)

f(θ̂i)


 f̃(θ−i|θi)−

F (θ̂i)

f(θ̂i)

1 + F (θ̂i)

f(θ̂i)

f̃θi
(θ−i|θ̂i)

f̃(θ−i|θ̂i)

f̃(θ−i|θ̂i)


 dθ−i

=

∫ θ̄

θ

∂qSB

∂θ̂i

(θ̂i, θ−i)ψ(θ̂i, θi, θ−i)dθ−i

where

ψ(θ̂i, θi, θ−i) =


θ̂i − θi +

F (θ̂i)

f(θ̂i)

1 +
f̃θi

(θ−i|θ̂i)

f̃(θ−i|θ̂i)

F (θ̂i)

f(θ̂i)


 f̃(θ−i|θi)−

F (θ̂i)

f(θ̂i)

1 + F (θ̂i)

f(θ̂i)

f̃θi
(θ−i|θ̂i)

f̃(θ−i|θ̂i)

f̃(θ−i|θ̂i).
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Observe first that ψ(θi, θi, θ−i) = 0. By the Intermediate Values Theorem, we have

f̃(θ−i|θ̂i)−f̃(θ−i|θi) = f̃θi
(θ−i|ξ)(θ̂i−θi), for some ξ ∈]θi, θ̂i[. Denote M = max(θi,θ−i)∈Θ2 f̃θi

(θ−i|θi),

we have f̃(θ−i|θ̂i) − f̃(θ−i|θi) ≤ M(θ̂i − θi) for θ̂i ≥ θi and ψ(θ̂i, θi, θ−i) ≥ 0 for θ̂i ≥ θi

when

M ≤ f̃(θ−i|θi)


1 + F (θ̂i)

f(θ̂i)

f̃θi
(θ−i|θ̂i)

f̃(θ−i|θ̂i)

F (θ̂i)

f(θ̂i)


 . (A.12)

Since
f̃θi

(θ−i|θ̂i)

f̃(θ−i|θ̂i)
≥ − M

min(θ̂i,θ−i)∈Θ2 f̃(θ−i|θ̂i)
, (A.12) holds when

M ≤ f(θ̂i)

F (θ̂i)

f̃(θ−i|θi)

1 + f̃(θ−i|θi)

min(θ̂i,θ−i)∈Θ2 f̃(θ−i|θ̂i)

∀θ̂i ≥ θi,∀θ−i.

A sufficient condition for this is

M ≤ min
θi∈Θ

f(θi)
(min(θi,θ−i)∈Θ2 f̃(θ−i|θi))

2

2 max(θi,θ−i)∈Θ2 f̃(θ−i|θi)

as requested by Assumption 2 since then

min
θi∈Θ

f(θi)
(min(θi,θ−i)∈Θ2 f̃(θ−i|θi))

2

2 max(θi,θ−i)∈Θ2 f̃(θ−i|θi)
≤ min

θi∈Θ
f(θi)

f̃(θ−i|θi)

1 + f̃(θ−i|θi)

min(θ̂i,θ−i)∈Θ2 f̃(θ−i|θ̂i)

≤ f(θ̂i)

F (θ̂i)

f̃(θ−i|θi)

1 + f̃(θ−i|θi)

min(θ̂i,θ−i)∈Θ2 f̃(θ−i|θ̂i)

.

Turning now to the case θ̂i < θi. Note that we have then f̃(θ−i|θ̂i) − f̃(θ−i|θi) ≥
M(θ̂i − θi) for θ̂i ≤ θi. Therefore, we get:

ψ(θ̂i, θi, θ−i) ≤ (θ̂i − θi)


f̃(θ−i|θi) + M

F (θ̂i)

f(θ̂i)

1 + F (θ̂i)

f(θ̂i)

f̃θi
(θ−i|θ̂i)

f̃(θ−i|θ̂i)


 ≤ 0 for θ̂i < θi

when Assumption 2 holds.

Proof of Lemma 2. Starting from (8) and writing a first-order condition yields (22).

To prove that those conditions are also locally sufficient, denote the principal’s ex post

profit as:

V (θ̂, θ) = S̃(q1(θ1, θ̂2), q2(θ̂1, θ2))− t1(θ1, θ̂2)− t2(θ̂1, θ2).

We have:
∂2V

∂θ̂2
2

(θ̂, θ) =
∂2S̃

∂q2
1

(q1(θ1, θ̂2), q2(θ̂1, θ2))

(
∂q1

∂θ2

(θ1, θ̂2)

)2
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+
∂S̃

∂q1

(q1(θ1, θ̂2), q2(θ̂1, θ2))
∂2q1

∂θ2
2

(θ1, θ̂2)− ∂2t1
∂θ2

2

(θ1, θ̂2).

Taking into account (22) and differentiating with respect to θ2 yields:

∂2S̃

∂q2
1

(q(θ))

(
∂q1

∂θ2

)2

+
∂S̃

∂q1

(q(θ))
∂2q1

∂θ2
2

(θ)− ∂2t1
∂θ2

2

(θ) = − ∂2S̃

∂q1∂q2

(q(θ))
∂q1

∂θ2

(θ)
∂q2

∂θ2

(θ).

Finally, we get:
∂2V

∂θ̂2
2

(θ, θ) = − ∂2S̃

∂q1∂q2

(q(θ))
∂q1

∂θ2

(θ)
∂q2

∂θ2

(θ) ≤ 0

when Assumption 3 holds.

Direct computations yields also ∂2V

∂θ̂1∂θ̂2
(θ, θ) = ∂2S̃

∂q1∂q2
(q(θ))∂q1

∂θ2
(θ)∂q2

∂θ1
(θ). Finally, we

have:
∂2V

∂θ̂2
2

(θ, θ)
∂2V

∂θ̂2
1

(θ, θ)−
(

∂2V

∂θ̂1∂θ̂2

(θ, θ)

)2

=

(
∂2S̃

∂q1∂q2

(q(θ))

)2
∂q1

∂θ2

(θ)
∂q2

∂θ1

(θ)

(
∂q1

∂θ1

(θ)
∂q2

∂θ2

(θ)− ∂q1

∂θ2

(θ)
∂q2

∂θ1

(θ)

)
≥ 0

which ensures concavity of the principal’s problem at θ̂ = θ when Assumption 4 holds.

Proof of Lemma 3. To prove global optimality of a non-manipulable strategy, it turns

out that an approach in terms of nonlinear prices helps. Define thus Ti(qi, θi) = ti(θi, θ−i)

for θ−i such that qi(θi, θ−i). From (8), this definition is without any ambiguity because

all type θ−i which corresponds to the same output qi(θi, θ−i) must also correspond to the

same transfer ti(θi, θ−i) otherwise a valuable manipulation would be feasible. Assume now

that ∂qi

∂θ−i
(θi, θ−i) 6= 0 so that qi(θi, θ−i) is invertible with respect to θ−i. Denote Θ−i(qi, θi)

the inverse function.

The non-manipulability constraints can be rewritten as:

q(θ) = (q1(θ), q2(θ)) ∈ arg max
q

S̃(q1, q2)−
2∑

i=1

Ti(qi, θi) = J(θ, q). (A.13)

It can be checked that:

∂Ti

∂qi

(qi, θi) =
∂S̃

∂qi

(qi, q−i(θi, Θ−i(qi, θi))).

So that the first-order conditions for (A.13) defines q(θ). The local analysis above also

proves that second-order conditions are always locally satisfied.

We turn next to the global concavity of J(θ, q). Observe that:

∂2Ti

∂q2
i

(qi, θi) =
∂2S̃2

∂q2
i

(qi, q−i(θi, Θ−i(qi, θi)))+
∂2S̃2

∂qi∂q−i

(qi, q−i(θi, Θ−i(qi, θi)))

∂q−i

∂θ−i
(θi, Θ−i(qi, θi))

∂qi

∂θ−i
(θi, Θ−i(qi, θi))

.
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Assume now that ∂2S̃2

∂qi∂q−i
(qi, q−i) = λ, then ∂3S̃2

∂q2
i ∂q−i

(qi, q−i) = 0 so that ∂2S̃2

∂q2
i

(qi, q−i(θi, Θ−i(qi, θi))) =

∂2S̃2

∂q2
i

(qi, q−i) for any q−i. From Assumption 3 and ∂qi

∂θ−i
(θi, θ−i) 6= 0, we finally get:

∂2J

∂q2
i

(θ, q) = −∂2Ti

∂q2
i

(qi, θi) +
∂2S̃2

∂q2
i

(qi, q−i) = λ

∂q−i

∂θ−i
(θi, Θ−i(qi, θi))

∂qi

∂θ−i
(θi, Θ−i(qi, θi))

≤ 0.

Similarly, we have:

(
∂2J

∂q2
1

∂2J

∂q2
2

−
(

∂2J

∂q1∂q2

)2
)

(θ, q) = λ2

(
∂q2

∂θ2
(θ1, Θ2(q1, θ1))

∂q1

∂θ2
(θ1, Θ2(q1, θ1))

∂q1

∂θ1
(Θ1(q2, θ2), θ2)

∂q2

∂θ1
(Θ1(q2, θ2), θ2)

− 1

)
≥ 0

when Assumption 4 holds.

Proof of Proposition 3. First, observe that condition (24) allows us to express the

agent’s incentive compatibility constraint as:

Ui(θi) = arg max
θ̂i∈Θ

E
θ−i

(∫ θ−i

θ

∂S̃

∂qi

(q(θ̂i, x))
∂qi

∂θ−i

(θ̂i, x)dx− θiqi(θ̂i, θ−i)|θi

)
−Hi(θ̂i). (A.14)

Using the Envelope Theorem yields the expression of the derivative of agent’s information

rent for a given differentiable output vector q(θ):

U̇i(θi) = −E
θ−i

(qi(θi, θ−i)|θi)+E
θ−i

((∫ θ−i

θ

∂S̃

∂qi

(q(θi, x))
∂qi

∂θ−i

(θi, x)dx− θiqi(θi, θ−i)

)
f̃θi

(θ−i|θi)

f̃(θ−i|θi)
|θi

)
.

(A.15)

Integrating by parts the second term of (A.15) and taking into account that
∫ θ̄

θ
f̃θi

(θ−i|θi)dθ−i =

0 yields a new expression of U̇i(θi) as

U̇i(θi) = −E
θ−i

(qi(θi, θ−i)|θi)−
∫ θ̄

θ

(∫ θ−i

θ

f̃θi
(x|θi)dx

) (
∂S̃

∂qi

(q(θi, θ−i))dx− θi

)
∂qi

∂θ−i

(θi, θ−i)dθ−i.

(A.16)

From (A.16), agent Ai’s information rent is decreasing when Assumption 2 holds and thus

(14) is binding at θ̄. This yields the following expression of Ai’s expected rent:

E
θi

(Ui(θi)) = E
θ

(
F (θi)

f(θi)
qi(θ)

)

+E
θ

(
F (θi)

f̃(θi, θ−i)

(∫ θ−i

θ

f̃θi
(x|θi)dx

) (
∂S̃

∂qi

(q(θi, θ−i))dx− θi

)
∂qi

∂θ−i

(θi, θ−i)

)
.

Inserting these expected rents into the principal’s objective function yields the following

calculus of variations problem:

(P) : max
{q(·)}

∫

Θ2

Φ (θ, q(θ),∇q(θ)) dθ
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where admissible arcs q(·) are in C1, and

Φ (θ, q(θ),∇q(θ)) = f̃(θ)

(
S̃(q(θ))−

2∑
i=1

(
θi +

F (θi)

f(θi)

)
qi(θ)

)

−
2∑

i=1

F (θi)

(∫ θ−i

θ

f̃θi
(x|θi)dx

) (
∂S̃

∂qi

(q(θi, θ−i))− θi

)
∂qi

∂θ−i

(θ).

Given that Assumption 2 holds, Φ (θ, s, v) is concave in (s, v), the necessary conditions for

optimality are also sufficient. The first necessary conditions are the Euler-Lagrange con-

ditions42 satisfied by qSB(θ). They are obtained by looking at variations of the functional

inside the square Θ2 and can be written as:

Φqi
=

2∑

k=1

∂Φqiθk

∂θk

for i = 1, 2. (A.17)

Simplifying yields (26).

The second set of necessary conditions for optimality is obtained by looking at varia-

tions of the functional on the boundary Γ of Θ2. They can be written as:
∫

Γ

ψ(θ)
−→
G i · d−→n = 0 for i = 1, 2. (A.18)

for any function ψ(θ) ∈ C1 where d−→n is the normal outward to Γ and
−→
G i = (Φqiθ1

, Φqiθ2
).

These conditions are obviously satisfied since terms of the form F (θi)
(∫ θ−i

θ
f̃θi

(x|θi)dx
)

are zero on the boundary. The boundary conditions (27) come from taking θi = θ into

(26).

•Using characteristics to approximate solutions close to the boundary surfaces:

When ∂2S̃
∂q1∂q2

= λ > 0, we can rewrite the system of partial differential equations (26) as:

a(θ1, θ2)
∂qSB

1

∂θ1

(θ)− a(θ2, θ1)
∂qSB

1

∂θ2

(θ) =

− f̃(θ)

λ

((
1 +

F (θ2)

f(θ2)

f̃θ2(θ1|θ2)

f̃(θ1|θ2)

)(
∂S̃

∂q2

(qSB(θ))− θ2

)
− F (θ2)

f(θ2)

)
, (A.19)

a(θ1, θ2)
∂qSB

2

∂θ1

(θ)− a(θ2, θ1)
∂qSB

2

∂θ2

(θ) =

f̃(θ)

λ

((
1 +

F (θ1)

f(θ1)

f̃θ1(θ2|θ1)

f̃(θ2|θ1)

)(
∂S̃

∂q1

(qSB(θ))− θ1

)
− F (θ1)

f(θ1)

)
(A.20)

where a(θ1, θ2) = F (θ2)
(∫ θ1

θ
f̃θ2(x|θ2)dx

)
≤ 0.

42Gelfand and Fomin (2000, p. 153).
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Let introduce the variable z ∈ R to parameterize characteristic curves which are

tangent at each point to the surfaces qi = qSB
i (θ) defined through the system (A.19)-

(A.20). We set:
dθ1

dz
(z) = a(θ1, θ2) and

dθ2

dz
(z) = −a(θ2, θ1). (A.21)

Let Q(z) = (Q1(z), Q2(z)) = qSB(θ(z)). Equations (A.19) and (A.20) define a system of

differential equations such that for i = 1, 2:

Q̇i(z) =
(−1)if̃(θ(z))

λ

((
1 +

F (θ−i(z))

f(θ−i(z))

f̃θ−i
(θi(z)|θ−i(z))

f̃(θi(z)|θ−i(z))

)(
∂S̃

∂q−i

(Q(z)))− θ−i(z)

)
− F (θ−i(z))

f(θ−i(z))

)
.

(A.22)

At this stage the difficulty in using the standard method of characteristics (as in John

(1982) for instance) comes from the fact that the boundary conditions (27) correspond

to characteristic curves. Nevertheless, with a little bit more work, we can prove existence

(locally around the boundary) and provide an approximation for a solution to (26)-(27).

Let choose the initial values for z = 0 as

θ1(0) = θ2(0) = θ0 ∈ (θ, θ̄). (A.23)

Since a(·) is continuous and satisfies a Lipschitz condition, the Uniqueness Theorem for

ordinary differential equations ensures that the system (A.21) with these initial conditions

has a unique solution. It can be easily checked that θ1(z) (resp. θ2(z)) is strictly decreasing

(resp. increasing). Moreover, in the (θ1, θ2) space the curve corresponding to the solution

of (A.21)-(A.23) cannot reach the boundary θ2 = θ̄ for some z0 such that θ1(z0) > θ

because the unique solution to (A.21) such that, for some finite z0 we have θ2(z0) = θ̄

and θ1(z0) > θ, is such that θ2(z) = θ̄ for all z by the Uniqueness Theorem for ordinary

differential equations. This would contradict the initial conditions (A.23). Moreover,

because θ1(z) (resp. θ2(z)) is decreasing and thus bounded below by θ (resp. increasing)

(bounded above by θ̄), it has a limit when z → +∞ and this limit has to be θ (resp. some

θ∗2 such that θ∗2 < θ̄). (Note that the limit is not reached. Indeed, by the Uniqueness

Theorem, there exists a unique solution to (A.21) with the conditions θ1(z1) = θ and

θ2(z1) = θ∗2 for some z1 < +∞ and this limit is such that θ1(z) = θ and θ2(z) = θ∗2 for all

z contradicting (A.23).) Note for each initial condition θ0, the corresponding value of θ∗2
as θ∗2(θ0). This function is weakly increasing (otherwise, there would be a contradiction

with the Uniqueness Theorem for differential equations), obviously continuous in θ0 and

such that first, since θ∗2(θ0) ≥ θ0 we have limθ0→θ̄θ
∗
2(θ) = θ̄, and second θ∗2(θ) = θ. Hence,

any θ∗2 ∈ Θ is the limit of a schedule θ2(z) for some initial condition θ0.

To understand how the system (θ1(z), θ2(z)) behaves as z → +∞, observes that (A.21)
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can be approximated as:

θ̇1(z) = F (θ∗2)f̃θ(θ|θ∗2)(θ1(z)−θ) and θ̇2(z) = −f(θ)

(∫ θ∗2

θ

f̃θ(x|θ)dx

)
(θ1(z)−θ). (A.24)

Integrating yields:

θ1(z) = θ+µexp(F (θ∗2)f̃θ(θ|θ∗2)z) and θ2(z) = θ∗2−µ
f(θ)

(∫ θ∗2
θ

f̃θ(x|θ)dx
)

F (θ∗2)f̃θ(θ|θ∗2)
exp(F (θ∗2)fθ(θ|θ∗2)z)

(A.25)

for one constant µ ∈ R which depends on the initial condition θ0. Changing variables, we

set y = µexp(F (θ∗2)f̃θ(θ|θ∗2)z) so that F (θ∗2)f̃θ(θ|θ∗2)dz = dy
y
. Slightly abusing notations,

we get:

θ1(y) = θ + y, and θ2(y) = θ∗2 −
f(θ)

(∫ θ∗2
θ

f̃θ(x|θ)dx
)

F (θ∗2)f̃θ(θ|θ∗2)
y (A.26)

and (A.22) becomes:

Q̇i(y) =
(−1)if̃(θ(y))

yF (θ∗2)f̃θ(θ|θ∗2)λ
×

((
1 +

F (θ−i(y))

f(θ−i(y))

f̃θ−i
(θi(y)|θ−i(y))

f̃(θi(y)|θ−i(y))

)(
∂S̃

∂q−i

(Q(y)))− θ−i(y)

)
− F (θ−i(y))

f(θ−i(y))

)
(A.27)

with the initial data Q(0) = qSB(θ, θ∗2) we obtain thereby a solution Q(y, θ∗2). These

ordinary differential equations (A.27) have singularities at y = 0 since the numerator and

denominator on the right-hand side of (A.27) are both equal to zero at that point.

However, using Lhospital’s rule, the system (A.27) gives us the derivatives at 0, namely

(Q̇1(0, θ
∗
2), Q̇2(0, θ

∗
2)), of that solutions as the solutions to (A.28)-(A.29) below:

Q̇1(0, θ
∗
2) = − f̃(θ, θ∗2)

F (θ∗2)f̃θ(θ|θ∗2)λ

( (
1 +

F (θ∗2)
f(θ∗2)

f̃θ2(θ|θ∗2)
f̃(θ|θ∗2)

)(
λQ̇1(0, θ

∗
2) + S22Q̇2(0, θ

∗
2)− θ̇2(0)

)

−θ̇2(0)
d

dθ

(
F (θ)

f(θ)

)
|θ∗2 +

d

dy

(
F (θ2(y))

f(θ2(y))

f̃θ2(θ1(y)|θ2(y))

f̃(θ1(y)|θ2(y))

)
|y=0(ϕ(θ, θ∗2)− θ∗2)

)
(A.28)

Q̇2(0, θ
∗
2) =

f̃(θ, θ∗2)

F (θ∗2)f̃θ(θ|θ∗2)λ

(
S11Q̇1(0, θ

∗
2) + λQ̇2(0, θ

∗
2)− 2θ̇1(0)

)
(A.29)

where S11 = ∂2S̃
∂q2

1
(Q(0, θ∗2)), S22 = ∂2S̃

∂q2
2
(Q(0, θ∗2)).

This system admits a unique solution in (Q̇1(0, θ
∗
2), Q̇2(0, θ

∗
2)), which proves local ex-

istence, since ∣∣∣∣
−1− γ −γ S22

λ

εS11

λ
ε− 1

∣∣∣∣ = 2 + γε

(
S11S22

λ2
− 1

)
6= 0
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where γ = 1 +
f̃(θ,θ∗2)

F (θ∗2)f̃θ(θ|θ∗2)
< 0 when the correlation is small enough and ε = γ − 1 =

f̃(θ,θ∗2)

F (θ∗2)f̃θ(θ|θ∗2)
< 0. This defines the derivative and the local behavior of at least a solu-

tion (Q1(y, θ∗2), Q2(y, θ∗2)) as (Q1(y, θ∗2) = Q1(0, θ
∗
2) + Q̇1(0, θ

∗
2)y, Q2(y, θ∗2) = Q2(0, θ

∗
2) +

Q̇1(0, θ
∗
2)y).

Now, solving the system θ = θ(y, θ∗2) for y small enough yields (y, θ∗2) = (Y (θ), Θ∗
2(θ)).

Using (A.26 ), we get:

y = θ1 − θ and θ2 − θ∗2 = β(θ∗2)(θ1 − θ)

where β(θ∗2) = −
f(θ)

�R θ∗2
θ f̃θ(x|θ)dx

�

F (θ∗2)f̃θ(θ|θ∗2)
. This system can be uniquely inverted for θ1 close enough

to θ since the derivative w.r.t. θ∗2 of the right-hand side of the second equation is non-zero

for θ2 close enough to θ∗2. Finally, locally around (θ, θ∗2), we get qSB(θ) = Q(Y (θ), Θ∗
2(θ))

for a solution to (26) such that Q(0, θ∗2) = qSB(θ, θ∗2).

Finally, tedious but straightforward computations show that the derivatives ∂qi

∂θ1
(θ)

and ∂qi

∂θ2
(θ) for i = 1, 2 satisfy Assumptions 3 and 4 provided λ is small enough and

∂ϕ
∂θi

(θi, θ−i) ≥ | ∂ϕ
∂θ−i

(θi, θ−i)|.
Proof of Corollary 1. Denote qFB(θ, θ) = µ−θ

1−λ
the first-best output at (θ, θ), and the

new variables yi(xi, x−i) = qSB
i (θi, θ−i)− qFB(θ, θ) and xi = θi − θ. We are looking for an

analytic solution to (26) in the neighborhood of (θ, θ). Up to terms of order more than 2,

(26) (for i = 1) can be rewritten in the neighborhood of (θ, θ) as:

(1+l(θ1−θ))(µ−qSB
1 +λqSB

2 −θ1)−(θ1−θ)−m(θ1−θ)2 = lλ(θ1−θ)(θ2−θ)

(
∂qSB

2

∂θ1

− ∂qSB
2

∂θ2

)

which yields with the new variables

(1 + lx1)(−y1 + λy2 − x1)− x1 −mx2
1 = lλx1x2

(
∂y2

∂x1

− ∂y2

∂x2

)
(A.30)

and a similar equation is obtained by permuting indices.

We look for a symmetric analytic solution of the form:

yi(xi, x−i) = a1xi + a2x−i + b1x
2
i + b2x

2
−i + b3xix−i + oi(||x||2),

where oi(||x||2) (i = 1, 2) is of order more than 2. Inserting this expression into (A.30)

and identifying the coefficients yields:

a1 = − 2

1− λ2
, a2 = − 2λ

1− λ2
, b1 =

l −m

1− λ2
, b2 =

λ(l −m)

1− λ2
, b3 = − 2lλ

1− λ2
.

This yields the expression of the solution in the text. Assumption 3 is easily checked.

Note that |a1| > |a2| so that Assumption 4 holds.
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Proof of Proposition 4. Let us write the principal’s objective function in this team

context as:

W (q(·), t(·)) = (ν2 + α)(S(q(θ, θ))− 2t(θ, θ))

+2(ν(1− ν)− α)(S(q(θ, θ̄))− t(θ̄, θ))− t(θ, θ̄)) + ((1− ν)2 + α)(S(q(θ̄, θ̄))− 2t(θ̄, θ̄)).

For α small enough, intuition suggests that the relevant Bayesian incentive constraint

is that of an efficient agent and the relevant participation constraint that of an inefficient

one. Those constraints can be written respectively as:

U(θ) =
(
ν +

α

ν

)
(t(θ, θ)− θq(θ, θ)) +

(
1− ν − α

1− ν

)
(t(θ, θ̄)− θq(θ, θ̄))

≥
(
ν +

α

ν

)
(t(θ̄, θ)− θq(θ̄, θ)) +

(
1− ν − α

ν

)
(t(θ̄, θ̄)− θq(θ̄, θ̄)). (A.31)

U(θ̄) =

(
ν − α

1− ν

)
(t(θ̄, θ)−θ̄q(θ̄, θ))+

(
1− ν +

α

1− ν

)
(t(θ̄, θ̄)−θ̄q(θ̄, θ̄)) ≥ 0. (A.32)

Neglecting the Bayesian incentive constraint of an inefficient agent and the participa-

tion constraint of an inefficient one, the principal’s problem so relaxed becomes thus:

(P) : max
{q(·),t(·)}

W (q(·), t(·)) subject to (29), (30), (A.31) and (A.32).

These constraints define a convex set with non-empty interior so that constraint qualifi-

cation holds. Denoting respectively by β, γ, λ and µ the non-negative multipliers of those

constraints, forming the Lagrangean and optimizing with respect to transfers yields the

following Karush-Kuhn-Tucker conditions:

−2(ν2 + α) +
λ

ν
(ν2 + α)− 2β = 0

−2(ν(1− ν)− α) +
λ

ν
(ν(1− ν)− α) + 2β = 0,

−2(ν(1− ν)− α)− λ

ν
(ν2 + α) + 2γ +

µ

1− ν
(ν(1− ν)− α) = 0,

−2((1− ν)2 + α)− λ

ν
(ν(1− ν)− α)− 2γ +

µ

1− ν
((1− ν)2 + α) = 0.

Solving this system yields,

β = 0, γ = α > 0, λ = 2ν > 0, µ = 2. (A.33)

From which we deduce that (29) is slack and (30), (A.31) and (A.32) are all binding at

the optimum. Using (30) and (A.32) binding, yields

t(θ̄, θ̄)−θ̄q(θ̄, θ̄) =
ν(1− ν)− α

2(1− ν)

[
S(q)− 2θ̄q

]q(θ̄,θ̄)

q(θ,θ̄)
, t(θ̄, θ)−θ̄q(θ, θ̄) = −(1− ν)2 + α

2(1− ν)

[
S(q)− 2θ̄q

]q(θ̄,θ̄)

q(θ,θ̄)
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and the expressions of the agent’s rents as

U(θ) = ∆θ
((

ν +
α

ν

)
q(θ̄, θ) +

(
1− ν − α

ν

)
q(θ̄, θ̄)

)
+

α

ν(1− ν)

[
S(q)− 2θ̄q

]q(θ,θ̄)

q(θ̄,θ̄)

> U(θ̄) = 0.

Inserting those values into W (q(·), t(·)) and optimizing gives the expression of the optimal

outputs in the proposition.

The expression above for an efficient agent’s rent already shows that, for α not too

large, an efficient agent’s rent is strictly positive given that outputs are so that the latter’s

participation constraint is slack. We have:

USB(θ̄) = 0 < USB(θ) = ∆θ
((

ν +
α

ν

)
qSB(θ̄, θ) +

(
1− ν − α

ν

)
qSB(θ̄, θ̄)

)

− α

ν(1− ν)
[S(q)− 2θ̄]

qSB(θ̄,θ̄)

qSB(θ,θ̄)
.

We now check that an inefficient agent’s incentive constraint is slack, at least for α

small enough. This amounts to verify

0 > (ν(1− ν)− α)(tSB(θ, θ)− θ̄qSB(θ, θ)) + ((1− ν)2 + α)(tSB(θ, θ̄)− θ̄qSB(θ, θ̄)).

However this inequality holds strictly for α = 0 since then

∆(νqSB
0 (θ, θ) + (1− ν)qSB

0 (θ, θ̄)) > ∆(νqSB
0 (θ̄, θ) + (1− ν)qSB

0 (θ̄, θ̄))

where S ′(qSB
0 (θ, θ)) = 2θ, S ′(qSB

0 (θ, θ̄)) = θ + θ̄ + ν
1−ν

∆θ, and S ′(qSB
0 (θ̄, θ̄)) = 2θ̄ + 2ν

1−ν
∆θ

and, by continuity, it holds also for α small enough.

Proof of Proposition 5. Let us write the principal’s objective function in this multiunit

auction context as:

W (q(·), t(·)) = (ν2 + α)(S(2q(θ, θ))− 2t(θ, θ))

+2(ν(1−ν)−α)(S(q(θ, θ̄)+q(θ̄, θ))−t(θ, θ))−t(θ, θ̄))+((1−ν)2+α)(S(2q(θ̄, θ̄))−2t(θ̄, θ̄)).

For α small enough, intuition suggests again that the relevant Bayesian incentive con-

straint is that of an efficient agent and the relevant participation constraint that of an

inefficient one which can be written still as (A.31) and (A.32). We first neglect the

Bayesian incentive constraint of an inefficient agent and the participation constraint of an

inefficient one. Non-manipulability imposes (32) in state (θ̄, θ̄). In state (θ, θ), it requires

S(2q(θ, θ))− 2t(θ, θ) ≥ S(q(θ, θ) + q(θ, θ̄))− t(θ, θ)− t(θ, θ̄). (A.34)

The global non-manipulability constraint that prevents simultaneous deviations towards

both agents can be written as

S(2q(θ, θ))− 2t(θ, θ) ≥ S(2q(θ, θ̄))− 2t(θ, θ̄). (A.35)
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Due to the strict concavity of S(·), (A.34) is more stringent than (A.35).

In state (θ, θ̄), non-manipulability imposes also two local and one global constraints

that can be written in compact form as

S(q(θ, θ̄) + q(θ̄, θ))− t(θ, θ̄)− t(θ̄, θ) ≥

max{S(q(θ, θ̄) + q(θ̄, θ̄))− t(θ, θ̄)− t(θ̄, θ̄); S(q(θ, θ) + q(θ̄, θ))− t(θ, θ)− t(θ̄, θ)

; S(q(θ, θ) + q(θ̄, θ̄))− t(θ, θ)− t(θ̄, θ̄)} (A.36)

We first neglect constraints (A.34) and (A.36) and check ex post that these constraints

can be satisfied at no additional cost for the principal. Consider thus the principal’s so

relaxed problem

(P) : max
{q(·),t(·)}

W (q(·), t(·)) subject to (32), (A.31) and (A.32).

At the optimum of (P), (32), (A.31) and (A.32) are all binding. In particular, (32) binding

implies

t(θ̄, θ) = t(θ̄, θ̄) + S(q(θ̄, θ) + q(θ̄, θ̄))− S(2q(θ̄, θ̄)).

Inserting into the binding participation constraint (A.32) gives the values of the transfers

t(θ̄, θ̄)− θ̄q(θ̄, θ̄) = −
(

ν − α

1− ν

)[
S(q(θ̄, θ̄) + q)− θ̄q

]q(θ̄,θ)

q(θ̄,θ̄)
,

t(θ̄, θ)− θ̄q(θ̄, θ) = −
(

ν − α

1− ν

)[
S(q(θ̄, θ̄) + q)− θ̄q

]q(θ̄,θ)

q(θ̄,θ̄)
.

We can then use these expressions to obtain the information rents left to one agent as

U(θ) = ∆θ
((

ν +
α

ν

)
q(θ̄, θ) +

(
1− ν − α

ν

)
q(θ̄, θ̄)

)
+

α

ν(1− ν)

[
S(q(θ̄, θ̄) + q)− θ̄q

]q(θ̄,θ)

q(θ̄,θ̄)

> U(θ̄) = 0.

Inserting these values into W (q(·), t(·)) and optimizing for α small gives the expression

of the optimal quantities in the proposition.

An argument similar to that in the Proof of Proposition 4 shows that, for α small

enough, an inefficient agent’s incentive constraint is slack.

Let us check that the non-manipulability constraints (A.34) and (A.36) both hold. In

the optimal mechanism, identified so far, there is one degree of freedom. The expected

transfer obtained by an efficient agent is fixed but the choice of t(θ, θ) and t(θ, θ̄) is

possible in a wide set (because of correlation it is nevertheless constrained by the incentive

constraint of an inefficient agent). Constraint (A.34) can be expressed as

tSB(θ, θ̄)− tSB(θ, θ) ≥ S(qSB(θ, θ̄) + qSB(θ, θ))− S(2qSB(θ, θ)) (A.37)
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When (32) is binding, the first inequality in constraint (A.36) amounts to

S(qSB(θ, θ̄))− S(qSB(θ̄, θ̄)) ≥ S(qSB(θ, θ̄) + qSB(θ̄, θ̄))− S(2qSB(θ̄, θ̄)),

which holds since qSB(θ, θ̄) ≥ qSB(θ̄, θ̄), and S(·) is concave. Still when (32) is binding,

the second inequality in (A.36) is more stringent than the third one as long as qSB(θ, θ) ≥
qSB(θ̄, θ̄) by the same concavity argument as above. This second inequality can be written

as

tSB(θ, θ̄)− tSB(θ, θ) ≤ S(qSB(θ, θ̄))− S(qSB(θ, θ)). (A.38)

It is possible to satisfy all the non-manipulability constraints at no additional cost for

the principal if one can find tSB(θ, θ) and tSB(θ, θ̄) such that (A.37) and (A.38) are both

satisfied. But observe that, when (A.38) is taken as an equality, (A.37) holds because

S(·) is concave. Finally, for α sufficiently small, such transfers do not violate the incentive

constraint of an inefficient agent.

Proof of Proposition 6. The proof is directly adapted from that of Proposition 1 by

replacing Bayesian incentive with dominant strategy incentive compatibility.

Proof of Proposition 7. Denoting ui(θi, θ−i) = ti(θi, θ−i)−θiqi(θi, θ−i) the ex post rent of

an agent Ai with type θi when A−i reports θ−i, dominant strategy incentive compatibility

implies that qi(θi, θ−i) is weakly decreasing in θi, for all θ−i, and

ui(θi, θ−i) = ui(θ̄, θ−i) +

∫ θ̄

θi

qi(u, θ−i)du. (A.39)

Imposing ex post participation constraints which hold irrespectively of the agents’ beliefs

on each other types, we must have:

ui(θi, θ−i) ≥ 0, ∀(θi, θ−i) ∈ Θ2.

Consider the simple bilateral contracts {tBM
i (θ̂i), q

BM(θ̂i)}θ̂i∈Θ where tBM
i (θ̂i) = θ̂iq

BM
i (θ̂i)+∫ θ̄

θ̂i
qBM
i (u)du. These simple bilateral contracts are such that only the inefficient agents’

participation constraints are binding, namely ui(θ̄, θ−i) = 0 for all θ−i ∈ Θ. These con-

tracts satisfy also incentive compatibility. Moreover, they implement the optimal Baron-

Myerson quantities. They thus maximize the principal’s expected payoff within the set of

simple bilateral contracts.

We must check that more complex bilateral mechanisms cannot achieve a greater

payoff. Notice that non-manipulability and dominant strategy incentive compatibility

imply that there exists functions Hi(·) (i = 1, 2) such that

Hi(θi) = S(qi(θi, θ−i))− θiqi(θi, θ−i)− ui(θ̄, θ−i)−
∫ θ̄

θi

qi(x, θ−i)dx ∀θ−i. (A.40)
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The principal’s problem can thus be written

(P) : max
{q(·),H(·)}

2∑
i=1

Eθi
(Hi(θi))

subject to (A.40), qi(., θ−i) non-increasing and ui(θ̄, θ−i) ≥ 0 ∀θ−i ∈ Θ.

This last constraint is obviously binding at the optimum.

For any acceptable non-manipulable and dominant strategy mechanism which imple-

ments a quantity schedule qi(θi, θ−i), (A.40) implies that the principal can get the same

payoff with a non-manipulable mechanism that implements the schedule qi(θi) = qi(θi, θ̄).

The optimal such output is then qBM(θi). Moreover, this outcome can be implemented

with a set of simple bilateral contracts with corresponding transfers ti(θi) = ti(θi, θ̄) and

outputs qi(θi) = qi(θi, θ̄) which depend only on Ai’s type.

Proof of Proposition 8. Given the form that (symmetric) non-manipulable mechanisms

take in this environment (see equation (12)), coalition incentive compatibility requires that

agents jointly tell the truth when having the option to deviate as a coalition:

(θ1, θ2) ∈ arg max
(θ̂1,θ̂2)∈Θ2

2∑
i=1

S(qi(θ̂i, θ̂−i))− θiqi(θ̂i, θ̂−i)−H(θ̂i).

This yields the necessary first-order conditions:

−H ′(θk) +
2∑

i=1

(S ′(qi(θk, θ−k))− θi)
∂qi

∂θk

(θk, θ−k) = 0 for k = 1, 2. (A.41)

A non-manipulable and collusion-proof mechanism that is Bayesian incentive compatible

must thus satisfy (A.41) and (16). This yields:

Eθi

(
(S ′(qi(θi, θ−i))− θi)

∂qi

∂θ−i

(θi, θ−i)|θ−i

)
= 0. (A.42)

Clearly, the second-best qSB(θ) does not satisfy this condition. An output schedule such

that qi(θi, θ−i) ≤ qFB(θi) with equality only at θi = θ and ∂qi

∂θ−i
(θi, θ−i) ≥ 0 can only satisfy

(A.42) when
∂qi

∂θ−i

(θi, θ−i) = 0.

Non-manipulable and collusion-proof mechanisms are thus necessarily simple bilateral

mechanisms that implement the Baron-Myerson outcome qBM(θi).

Proof of Proposition 9. It should be clear that offering the same contracts as in the

case of public offers is an optimal equilibrium strategy for the principal within the class

of mechanisms where he is a priori restricted to report to Ai the message he receives from
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agent A−i. The proof follows the same steps as the proof of Proposition 2 and is omitted.

The only new question to investigate is whether the principal could deviate to a larger class

of mechanisms to communicate with Ai possibly the endogenous information he has on

whatever private offers he makes to agent A−i. Denote thus by Pi any arbitrary compact

message space available to the principal to communicate with Ai on top of the type space

available to report on A−i’s type, and by {t̃i(θi, θ−i, pi), q̃i(θi, θ−i, pi)}{θ̂i∈Θ,θ̂−i∈Θ,pi∈Pi} a

menu of so extended direct mechanisms which is assumed to be lower-semi continuous in

pi. Finally, denote by p(θ) = (p1(θ), p2(θ)) an array of best-responses for the principal, a

priori this is a correspondence but slightly abusing notations we will denote similarly any

selection within such correspondence. Optimality of the principal’s behavior at the last

stage of the game requires:

(θ, p(θ)) ∈ arg max
{θ̂∈Θ2,p∈Q2

i=1 Pi}

2∑
i=1

S(q̃i(θi, θ̂−i, pi))− t̃i(θi, θ̂−i, pi) (A.43)

where the maximum above is achieved by compactness of Pi and lower-semi continuity

in pi. Let define the new mechanism (tSi (θ), qS
i (θ)) = (t̃i(θ, pi(θ)), q̃i(θ, pi(θ))). Such

mechanism does not use “extended” reports from the principal. The optimality condition

(A.43) can be rewritten as:

θ ∈ arg max
θ̂∈Θ2

2∑
i=1

S(qS
i (θi, θ̂−i))− tSi (θi, θ̂−i). (A.44)

so that the new mechanism (tSi (θ), qS
i (θ)) is non-manipulable. This shows that there is no

point in enlarging the set of mechanisms available to the principal.

Proof of Proposition 10. The proof is in several steps.

A1’s sub-mechanism and reporting strategy. In any equilibrium of the sequential

bilateral contracting game, the principal offers to A1 a sell-out contract of the form

t1(θ1, θ2) = S(q1(θ1, θ2))−H1(θ1) (A.45)

or alternatively the nonlinear price

T1(q1, θ1) = S(q1)−H1(θ1).

Indeed, exactly as in the simultaneous timing, such contract prevents manipulations by

P of A2’s report towards A1 once P will have learned this report.

A priori, in this model with sequential contracting, we might allow for possible (non-

truthful) mixed strategy for A1, with different types maybe sending the same message

θ̂1. Let denote by dσ(θ̂1|θ1) the conditional density corresponding to such mixed-strategy.

(We will see below that a simple argument justifies that such strategy has indeed to be
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truthful.) When A1 plays a non-truthful strategy in equilibrium and reports θ̂1, it is

possible to use Bayes rule to compute dσ(θ1|θ̂1) and the conditional distribution of θ2

conditional on having learned θ̂1 which we denote (slightly abusing notations) f̃(θ2|θ̂1)

with cumulative distribution F̃ (θ2|θ̂1).

A2’s optimal sub-mechanism. Let us turn now to the bilateral contract between P

and A2. Contracting with A2 takes place after that P has privately learned the report

θ̂1 from A1. Following this report θ̂1, the principal can use any simple sub-mechanism of

the form {t2(θ̂2), q2(θ̂2)}θ̂2∈Θ in his relationship with A2. Of course, such mechanism must

satisfy the following constraints

t2(θ2)− θ2q2(θ2) ≥ t2(θ̃2)− θ2q2(θ̃2), ∀(θ2, θ̃2) (A.46)

t2(θ2)− θ2q2(θ2) ≥ 0 ∀θ2. (A.47)

Those constraints are respectively the dominant strategy incentive and ex post participa-

tion constraints for A2. Note that the set of such incentive feasible allocations does not

depend directly neither on the principal’s information θ̂1 nor on A1’s type θ1 (or more

exactly, A2’s expectations over that type given what he learns from observing P ’s offer).

In particular, the set of such incentive feasible allocations is the same as if θ̂1 was known

also by A2.

The principal’s problem when dealing with A2 consists in maximizing his expected

profit conditionally on having received report θ̂1 from A1 subject to (A.46) and (A.47).

A relaxed version of this problem is obtained when the monotonicity condition (q2(θ2|θ̂1)

non-increasing) implied by (A.46) is omitted. For this relaxed problem, the participation

constraint (A.47) binds at θ2 = θ̄. Let thus denote by {tD2 (θ̂2|θ̂1), q
D
2 (θ̂2|θ̂1)}θ̂2∈Θ the

solution to this relaxed problem. This mechanism is computed as if θ̂1 was known also by

A2. Such optimal mechanism implements the following output schedule

S ′(qD
2 (θ2|θ̂1)) = θ2 +

F̃ (θ2|θ̂1)

f̃(θ2|θ̂1)
, ∀(θ̂1, θ2) (A.48)

with the dominant strategy transfers

tD2 (θ2|θ̂1) = θ2q
D
2 (θ2|θ̂1) +

∫ θ̄

θ2

qD
2 (u|θ̂1)du. (A.49)

Note that the output qD
2 (θ2|θ̂1) given in (A.48) may not necessarily be non-increasing.

Moreover, only the ex post participation constraints of a θ̄-agent A2 is binding following

P ’s learning of θ̂1 with the transfers given in (A.49).

Clearly, this is a best strategy for P to solve the relaxed problem by offering such sub-

mechanism {tD2 (θ̂2|θ̂1), q
D
2 (θ̂2|θ̂1)}θ̂2∈Θ for any θ̂1 he may have learned even if, actually, θ̂1
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is not known by A2.
43 Moreover, the out-of equilibrium beliefs that A2 may held following

any deviation away from this offer do not affect his play and are thus arbitrary.

Moreover, by definition of the optimal sub-mechanism {tD2 (θ̂2|θ̂1), q
D
2 (θ̂2|θ̂1)}θ̂2∈Θ, it

must be that

Eθ2(S(qD
2 (θ2|θ̂1))− tD2 (θ2|θ̂1)|θ̂1) ≥ Eθ2(S(qD

2 (θ2|θ̃1))− tD2 (θ2|θ̃1)|θ̂1) ∀(θ̂1, θ̃1) (A.50)

where θ̃1 is in the support of the mixed reporting strategy of at least one type of A1.

Compared to the simultaneous timing, the sequential contracting game replaces the set

of ex post non-manipulability constraints of P when dealing with A2 by an interim

non-manipulability condition which is readily verified by definition of the optimality of

{tD2 (θ̂2|θ̂1), q
D
2 (θ̂2|θ̂1)}θ̂2∈Θ. However, doing so is at the cost of replacing the interim incen-

tive and participation constraints of A2 that prevail under simultaneous contracting by

dominant strategy incentive constraints and an ex post participation ones.

A1’s reporting strategy. Let us turn now to the first-period reporting strategy by A1

that P would like to induce. Note first that P ’s expected payoff in his relationship with

A2 can be written as

Eθ1

(∫

Θ

Eθ2(S(qD
2 (θ2|θ̂1))− tD2 (θ2|θ̂1)|θ̂1)dσ(θ̂1|θ1)

)
.

Now observe that, by definition of {tD2 (θ̂2|θ1), q
D
2 (θ̂2|θ1)}θ̂2∈Θ, we have for any mixed-

strategy dσ(·|θ1) that may have been played by A1

Eθ2(S(qD
2 (θ2|θ1))− tD2 (θ2|θ1)|θ1) ≥ Eθ2

(∫

Θ

(
S(qD

2 (θ2|θ̂1))− tD2 (θ2|θ̂1)
)

dσ(θ̂1|θ1)|θ1

)
.

Moreover, given Assumption 5, qD
2 (θ2|θ1) satisfies the monotonicity condition (qD

2 (θ2|θ̂1)

non-increasing) and the left-hand side above is the principal’s payoff with A2 in the

continuation equilibrium following a truthful report by A1. Taking expectations yields

Eθ1

(
Eθ2(S(qD

2 (θ2|θ1))− tD2 (θ2|θ1)|θ1)
) ≥ Eθ1

(
Eθ2

(∫

Θ

(
S(qD

2 (θ2|θ̂1))− tD2 (θ2|θ̂1)
)

dσ(θ̂1|θ1)|θ1

))

which immediately gives us that truthtelling is the best reporting strategy that P may

induce from A1 to maximize his expected payoff with A2.

On the other hand, the principal’s expected payoff with A1 obtained by offering any

sell-out contract as in (A.45) and having any reporting strategy dσ(·|θ1) is
∫
Θ

H1(θ̂1)dσ(θ̂1|θ1).

This payoff can also be achieved with a sell-out contract having H ′
1(θ1) =

∫
Θ

H1(θ̂1)dσ(θ̂1|θ1)

43This standard argument is due to the private values context (θ̂1 does not affect directly A2’s utility).
See Martimort and Moreira (2009) for a similar argument.
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and an output q′1(θ1, θ2) such that S(q′1(θ1, θ2)) =
∫

Θ
S(q1(θ̂1, θ2))dσ(θ̂1|θ1) without per-

turbating A1’s incentive and participation constraints. This shows finally that the best

reporting strategy that P can induce from A1 is truthtelling.

Optimality of simultaneous contracting. Consider now the function

H2(θ2) = Eθ1(S(qD
2 (θ2|θ1))− tD2 (θ2|θ1)|θ2),

and suppose that, in the game with simultaneous bilateral contracting, P offers to A2,

the following sell-out contract

t̃2(θ1, θ2) = S(qD
2 (θ2|θ1))−H2(θ2).

This mechanism is clearly non-manipulable in the simultaneous contracting game. By

construction, it is Bayesian incentive compatible for A2 and satisfies the interim partici-

pation constraints of all types of this agent. Moreover, this mechanism gives the same ex

ante payoff to the principal as the optimal sequential contract he can offer to A2. This

allows to conclude that the principal could always obtain a higher payoff in the simulta-

neous bilateral contracting game than in a fully revealing equilibrium of the sequential

bilateral contracting game.
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